[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN115102657A - Clock frequency synchronization method and device of metering device and storage medium - Google Patents

Clock frequency synchronization method and device of metering device and storage medium Download PDF

Info

Publication number
CN115102657A
CN115102657A CN202210750508.8A CN202210750508A CN115102657A CN 115102657 A CN115102657 A CN 115102657A CN 202210750508 A CN202210750508 A CN 202210750508A CN 115102657 A CN115102657 A CN 115102657A
Authority
CN
China
Prior art keywords
frequency
metering device
time
frequency control
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210750508.8A
Other languages
Chinese (zh)
Other versions
CN115102657B (en
Inventor
陈昊
孟静
张密
蒋依芹
宋晓卉
白静芬
杨玉博
徐熙彤
李宗嵘
岑炜
段永贤
张丽
耿爱玲
葛亚男
贾福泉
李华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI filed Critical State Grid Corp of China SGCC
Priority to CN202210750508.8A priority Critical patent/CN115102657B/en
Publication of CN115102657A publication Critical patent/CN115102657A/en
Application granted granted Critical
Publication of CN115102657B publication Critical patent/CN115102657B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本发明公开了一种计量装置的时钟频率同步方法、装置及存储介质。其中,计量装置的时钟频率同步方法,应用于台区层面内计量装置的各计量设备之间,包括:检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态;根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现;计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块;根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。解决现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题。

Figure 202210750508

The invention discloses a clock frequency synchronization method, device and storage medium of a metering device. The method for synchronizing the clock frequency of the metering device is applied between various metering devices of the metering device at the level of the station area, including: detecting the network status of the metering device, and determining the network state of the metering device, wherein the network state includes an online state and an offline state. ; Determine the frequency control mode of the metering device according to the network status, wherein the frequency control mode is realized by a preset frequency control module; Frequency control module; according to time delay, time offset and control mode, the clock frequency synchronization of each metering device of the metering device is performed. The technical problem in the prior art that a large number of metering devices at the station level lacks effective time synchronization means and cannot meet the needs of the smart grid is solved.

Figure 202210750508

Description

一种计量装置的时钟频率同步方法、装置及存储介质A clock frequency synchronization method, device and storage medium of a metering device

技术领域technical field

本发明涉及电力计量技术领域,特别是涉及一种计量装置的时钟频率同步方法、装置及存储介质。The present invention relates to the technical field of electric power measurement, and in particular, to a clock frequency synchronization method, device and storage medium of a metering device.

背景技术Background technique

随着电网信息化和数字化的发展,大量设备的接入,配电网的拓扑结构日益复杂,在配电网中的各计量装置处实现同步采集的需求愈加迫切。整个配电网中服务于不同功能的节点,也对应了不同时间同步精度的等级要求。例如用电管理、负荷监控及电量采集等所要求的时间同步精度为1秒;SCADA监控的时间同步精度为10ms;时间顺序记录(SOE)的时间同步精度为1ms;而同步相量测量(PMU)的时间同步精度为1μs。With the development of power grid informatization and digitization, a large number of devices are connected, and the topology of the distribution network is becoming more and more complex. The nodes serving different functions in the entire distribution network also correspond to the level requirements of different time synchronization accuracy. For example, the time synchronization accuracy required for power management, load monitoring and power acquisition is 1 second; the time synchronization accuracy for SCADA monitoring is 10ms; the time sequence recording (SOE) time synchronization accuracy is 1ms; and the synchrophasor measurement (PMU) ) with a time synchronization accuracy of 1 μs.

目前国网在台区层面内数量众多的计量装置缺乏有效时间同步手段,不能满足智能电网的需求。因此,智能配电网中经济可靠的时频量值传递及时间同步系统的研究,对于有效解决配电网智能化引入的一系列难题具有关键性作用。At present, the large number of metering devices of the State Grid at the Taiwan-area level lack effective time synchronization means and cannot meet the needs of smart grids. Therefore, the research on the economical and reliable time-frequency value transfer and time synchronization system in the intelligent distribution network plays a key role in effectively solving a series of problems introduced by the intelligent distribution network.

针对上述的现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题,目前尚未提出有效的解决方案。In view of the above-mentioned technical problems in the prior art that a large number of metering devices at the station level lack effective time synchronization means and cannot meet the needs of the smart grid, no effective solution has been proposed yet.

本公开的实施例提供了一种计量装置的时钟频率同步方法、装置及存储介质,以至少解决现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题。Embodiments of the present disclosure provide a clock frequency synchronization method, device, and storage medium for a metering device, so as to at least solve the problem that existing in the prior art, a large number of metering devices at the station level lack effective time synchronization means and cannot meet the needs of smart grids. technical issues of demand.

根据本公开实施例的一个方面,提供了一种计量装置的时钟频率同步方法,应用于台区层面内计量装置的各计量设备之间,包括:According to an aspect of the embodiments of the present disclosure, a method for synchronizing a clock frequency of a metering device is provided, which is applied between various metering devices of the metering device at the station level, including:

检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态;Detect the network status of the metering device, and determine the network status of the metering device, wherein the network status includes an online state and an offline state;

根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现;Determine the frequency control mode of the metering device according to the network state, wherein the frequency control mode is realized by a preset frequency control module;

计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块;Calculate the time delay and time offset between each metering device of the metering device, wherein each metering device is respectively provided with a frequency control module;

根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。According to the time delay, time offset and control method, the clock frequency of each metering device of the metering device is synchronized.

根据本公开实施例的另一个方面,还提供了一种存储介质,存储介质包括存储的程序,其中,在程序运行时由处理器执行以上任意一项所述的方法。According to another aspect of the embodiments of the present disclosure, a storage medium is further provided, and the storage medium includes a stored program, wherein when the program runs, any one of the methods described above is executed by a processor.

根据本公开实施例的另一个方面,还提供了一种计量装置的时钟频率同步装置,应用于台区层面内计量装置的各计量设备之间,包括:According to another aspect of the embodiments of the present disclosure, a clock frequency synchronization device for a metering device is also provided, which is applied between various metering devices of the metering device at the station area level, including:

第一确定模块,用于检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态;a first determining module, configured to detect the network status of the metering device, and determine the network status of the metering device, wherein the network status includes an online status and an offline status;

第二确定模块,用于根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现;The second determining module is used for determining the frequency control mode of the metering device according to the network state, wherein the frequency control mode is realized by a preset frequency control module;

计算模块,用于计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块;a calculation module, used for calculating the time delay and time offset between various measurement devices of the measurement device, wherein each measurement device is respectively provided with a frequency control module;

同步模块,用于根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。The synchronization module is used for synchronizing the clock frequency of each metering device of the metering device according to the time delay, time offset and control mode.

根据本公开实施例的另一个方面,还提供了一种计量装置的时钟频率同步装置,应用于台区层面内计量装置的各计量设备之间,包括:According to another aspect of the embodiments of the present disclosure, a clock frequency synchronization device for a metering device is also provided, which is applied between various metering devices of the metering device at the station area level, including:

处理器;以及processor; and

存储器,与处理器连接,用于为处理器提供处理以下处理步骤的指令:a memory, connected to the processor, for providing instructions for the processor to perform the following processing steps:

检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态;Detect the network status of the metering device, and determine the network status of the metering device, wherein the network status includes an online state and an offline state;

根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现;Determine the frequency control mode of the metering device according to the network state, wherein the frequency control mode is realized by a preset frequency control module;

计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块;Calculate the time delay and time offset between each metering device of the metering device, wherein each metering device is respectively provided with a frequency control module;

根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。According to the time delay, time offset and control method, the clock frequency of each metering device of the metering device is synchronized.

在本公开实施例中,通过对不同的网络状态设置不同的频率控制策略,解决计量装置本地频率源的溯源问题,确保计量装置在线情况下频率准确性和离线情况下短期频率准确性。并通过计算计量装置各计量设备之间的时间延迟和时间偏移测算方法,实现绝对时间的溯源问题,满足电力信息化中对于时间同步的性能需求。达到台区层面计量装置各计量设备之间的时间准确同步的技术效果。进而解决现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题。In the embodiment of the present disclosure, by setting different frequency control strategies for different network states, the problem of traceability of the local frequency source of the metering device is solved, and the frequency accuracy of the metering device in online condition and short-term frequency accuracy in offline condition is ensured. And by calculating the time delay and time offset measurement method between the various metering devices of the metering device, the problem of traceability of absolute time is realized, and the performance requirements for time synchronization in power informatization are met. To achieve the technical effect of accurate time synchronization between the metering devices of the metering device at the platform level. This further solves the technical problem in the prior art that a large number of metering devices at the station level lack effective time synchronization means and cannot meet the needs of the smart grid.

附图说明Description of drawings

此处所说明的附图用来提供对本公开的进一步理解,构成本发明的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:The accompanying drawings described herein are used to provide a further understanding of the present disclosure and constitute a part of the present disclosure. The exemplary embodiments of the present disclosure and their descriptions are used to explain the present disclosure and do not constitute an improper limitation of the present disclosure. In the attached image:

图1是用于实现根据本公开实施例1所述的方法的计算设备的硬件结构框图;1 is a block diagram of a hardware structure of a computing device for implementing the method according to Embodiment 1 of the present disclosure;

图2A是根据本公开实施例1所述的应用电力载波通讯电力时间码量值传递系统的示意图;2A is a schematic diagram of a system for transmitting power time code magnitude using power carrier communication according to Embodiment 1 of the present disclosure;

图2B是根据本公开实施例1的第一个方面所述的基于电力载波网络将各终端节点建立时间拓扑关系示意图;2B is a schematic diagram of establishing a time topology relationship between terminal nodes based on a power carrier network according to the first aspect of Embodiment 1 of the present disclosure;

图3是根据本公开实施例1的第一个方面所述的计量装置的时钟频率同步方法的流程示意图;3 is a schematic flowchart of a method for synchronizing a clock frequency of a metering device according to the first aspect of Embodiment 1 of the present disclosure;

图4是根据本公开实施例1第一个方面所述的频率控制模块的示意图;4 is a schematic diagram of the frequency control module according to the first aspect of Embodiment 1 of the present disclosure;

图5是根据本公开实施例1的第一个方面所述的时钟频率的量值传递评估过程的示意图;5 is a schematic diagram of a process of evaluating the magnitude transfer of a clock frequency according to the first aspect of Embodiment 1 of the present disclosure;

图6是根据本公开实施例1的第一个方面所述的时间延迟和时间偏移测量过程的示意图;6 is a schematic diagram of a time delay and time offset measurement process according to the first aspect of Embodiment 1 of the present disclosure;

图7是根据本公开实施例2所述的计量装置的时钟频率同步装置的示意图;7 is a schematic diagram of a clock frequency synchronization device of a metering device according to Embodiment 2 of the present disclosure;

图8是根据本公开实施例3所述的计量装置的时钟频率同步装置的示意图。FIG. 8 is a schematic diagram of a clock frequency synchronization device of a metering device according to Embodiment 3 of the present disclosure.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本公开的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。In order to make those skilled in the art better understand the technical solutions of the present disclosure, the following will clearly and completely describe the technical solutions in the embodiments of the present disclosure with reference to the accompanying drawings in the embodiments of the present disclosure. Obviously, the described embodiments are only some, but not all, embodiments of the present disclosure. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.

需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。It should be noted that the terms "first", "second" and the like in the description and claims of the present disclosure and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific sequence or sequence. It is to be understood that the data so used may be interchanged under appropriate circumstances such that the embodiments of the disclosure described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having" and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or units is not necessarily limited to those expressly listed Rather, those steps or units may include other steps or units not expressly listed or inherent to these processes, methods, products or devices.

T-GM:T GrandMaster,主时钟T-GM: T GrandMaster, Master Clock

T-TC:T TransparentClock,透明时钟T-TC: T TransparentClock, transparent clock

T-SC:TSlaveClock,从时钟T-SC: TSlaveClock, slave clock

PPS:PulsePerSecond,秒脉冲PPS: PulsePerSecond, second pulse

ToD:TimeofDay,当前时间ToD: TimeofDay, current time

实施例1Example 1

根据本实施例,还提供了一种计量装置的时钟频率同步方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to this embodiment, an embodiment of a method for synchronizing a clock frequency of a metering device is also provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be executed in a computer system such as a set of computer-executable instructions, Also, although a logical order is shown in the flowcharts, in some cases the steps shown or described may be performed in an order different from that herein.

本实施例所提供的方法实施例可以在移动终端、计算机终端、服务器或者类似的计算设备中执行。图1示出了一种用于实现计量装置的时钟频率同步方法的计算设备的硬件结构框图。如图1所示,计算设备可以包括一个或多个处理器(处理器可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器、以及用于通信功能的传输装置。除此以外,还可以包括:显示器、输入/输出接口(I/O接口)、通用串行总线(USB)端口(可以作为I/O接口的端口中的一个端口被包括)、网络接口、电源和/或相机。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,计算设备还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。The method embodiments provided in this embodiment may be executed in a mobile terminal, a computer terminal, a server, or a similar computing device. FIG. 1 shows a block diagram of a hardware structure of a computing device for implementing a clock frequency synchronization method for a metering device. As shown in FIG. 1, a computing device may include one or more processors (the processors may include, but are not limited to, processing means such as a microprocessor MCU or a programmable logic device FPGA, etc.), a memory for storing data, and a processor for Communication function transmission device. In addition, may also include: display, input/output interface (I/O interface), universal serial bus (USB) port (may be included as one of the ports of the I/O interface), network interface, power supply and/or camera. Those of ordinary skill in the art can understand that the structure shown in FIG. 1 is only a schematic diagram, which does not limit the structure of the above electronic device. For example, a computing device may also include more or fewer components than shown in FIG. 1 , or have a different configuration than that shown in FIG. 1 .

应当注意到的是上述一个或多个处理器和/或其他数据处理电路在本文中通常可以被称为“数据处理电路”。该数据处理电路可以全部或部分的体现为软件、硬件、固件或其他任意组合。此外,数据处理电路可为单个独立的处理模块,或全部或部分的结合到计算设备中的其他元件中的任意一个内。如本公开实施例中所涉及到的,该数据处理电路作为一种处理器控制(例如与接口连接的可变电阻终端路径的选择)。It should be noted that the one or more processors and/or other data processing circuits described above may generally be referred to herein as "data processing circuits". The data processing circuit may be embodied in whole or in part as software, hardware, firmware or any other combination. Furthermore, the data processing circuitry may be a single stand-alone processing module, or incorporated in whole or in part into any of the other elements in the computing device. As referred to in embodiments of the present disclosure, the data processing circuit acts as a kind of processor control (eg, selection of a variable resistance termination path connected to an interface).

存储器可用于存储应用软件的软件程序以及模块,如本公开实施例中的计量装置的时钟频率同步方法对应的程序指令/数据存储装置,处理器通过运行存储在存储器内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的应用程序的计量装置的时钟频率同步方法。存储器可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器可进一步包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至计算设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory can be used to store software programs and modules of the application software, such as the program instruction/data storage device corresponding to the clock frequency synchronization method of the metering device in the embodiment of the present disclosure, the processor runs the software programs and modules stored in the memory, thereby A clock frequency synchronization method of a metering device that executes various functional applications and data processing, that is, realizes the above-mentioned application programs. The memory may include high-speed random access memory, and may also include non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory. In some instances, the memory may further include memory located remotely from the processor, the remote memory being connectable to the computing device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.

传输装置用于经由一个网络接收或者发送数据。上述的网络具体实例可包括计算设备的通信供应商提供的无线网络。在一个实例中,传输装置包括一个网络适配器(Network Interface Controller,NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置可以为射频(Radio Frequency,RF)模块,其用于通过无线方式与互联网进行通讯。Transmission means are used to receive or transmit data via a network. Specific examples of the above-mentioned networks may include wireless networks provided by the communication provider of the computing device. In one example, the transmission device includes a network adapter (Network Interface Controller, NIC), which can be connected to other network devices through the base station so as to communicate with the Internet. In one example, the transmission device may be a radio frequency (Radio Frequency, RF) module, which is used for wirelessly communicating with the Internet.

显示器可以例如触摸屏式的液晶显示器(LCD),该液晶显示器可使得用户能够与计算设备的用户界面进行交互。The display may be, for example, a touch screen-style liquid crystal display (LCD) that enables a user to interact with a user interface of the computing device.

此处需要说明的是,在一些可选实施例中,上述图1所示的计算设备可以包括硬件元件(包括电路)、软件元件(包括存储在计算机可读介质上的计算机代码)、或硬件元件和软件元件两者的结合。应当指出的是,图1仅为特定具体实例的一个实例,并且旨在示出可存在于上述计算设备中的部件的类型。It should be noted here that, in some optional embodiments, the computing device shown in FIG. 1 may include hardware elements (including circuits), software elements (including computer code stored on a computer-readable medium), or hardware elements A combination of both components and software components. It should be noted that FIG. 1 is only one example of a specific embodiment, and is intended to illustrate the types of components that may be present in the computing device described above.

图2A是根据本实施例所述的应用电力载波通讯电力时间码量值传递系统结构系统的示意图。参照图2所示,该系统包括:三级时间节点、主时钟T-GM、边界时钟T-BC、从时钟T-SC。按图2A所示的时间同步量传过程,标准时间节点通过卫星共事方式和上级时间节点进行同步,并通过1PPS和ToD接口与主时钟进行同步,然后T-GM和T-SC/T-BC节点通过本发明方案进行时间同步,对整个网络内各计量设备完成时间量传。其中,FIG. 2A is a schematic diagram of a structural system of a power time code value transmission system using power carrier communication according to the present embodiment. Referring to FIG. 2 , the system includes: a three-level time node, a master clock T-GM, a boundary clock T-BC, and a slave clock T-SC. According to the time synchronization mass transmission process shown in Figure 2A, the standard time node is synchronized with the upper-level time node through the satellite working mode, and is synchronized with the master clock through the 1PPS and ToD interfaces, and then T-GM and T-SC/T-BC The node performs time synchronization through the solution of the present invention, and completes time measurement for each metering device in the entire network. in,

(1)三级时间节点:借由共视单元捕获和跟踪GNSS卫星导航信号,恢复出导航卫星系统时间,应用GNSS共视原理获得二级节点的时间差,输出1PPS脉冲信号和ToD(Time ofDay)时间码信号。(1) Three-level time node: capture and track the GNSS satellite navigation signal by the common-view unit, recover the time of the navigation satellite system, apply the GNSS common-view principle to obtain the time difference of the second-level node, and output 1PPS pulse signal and ToD (Time of Day) time code signal.

(2)T-GM(T-GrandMaster主时钟):时间拓扑关系中的主节点及主时钟,通过该时钟节点接收三级时间节点输出的1PPS信号和ToD进行时钟同步;该模块利用自带TCXO晶振和1PPS进行频率锁相操作,得到经过量值传递的高精度频率信号和绝对时间。(2) T-GM (T-GrandMaster master clock): the master node and master clock in the time topology relationship, through which the clock node receives the 1PPS signal output by the third-level time node and the ToD for clock synchronization; this module uses its own TCXO The crystal oscillator and 1PPS perform frequency phase-locking operation to obtain high-precision frequency signals and absolute time transmitted by magnitude.

(3)T-BC(T-Boundary Clock边界时钟):时间拓扑关系中可能存在的中间节点,通常是指由于线路信号衰减,进行通讯所需构建的中继节点,另外它本身也会基于载波通讯的软件协议完成主节点到该中继节点之间的频率和时间同步。(3) T-BC (T-Boundary Clock): an intermediate node that may exist in the time topology relationship, usually refers to the relay node that needs to be constructed for communication due to the attenuation of the line signal, and it will also be based on the carrier. The software protocol of the communication completes the frequency and time synchronization between the master node and the relay node.

(4)T-SC(T-Slaver Clock从时钟):时间拓扑关系中的从节点,通常为终端设备从时钟,通过基于载波通讯的软件协议完成主节点或中继节点到从节点之间的频率和时间同步。(4) T-SC (T-Slaver Clock slave clock): The slave node in the time topology relationship, usually the slave clock of the terminal device, completes the communication between the master node or the relay node and the slave node through the software protocol based on carrier communication. Frequency and time synchronization.

此外,图2B为基于电力载波网络将各终端节点建立时间拓扑关系示意图,结合载波通讯链路层组网过程,建立如图2B所示时间拓扑,该时间拓扑中:T-GM位于三级节点,是主时钟;T-BC是中继节点,它既是从时钟又是下一级的主时钟;T-SC是末端节点,是从时钟。进而在整个网络中建立起同步体系。In addition, FIG. 2B is a schematic diagram of establishing a time topology relationship between each terminal node based on the power carrier network. Combined with the networking process of the carrier communication link layer, the time topology shown in FIG. 2B is established. In this time topology: T-GM is located at the third-level node. , is the master clock; T-BC is the relay node, which is both the slave clock and the master clock of the next level; T-SC is the end node, which is the slave clock. Then, a synchronization system is established in the entire network.

在上述运行环境下,根据本实施例的第一个方面,提供了一种计量装置的时钟频率同步方法。图3示出了该方法的流程示意图,参考图3所示,该方法包括:Under the above operating environment, according to the first aspect of this embodiment, a method for synchronizing a clock frequency of a metering device is provided. FIG. 3 shows a schematic flowchart of the method. Referring to FIG. 3, the method includes:

S301:检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态;S301: Detect the network state of the metering device, and determine the network state of the metering device, where the network state includes an online state and an offline state;

S302:根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现;S302: Determine the frequency control mode of the metering device according to the network state, wherein the frequency control mode is realized by a preset frequency control module;

S303:计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块;S303: Calculate the time delay and time offset between the various metering devices of the metering device, wherein each metering device is respectively provided with a frequency control module;

S304:根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。S304: Synchronize the clock frequency of each metering device of the metering device according to the time delay, time offset and control method.

正如背景技术中所述的,目前国网在台区层面内数量众多的计量装置缺乏有效时间同步手段,不能满足智能电网的需求。因此,智能配电网中经济可靠的时频量值传递及时间同步系统的研究,对于有效解决配电网智能化引入的一系列难题具有关键性作用。As described in the background art, at present, the numerous metering devices of the State Grid at the station level lack effective time synchronization means and cannot meet the needs of the smart grid. Therefore, the research on the economical and reliable time-frequency value transfer and time synchronization system in the intelligent distribution network plays a key role in effectively solving a series of problems introduced by the intelligent distribution network.

有鉴于此,针对现有技术存在的不足和电网采用载波通讯的实际情况,结合电力时间同步量传需求,本发明专利所述一种应用电力载波的电力时频量值传递及时间同步系统,首先提供了一种台区层面上的计量装置的时钟频率同步方法,首先检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态,从而根据计量装置的不同网络状态设置不同的控制策略。In view of this, in view of the deficiencies in the prior art and the actual situation that the power grid adopts carrier wave communication, combined with the demand for power time synchronization quantity transmission, the patent of the present invention describes a power time-frequency magnitude value transmission and time synchronization system using a power carrier wave, First, a method for synchronizing the clock frequency of a metering device at the station level is provided. First, the network status of the metering device is detected and the network state of the metering device is determined. The network state includes an online state and an offline state. Status sets different control strategies.

进一步地,根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现。通过对不同的网络状态设置不同的频率控制策略,解决计量装置本地频率源的溯源问题,确保计量装置在线情况下频率准确性和离线情况下短期频率准确性。Further, according to the network state, the frequency control mode of the metering device is determined, wherein the frequency control mode is realized by a preset frequency control module. By setting different frequency control strategies for different network states, the problem of traceability of the local frequency source of the metering device is solved, and the frequency accuracy of the metering device under the online condition and the short-term frequency accuracy under the offline condition are ensured.

进一步地,计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块,从而通过计算计量装置各计量设备之间的时间延迟和时间偏移测算方法,实现绝对时间的溯源问题,满足电力信息化中对于时间同步的性能需求。Further, calculate the time delay and time offset between each metering device of the metering device, wherein each metering device is respectively provided with a frequency control module, so as to calculate the time delay and time offset between the various metering devices of the metering device. , to realize the traceability of absolute time and meet the performance requirements for time synchronization in power informatization.

进一步地,根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。Further, according to the time delay, time offset and control method, the clock frequency of each metering device of the metering device is synchronized.

从而通过上述方式,通过对不同的网络状态设置不同的频率控制策略,解决计量装置本地频率源的溯源问题,确保计量装置在线情况下频率准确性和离线情况下短期频率准确性。并通过计算计量装置各计量设备之间的时间延迟和时间偏移测算方法,实现绝对时间的溯源问题,满足电力信息化中对于时间同步的性能需求。达到台区层面计量装置各计量设备之间的时间准确同步的技术效果。进而解决现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题。Therefore, through the above method, by setting different frequency control strategies for different network states, the problem of traceability of the local frequency source of the metering device is solved, and the frequency accuracy of the metering device in the online condition and the short-term frequency accuracy in the offline condition are ensured. And by calculating the time delay and time offset measurement method between the various metering devices of the metering device, the problem of traceability of absolute time is realized, and the performance requirements for time synchronization in power informatization are met. To achieve the technical effect of accurate time synchronization between the metering devices of the metering device at the platform level. This further solves the technical problem in the prior art that a large number of metering devices at the station level lack effective time synchronization means and cannot meet the needs of the smart grid.

可选地,根据网络状态,确定计量装置的频率控制方式的操作,包括:Optionally, according to the network status, the operation of determining the frequency control mode of the metering device includes:

在网络状态为在线状态的情况下,频率控制方式采用闭环控制;When the network state is online, the frequency control method adopts closed-loop control;

在网络状态为离线状态的情况下,频率控制方式采用开环控制。When the network state is offline, the frequency control method adopts open-loop control.

具体地,参考图4所示,从时钟通过内置频率控制模块,在网络在线时通过从载波信号解码得到的标准频率同步方式进行闭环控制(图1中控制选择开关位于1),完成频率量值传递,在感知到系统处于离线时,将频率数字调节装置转为开环控制保证本地时间维持(控制选择开关位于2)。Specifically, referring to Fig. 4, the slave clock performs closed-loop control through the built-in frequency control module and the standard frequency synchronization method decoded from the carrier signal when the network is online (the control selection switch is located at 1 in Fig. 1) to complete the frequency value. Transfer, when it is sensed that the system is offline, the frequency digital adjustment device is turned into open-loop control to ensure local time maintenance (the control selection switch is located at 2).

可选地,频率控制模块包括:解码单元、时间数字转换单元、温度补偿数据单元、温度补偿控制单元、数字低通滤波单元、压控晶体振荡器以及设置在压控晶体振荡器上的温度传感器,其中Optionally, the frequency control module includes: a decoding unit, a time-to-digital conversion unit, a temperature compensation data unit, a temperature compensation control unit, a digital low-pass filtering unit, a voltage-controlled crystal oscillator, and a temperature sensor provided on the voltage-controlled crystal oscillator ,in

解码单元用于对载波信号进行解码,确定标准频率;The decoding unit is used to decode the carrier signal and determine the standard frequency;

时间数字转换单元从解码单元接收标准频率,并根据本地频率调整电压参数对标准频率进行调整,确定第一数字控制量;The time-to-digital conversion unit receives the standard frequency from the decoding unit, adjusts the standard frequency according to the local frequency adjustment voltage parameter, and determines the first digital control quantity;

温度补偿数据单元用于存储不同温度下压控晶体振荡单元数字控制量;The temperature compensation data unit is used to store the digital control quantity of the voltage-controlled crystal oscillator unit at different temperatures;

温度补偿控制单元从温度传感器接收压控晶体振荡器的温度数据,并从时间数字转换单元接收第一数字控制量,并从温度补偿数据单元获取与温度数据对应的压控晶体震荡器数字控制量,根据压控晶体振荡器数字控制量对第一数字控制量进行调整,确定第二数字控制量;The temperature compensation control unit receives the temperature data of the voltage-controlled crystal oscillator from the temperature sensor, receives the first digital control quantity from the time-to-digital conversion unit, and obtains the digital control quantity of the voltage-controlled crystal oscillator corresponding to the temperature data from the temperature compensation data unit , adjust the first digital control amount according to the digital control amount of the voltage-controlled crystal oscillator, and determine the second digital control amount;

数字低通滤波单元从温度补偿控制单元接收第二数字控制量,并将第二数字控制量进行滤波转换,确定控制电压信号;The digital low-pass filtering unit receives the second digital control amount from the temperature compensation control unit, and filters and converts the second digital control amount to determine the control voltage signal;

压控晶体振荡器从数字低通滤波单元接收控制电压信号。The voltage controlled crystal oscillator receives the control voltage signal from the digital low pass filter unit.

具体地,参考图3所示,解码单元完成从载波信号得到标准频率的功能,时间数字转换单元完成标准频率与当前频率差别比较并转换为数字控制量,数字低通滤波把数字控制量滤波并转换为控制电压信号,温度补偿数据单元存储不同温度下压控晶体振荡单元数字控制量,温度补偿控制根据不同温度从温度补偿数据单元读取数据并输出压控晶体振荡器数字控制量。通过利用模块在网运行期间的在线温度刻度数据,提供了一种模块离线情况频率控制模块温度补偿机制,给出了离线时时钟模块频率的低成本、高精度维持机制。Specifically, as shown in FIG. 3 , the decoding unit completes the function of obtaining the standard frequency from the carrier signal, the time-to-digital conversion unit completes the comparison between the standard frequency and the current frequency difference and converts them into digital control quantities, and digital low-pass filtering filters the digital control quantities and converts them into digital control quantities. Converted into a control voltage signal, the temperature compensation data unit stores the digital control quantity of the voltage controlled crystal oscillator unit at different temperatures, and the temperature compensation control reads data from the temperature compensation data unit according to different temperatures and outputs the digital control quantity of the voltage controlled crystal oscillator. By using the online temperature scale data of the module during the operation of the network, a temperature compensation mechanism for the frequency control module in the offline state of the module is provided, and a low-cost and high-precision maintenance mechanism for the frequency of the clock module in the offline state is provided.

可选地,时间数字转换单元从解码单元接收标准频率,并根据本地频率调整电压参数对标准频率进行调整,确定第一数字控制量的操作,包括:Optionally, the time-to-digital conversion unit receives the standard frequency from the decoding unit, adjusts the standard frequency according to the local frequency adjustment voltage parameter, and determines the operation of the first digital control amount, including:

计量装置中的各计量设备的从时钟从主时钟接收两次时间同步信标,包括发送两次时间同步信标的第一时间戳以及第二时间戳,并记录接收两次时间同步信标的第三时间戳以及第四时间戳;The slave clock of each metering device in the metering device receives two time synchronization beacons from the master clock, including the first time stamp and the second time stamp for sending the time synchronization beacon twice, and records the third time synchronization beacon that receives the time synchronization beacon twice. Timestamp and fourth timestamp;

从时钟的时间数字转换单元根据第一时间戳、第二时间戳、第三时间戳以及第四时间戳,确定本地频率调整电压参数;The time-to-digital conversion unit of the slave clock determines the local frequency adjustment voltage parameter according to the first time stamp, the second time stamp, the third time stamp and the fourth time stamp;

数字转换单元根据本地频率调整电压参数对标准频率进行调整,确定第一数字控制量。The digital conversion unit adjusts the standard frequency according to the local frequency adjustment voltage parameter, and determines the first digital control quantity.

具体地,参考图5所示,时钟频率的评估过程如图5,在T-GM主时钟端通过载波周期性的发送时间同步信标,该同步信标发送时间和接收时间通过通讯物理层进行时间戳生成,同时要求中继节点针对该同步信标帧在物理层直接进行转发,保证转发时间延迟的稳定性,该同步信标发送间隔是准确的,同时时间延迟总体稳定,则从时钟接收时刻间隔和主时钟保持一致,利用这个关系进行从时钟频率与主时钟频率的同步,频率差异如下:Specifically, referring to Fig. 5, the evaluation process of the clock frequency is shown in Fig. 5. The T-GM master clock terminal periodically sends a time synchronization beacon through a carrier wave, and the transmission time and reception time of the synchronization beacon are carried out through the communication physical layer. The time stamp is generated, and the relay node is required to directly forward the synchronization beacon frame at the physical layer to ensure the stability of the forwarding time delay. The synchronization beacon transmission interval is accurate, and the time delay is generally stable. The time interval is consistent with the master clock, and this relationship is used to synchronize the frequency of the slave clock and the master clock. The frequency difference is as follows:

Figure DEST_PATH_IMAGE002
(1)
Figure DEST_PATH_IMAGE002
(1)

其中,参考图5所示,T Mi 可以是第二时间戳T M1 T M0 为第一时间戳,T Si 可以为第四时间戳T S1 T S0 为第三时间戳。Wherein, as shown in FIG. 5 , T Mi may be the second time stamp T M1 , T M0 may be the first time stamp, T Si may be the fourth time stamp T S1 , and T S0 may be the third time stamp.

从时钟通过图1中时间数字转换单元周期性进行上述评估过程,并得到本地频率调整电压参数,将该参数输出给压控晶体振荡单元,完成从时钟频率在图1中的闭环反馈调节过程,达到频率锁频,完成频率的实时量值传递。The slave clock periodically performs the above evaluation process through the time-to-digital conversion unit in Figure 1, and obtains the local frequency adjustment voltage parameter, which is output to the voltage-controlled crystal oscillator unit to complete the closed-loop feedback adjustment process of the slave clock frequency in Figure 1. To achieve frequency locking, complete the real-time value transfer of the frequency.

可选地,频率控制模块还包括:控制选择单元以及双控开关,其中Optionally, the frequency control module further includes: a control selection unit and a dual control switch, wherein

控制选择单元设置在时间数字转换单元与数字低通滤波单元之间,用于根据预先存储的不同温度下的锁频控制量,生成频率控制温度补偿系数;The control selection unit is arranged between the time-to-digital conversion unit and the digital low-pass filter unit, and is used for generating the frequency control temperature compensation coefficient according to the pre-stored frequency locking control quantities at different temperatures;

双控开关的第一触点设置在温度补偿控制单元和数字低通滤波单元之间,第二触点设置在控制选择单元与数字低通滤波单元之间。The first contact of the dual control switch is arranged between the temperature compensation control unit and the digital low-pass filtering unit, and the second contact is arranged between the control selection unit and the digital low-pass filtering unit.

具体地,从时钟通过内置频率控制模块,在网络在线时通过从载波信号解码得到的标准频率同步方式进行闭环控制(图1中控制选择开关位于1),完成频率量值传递,在感知到系统处于离线时,将频率数字调节装置转为开环控制保证本地时间维持(控制选择开关位于2)。从而通过将双控开关设置在位置2,通过控制选择单元实现离线状态下开环控制。Specifically, through the built-in frequency control module, the slave clock performs closed-loop control through the standard frequency synchronization method decoded from the carrier signal when the network is online (the control selection switch is located at 1 in Figure 1) to complete the transmission of the frequency value. When off-line, turn the frequency digital adjustment device to open-loop control to ensure local time maintenance (control selector switch is at 2). Therefore, by setting the double-control switch at position 2, the open-loop control in the offline state is realized by controlling the selection unit.

从时钟通过内置频率控制模块,在网络在线时通过在线频率同步方式进行闭环控制,完成频率量值传递,并记录下不同温度时不同的锁频控制量,作为离线开环控制用的频率控制温度补偿系数。在感知到系统处于离线时,将频率数字调节装置转为开环控制,利用在线运行得到的频率控制温度补偿系数进行温度补偿控制,在较低成本下实现离线节点的短时间高精度时间自维持。Through the built-in frequency control module, the slave clock performs closed-loop control through online frequency synchronization when the network is online, completes the transmission of frequency values, and records different frequency-locking control quantities at different temperatures as the frequency control temperature for offline open-loop control. compensation factor. When it is perceived that the system is offline, the frequency digital adjustment device is turned into open-loop control, and the temperature compensation coefficient of frequency control obtained from online operation is used to perform temperature compensation control, so as to realize short-time high-precision time self-sustaining of offline nodes at a lower cost .

可选地,在网络状态为在线状态的情况下,频率控制方式采用闭环控制的操作,还包括:将双控开关设置在第一触点。Optionally, when the network state is an online state, the frequency control mode adopts a closed-loop control operation, and further includes: arranging a dual-control switch on the first contact.

可选地,在网络状态为离线状态的情况下,频率控制方式采用开环控制的操作,还包括:将双控开关设置在第二触点。Optionally, when the network state is an offline state, the frequency control mode adopts an operation of open-loop control, and further includes: arranging a dual-control switch on the second contact.

从而通过双控开关实现台区层面的计量装置的网络在线的闭环控制以及网络离线的开环控制。Therefore, the network-on-line closed-loop control and the network-offline open-loop control of the metering device at the station level can be realized through the double-control switch.

可选地,还包括:主时钟通过国网加密算法对压控晶体振荡器输出频率进行加密传输至从时钟。Optionally, it also includes: the master clock encrypts and transmits the output frequency of the voltage-controlled crystal oscillator to the slave clock through a national grid encryption algorithm.

具体地,引入了数字加密的机制,保证了模块对外提供的同步时间信息的完整性、安全性和可用性。针对输出给最终使用者的ToD信号,通过国密算法进行加密和认证交互,保证输出时间信息的完整性、安全性和可用性。Specifically, a digital encryption mechanism is introduced to ensure the integrity, security and availability of the synchronization time information provided by the module. For the ToD signal output to the end user, encryption and authentication interaction are carried out through the national secret algorithm to ensure the integrity, security and availability of the output time information.

可选地,计算计量装置的各计量设备之间的时间延迟以及时间偏移的操作,包括:Optionally, the operation of calculating the time delay and time offset between the various metering devices of the metering device includes:

主时钟向从时钟发送同步报文,并打包同步报文发送的第五时间戳;The master clock sends a synchronization message to the slave clock, and packs the fifth timestamp sent by the synchronization message;

计量装置中的各计量设备的从时钟接收同步报文,并记录接收同步报文的第六时间戳;The slave clock of each metering device in the metering device receives the synchronization message, and records the sixth time stamp of the received synchronization message;

从时钟向主时钟发送延迟请求报文,并记录发送延迟请求报文的第七时间戳;The slave clock sends a delay request message to the master clock, and records the seventh timestamp of sending the delay request message;

主时钟接收延迟请求报文,记录接收延迟请求报文的第八时间戳,并将第八时间戳和延迟响应报文打包发送至从时钟;The master clock receives the delay request message, records the eighth timestamp of the received delay request message, and packages the eighth timestamp and the delay response message to the slave clock;

从时钟根据第五时间戳、第六时间戳、第七时间戳以及第八时间戳,确定上下行的时间延迟以及时间偏移。The slave clock determines the uplink and downlink time delay and time offset according to the fifth timestamp, the sixth timestamp, the seventh timestamp and the eighth timestamp.

具体地,参考图6所示,为了保证时间延迟的上下行对称性,整个网络同步中节点的时间延迟和时间偏移同步是分步骤进行的,同步从T-GM开始往下,每次同步只涉及相邻层级,同步完成后的边界时钟节点作为下一层级节点的主时钟继续进行下一层级同步,直到网络节点中所有节点同步完成。具体一次同步中的测量和计算过程如下:(其中第五时间戳T 1 第六时间戳T 2 第七时间戳T 3 和第八时间戳T 4 Specifically, referring to Fig. 6, in order to ensure the uplink and downlink symmetry of the time delay, the time delay and time offset synchronization of the nodes in the entire network synchronization are performed in steps. The synchronization starts from T-GM and goes down, and each synchronization Only the adjacent layers are involved. After the synchronization is completed, the boundary clock node acts as the master clock of the next layer node and continues to perform the next layer synchronization until all nodes in the network node are synchronized. The measurement and calculation process in a specific synchronization is as follows: (wherein the fifth timestamp T 1 , the sixth timestamp T 2 , the seventh timestamp T 3 and the eighth timestamp T 4 )

1)主时钟发送Synco同步报文,在报文发出时在主节点物理层给发送包打上准确发送时间戳T 1 ,在从节点接收到该报文时在物理层给接收报文打上准确接收时间戳T 2 ,此时从时钟端有时间戳时间戳T 1 T 2 ;1) The master clock sends a Synco synchronization message, and when the message is sent, the physical layer of the master node marks the sending packet with an accurate sending time stamp T 1 , and when the slave node receives the message, the physical layer marks the received message with accurate reception. Timestamp T 2 , at this time there are timestamps T 1 and T 2 on the slave clock side;

2)接着由从时钟向主时钟端发送延迟请求报文Delay_Req,并在报文发出时在从节点物理层给发送包打上准确发送时间戳T 3 ,从时钟端记录下T 3 ,此时从时钟端具有时间戳T 1 T 2 T 3 2) Then the slave clock sends the delay request message Delay_Req to the master clock end, and when the message is sent out, the physical layer of the slave node adds an accurate sending time stamp T 3 to the sending packet, and the slave clock end records T 3 , At this time, the slave The clock end has timestamps T 1 , T 2 and T 3 ;

3)最后在主时钟端接收到延迟请求报文Delay_Req时在物理层给接收报文打上准确接收时间戳T 4 ,并通过延迟响应报文Delay_Resp向从时钟发送T 4 时间戳信息,并由从时钟记录时间,此时从时钟端具有时间戳T 1 、T 2 、T 3 T 4 3) Finally, when the master clock side receives the delay request message Delay_Req, the physical layer marks the received message with an accurate reception time stamp T 4 , and sends the T 4 time stamp information to the slave clock through the delay response message Delay_Resp, and is sent by the slave clock. The clock records time, and the slave clock side has timestamps T 1 , T 2 , T 3 and T 4 at this time.

其中T 1 T 4 时刻是以主时钟的时间信息为衡量标准的,而T 2 T 3 时刻是以从时钟的时间信息为衡量标准的,统一采用主时钟的标准进行衡量,假设主时钟与从时钟有一个时间长短为T offset 的时间偏移,路径上下行传输延迟为T delay1 T delay2 ,可得到下述等式:Among them, the time T1 and T4 are measured by the time information of the master clock, while the time T2 and T3 are measured by the time information of the slave clock, which are uniformly measured by the standard of the master clock . Assuming that the master clock There is a time offset with a time length of T offset from the slave clock, and the upstream and downstream transmission delays of the path are T delay1 and T delay2 , the following equation can be obtained:

Figure DEST_PATH_IMAGE004
(2)
Figure DEST_PATH_IMAGE004
(2)

Figure DEST_PATH_IMAGE006
(3)
Figure DEST_PATH_IMAGE006
(3)

Figure DEST_PATH_IMAGE008
(4)
Figure DEST_PATH_IMAGE008
(4)

由于上述传输延迟是在传输物理层进行,只和载波通讯两点间的距离相关,因此上下行传输延时T delay1 T delay2 相等,可以算出时间延迟和时间偏移量:Since the above transmission delay is performed at the transmission physical layer and is only related to the distance between two points of carrier communication, the uplink and downlink transmission delays T delay1 and T delay2 are equal, and the time delay and time offset can be calculated:

Figure DEST_PATH_IMAGE010
(5)
Figure DEST_PATH_IMAGE010
(5)

Figure DEST_PATH_IMAGE012
(6)
Figure DEST_PATH_IMAGE012
(6)

从时钟根据T offset 进行从时钟的绝对时间修正,完成对从时钟的绝对时间量值传递。通过上述方式解决了载波通讯传输中由于设备应用层延迟造成的延迟不确定及累计误差问题,保障了时间同步精度,实现了绝对时间的量值传递。The slave clock performs absolute time correction of the slave clock according to T offset , and completes the transfer of the absolute time value to the slave clock. The above method solves the problem of delay uncertainty and accumulated error caused by the delay of the device application layer in the carrier communication transmission, guarantees the time synchronization accuracy, and realizes the transmission of absolute time value.

此外,参考图1所示,根据本实施例的第二个方面,提供了一种存储介质。所述存储介质包括存储的程序,其中,在所述程序运行时由处理器执行以上任意一项所述的方法。In addition, referring to FIG. 1 , according to a second aspect of the present embodiment, a storage medium is provided. The storage medium includes a stored program, wherein the method described in any one of the above is executed by the processor when the program is executed.

从而根据本实施例,通过对不同的网络状态设置不同的频率控制策略,解决计量装置本地频率源的溯源问题,确保计量装置在线情况下频率准确性和离线情况下短期频率准确性。并通过计算计量装置各计量设备之间的时间延迟和时间偏移测算方法,实现绝对时间的溯源问题,满足电力信息化中对于时间同步的性能需求。达到台区层面计量装置各计量设备之间的时间准确同步的技术效果。进而解决现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题。Therefore, according to this embodiment, by setting different frequency control strategies for different network states, the problem of traceability of the local frequency source of the metering device is solved, and the frequency accuracy of the metering device is ensured online and short-term frequency accuracy offline. And by calculating the time delay and time offset measurement method between the various metering devices of the metering device, the problem of traceability of absolute time is realized, and the performance requirements for time synchronization in power informatization are met. To achieve the technical effect of accurate time synchronization between the metering devices of the metering device at the platform level. This further solves the technical problem in the prior art that a large number of metering devices at the station level lack effective time synchronization means and cannot meet the needs of the smart grid.

此外,本发明提供了一种基于载波通讯的高可靠、高精度的时间同步量传系统,解决了电网数字化信息化所亟需的高精度时间同步需求,能够满足各类电力场景应用需要,具有很强的适用性;提供了一种时钟频率同步的方法,保证了主时钟和从时钟之间时钟频率的量值传递;提供了一种时间延迟和时间偏移的测算方法,解决了载波通讯传输中由于设备应用层延迟造成的延迟不确定及累计误差问题,保障了时间同步精度,实现了绝对时间的量值传递;通过利用模块在网运行期间的在线温度刻度数据,提供了一种模块离线情况频率控制模块温度补偿机制,给出了离线时时钟模块频率的低成本、高精度维持机制;引入了数字加密的机制,保证了模块对外提供的同步时间信息的完整性、安全性和可用性。In addition, the present invention provides a highly reliable and high-precision time synchronization mass transmission system based on carrier communication, which solves the urgent need for high-precision time synchronization required for the digital informatization of the power grid, and can meet the application needs of various power scenarios. Strong applicability; provides a clock frequency synchronization method to ensure the transmission of the value of the clock frequency between the master clock and the slave clock; provides a time delay and time offset measurement method, which solves the problem of carrier communication The delay uncertainty and accumulated error caused by the delay of the device application layer in the transmission ensure the accuracy of time synchronization and realize the transmission of absolute time value; by using the online temperature scale data of the module during the network operation, a module is provided. The temperature compensation mechanism of the frequency control module in the offline situation provides a low-cost and high-precision maintenance mechanism for the frequency of the clock module when offline; the digital encryption mechanism is introduced to ensure the integrity, security and availability of the synchronization time information provided by the module to the outside world. .

需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。It should be noted that, for the sake of simple description, the foregoing method embodiments are all expressed as a series of action combinations, but those skilled in the art should know that the present invention is not limited by the described action sequence. As in accordance with the present invention, certain steps may be performed in other orders or simultaneously. Secondly, those skilled in the art should also know that the embodiments described in the specification are all preferred embodiments, and the actions and modules involved are not necessarily required by the present invention.

通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solutions of the present invention essentially or the parts that contribute to the prior art can be embodied in the form of software products, and the computer software products are stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of the present invention.

实施例2Example 2

图7示出了根据本实施例所述的计量装置的时钟频率同步装置700,该装置700与根据实施例1的第一个方面所述的方法相对应。参考图7所示,该装置700包括:第一确定模块710,用于检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态;第二确定模块720,用于根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现;计算模块730,用于计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块;同步模块740,用于根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。FIG. 7 shows a clock frequency synchronization device 700 of the metering device according to this embodiment, and the device 700 corresponds to the method according to the first aspect of the first embodiment. Referring to FIG. 7 , the device 700 includes: a first determination module 710 for detecting the network status of the metering device and determining the network status of the metering device, wherein the network status includes an online status and an offline status; the second determination module 720 is configured with According to the network state, the frequency control mode of the metering device is determined, wherein the frequency control mode is realized by a preset frequency control module; the calculation module 730 is used to calculate the time delay and time offset between the various metering devices of the metering device, wherein Each metering device is respectively provided with a frequency control module; the synchronization module 740 is used for synchronizing the clock frequency of each metering device of the metering device according to the time delay, time offset and control mode.

可选地,第二确定模块720,包括:第一采用子模块,用于在网络状态为在线状态的情况下,频率控制方式采用闭环控制;第二采用子模块,用于在网络状态为离线状态的情况下,频率控制方式采用开环控制。Optionally, the second determining module 720 includes: a first adopting sub-module for adopting closed-loop control in the frequency control mode when the network state is an online state; In the case of the state, the frequency control method adopts open-loop control.

可选地,所述网络状态包括在线状态以及离线状态,并且第二确定模块,包括:第一采用子模块,用于在所述网络状态为所述在线状态的情况下,所述频率控制方式采用闭环控制;第二采用子模块,用于在所述网络状态为所述离线状态的情况下,所述频率控制方式采用开环控制。Optionally, the network state includes an online state and an offline state, and the second determining module includes: a first adopting sub-module for, when the network state is the online state, the frequency control mode Closed-loop control is adopted; secondly, a sub-module is adopted, which is used for adopting open-loop control in the frequency control mode when the network state is the offline state.

可选地,第二确定模块,包括:第一确定子模块,用于通过预先设定的频率控制模块,根据所述网络状态,确定所述计量装置的所述频率控制方式。Optionally, the second determination module includes: a first determination sub-module, configured to determine the frequency control mode of the metering device according to the network state through a preset frequency control module.

可选地,第一采用子模块,包括:第一确定单元,用于利用所述频率控制模块对载波信号进行解码,确定标准频率;第二确定单元,用于利用所述频率控制模块,根据本地频率调整电压参数对所述标准频率进行调整,确定第一数字控制量;第四确定单元,用于利用所述频率控制模块,对所述第二数字控制量进行滤波转换,确定控制电压信号;第五确定单元,用于通过所述电压控制信息,对所述压控晶体振荡单元进行调整,确定输出时钟频率。Optionally, the first adopting sub-module includes: a first determining unit, configured to decode the carrier signal by using the frequency control module, and determine a standard frequency; a second determining unit, configured to use the frequency control module to determine the standard frequency according to the The local frequency adjustment voltage parameter adjusts the standard frequency to determine the first digital control quantity; the fourth determination unit is used for using the frequency control module to filter and convert the second digital control quantity to determine the control voltage signal ; a fifth determining unit, configured to adjust the voltage-controlled crystal oscillator unit through the voltage control information to determine the output clock frequency.

可选地,第二采用子模块,包括:第六确定单元,用于利用所述频率控制模块对载波信号进行解码,确定标准频率;第七确定单元,用于利用所述频率控制模块,根据本地频率调整电压参数对所述标准频率进行调整,确定第一数字控制量;第八确定单元,用于利用所述频率控制模块,根据预先存储的不同温度下的锁频控制量,生成频率控制温度补偿系数,并对所述第一数字控制量进行调整,生成第三数字控制量;第九确定单元,用于利用所述频率控制模块,对所述第三数字控制量进行滤波转换,确定控制电压信号;第十确定单元,用于通过所述电压控制信息,对所述压控晶体振荡单元进行调整,确定输出时钟频率。Optionally, the second adopting sub-module includes: a sixth determining unit, configured to decode the carrier signal by using the frequency control module to determine the standard frequency; and a seventh determining unit, configured to use the frequency control module to determine the standard frequency according to the The local frequency adjustment voltage parameter adjusts the standard frequency to determine the first digital control quantity; the eighth determination unit is used for using the frequency control module to generate frequency control according to the pre-stored frequency locking control quantities at different temperatures temperature compensation coefficient, and adjust the first digital control amount to generate a third digital control amount; a ninth determination unit is used to filter and convert the third digital control amount by using the frequency control module, and determine a control voltage signal; and a tenth determination unit, configured to adjust the voltage-controlled crystal oscillation unit through the voltage control information to determine an output clock frequency.

可选地,第一确定子模块,包括:第一记录单元,用于所述计量装置中的所述各计量设备的从时钟从主时钟接收两次时间同步信标,包括发送所述两次时间同步信标的第一时间戳以及第二时间戳,并记录接收所述两次时间同步信标的第三时间戳以及第四时间戳;第十一确定单元,用于所述从时钟的所述时间数字转换单元根据所述第一时间戳、所述第二时间戳、所述第三时间戳以及所述第四时间戳,确定本地频率调整电压参数;第十二确定单元,用于所述数字转换单元根据所述本地频率调整电压参数对所述标准频率进行调整,确定所述第一数字控制量。Optionally, the first determination sub-module includes: a first recording unit, used for the slave clock of each metering device in the metering device to receive two time synchronization beacons from the master clock, including sending the two time synchronization beacons. the first time stamp and the second time stamp of the time synchronization beacon, and record the third time stamp and the fourth time stamp of the time synchronization beacon received twice; the eleventh determination unit is used for the The time-to-digital conversion unit determines a local frequency adjustment voltage parameter according to the first time stamp, the second time stamp, the third time stamp and the fourth time stamp; a twelfth determination unit is used for the The digital conversion unit adjusts the standard frequency according to the local frequency adjustment voltage parameter, and determines the first digital control quantity.

可选地,第二确定模块,还包括:实现子模块,用于通过预先设置在所述频率控制模块内的双控开关,实现所述频率控制方式。Optionally, the second determination module further includes: an implementation sub-module configured to implement the frequency control mode through a dual-control switch preset in the frequency control module.

可选地,装置700还包括:加密模块,用于主时钟通过国网加密算法对压控晶体振荡器输出频率进行加密传输至从时钟。Optionally, the apparatus 700 further includes: an encryption module, used for the master clock to encrypt and transmit the output frequency of the voltage-controlled crystal oscillator to the slave clock through a national grid encryption algorithm.

可选地,计算模块730,包括:第一发送子模块,用于主时钟向从时钟发送同步报文,并打包同步报文发送的第五时间戳;第一接收子模块,用于计量装置中的各计量设备的从时钟接收同步报文,并记录接收同步报文的第六时间戳;第二发送子模块,用于从时钟向主时钟发送延迟请求报文,并记录发送延迟请求报文的第七时间戳;第二接收子模块,用于主时钟接收延迟请求报文,记录接收延迟请求报文的第八时间戳,并将第八时间戳和延迟响应报文打包发送至从时钟;第二确定子模块,用于从时钟根据第五时间戳、第六时间戳、第七时间戳以及第八时间戳,确定上下行的时间延迟以及时间偏移。Optionally, the computing module 730 includes: a first sending submodule, used for the master clock to send a synchronization message to the slave clock, and packaging the fifth time stamp sent by the synchronization message; a first receiving submodule, used for the metering device The slave clock of each metering device in the device receives the synchronization message, and records the sixth time stamp of the received synchronization message; the second sending sub-module is used to send the delay request message from the clock to the master clock, and records the sending delay request message. The second receiving sub-module is used for the master clock to receive the delay request message, record the eighth timestamp of the received delay request message, and package the eighth timestamp and the delay response message to the slave. a clock; a second determination submodule for determining the time delay and time offset of the uplink and downlink from the clock according to the fifth timestamp, the sixth timestamp, the seventh timestamp and the eighth timestamp.

从而根据本实施例,通过对不同的网络状态设置不同的频率控制策略,解决计量装置本地频率源的溯源问题,确保计量装置在线情况下频率准确性和离线情况下短期频率准确性。并通过计算计量装置各计量设备之间的时间延迟和时间偏移测算方法,实现绝对时间的溯源问题,满足电力信息化中对于时间同步的性能需求。达到台区层面计量装置各计量设备之间的时间准确同步的技术效果。进而解决现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题。Therefore, according to this embodiment, by setting different frequency control strategies for different network states, the problem of traceability of the local frequency source of the metering device is solved, and the frequency accuracy of the metering device is ensured online and short-term frequency accuracy offline. And by calculating the time delay and time offset measurement method between the various metering devices of the metering device, the problem of traceability of absolute time is realized, and the performance requirements for time synchronization in power informatization are met. To achieve the technical effect of accurate time synchronization between the metering devices of the metering device at the platform level. This further solves the technical problem in the prior art that a large number of metering devices at the station level lack effective time synchronization means and cannot meet the needs of the smart grid.

实施例3Example 3

图8示出了根据本实施例的计量装置的时钟频率同步装置800,该装置800与根据实施例1的第一个方面的方法相对应。参考图8所示,该装置800包括:处理器810;以及存储器820,与处理器810连接,用于为处理器810提供处理以下处理步骤的指令:检测计量装置的网络状况,确定计量装置的网络状态,其中网络状态包括在线状态以及离线状态;根据网络状态,确定计量装置的频率控制方式,其中频率控制方式通过预先设置的频率控制模块实现;计算计量装置的各计量设备之间的时间延迟以及时间偏移,其中各计量设备分别设置有频率控制模块;根据时间延迟、时间偏移以及控制方式,对计量装置的各计量设备进行时钟频率同步。FIG. 8 shows a clock frequency synchronization apparatus 800 of the metering apparatus according to the present embodiment, the apparatus 800 corresponding to the method according to the first aspect of Embodiment 1. As shown in FIG. Referring to FIG. 8, the device 800 includes: a processor 810; and a memory 820, connected to the processor 810, for providing the processor 810 with instructions for processing the following processing steps: detecting the network status of the metering device, determining the network status of the metering device Network status, wherein the network status includes online status and offline status; according to the network status, determine the frequency control mode of the metering device, wherein the frequency control mode is realized by a preset frequency control module; calculate the time delay between each metering device of the metering device and time offset, wherein each metering device is respectively provided with a frequency control module; according to the time delay, time offset and control mode, the clock frequency of each metering device of the metering device is synchronized.

可选地,根据网络状态,确定计量装置的频率控制方式的操作,包括:在网络状态为在线状态的情况下,频率控制方式采用闭环控制;在网络状态为离线状态的情况下,频率控制方式采用开环控制。Optionally, according to the network state, determine the operation of the frequency control mode of the metering device, including: when the network state is an online state, the frequency control mode adopts closed-loop control; when the network state is an offline state, the frequency control mode. Open loop control is used.

可选地,频率控制模块包括:解码单元、时间数字转换单元、温度补偿数据单元、温度补偿控制单元、数字低通滤波单元、压控晶体振荡器以及设置在压控晶体振荡器上的温度传感器,其中解码单元用于对载波信号进行解码,确定标准频率;时间数字转换单元从解码单元接收标准频率,并根据本地频率调整电压参数对标准频率进行调整,确定第一数字控制量;温度补偿数据单元用于存储不同温度下压控晶体振荡单元数字控制量;温度补偿控制单元从温度传感器接收压控晶体振荡器的温度数据,并从时间数字转换单元接收第一数字控制量,并从温度补偿数据单元获取与温度数据对应的压控晶体震荡器数字控制量,根据压控晶体振荡器数字控制量对第一数字控制量进行调整,确定第二数字控制量;数字低通滤波单元从温度补偿控制单元接收第二数字控制量,并将第二数字控制量进行滤波转换,确定控制电压信号;压控晶体振荡器从数字低通滤波单元接收控制电压信号。Optionally, the frequency control module includes: a decoding unit, a time-to-digital conversion unit, a temperature compensation data unit, a temperature compensation control unit, a digital low-pass filtering unit, a voltage-controlled crystal oscillator, and a temperature sensor provided on the voltage-controlled crystal oscillator , wherein the decoding unit is used to decode the carrier signal and determine the standard frequency; the time-to-digital conversion unit receives the standard frequency from the decoding unit, and adjusts the standard frequency according to the local frequency adjustment voltage parameter to determine the first digital control amount; temperature compensation data The unit is used to store the digital control quantity of the voltage-controlled crystal oscillator unit at different temperatures; the temperature compensation control unit receives the temperature data of the voltage-controlled crystal oscillator from the temperature sensor, and receives the first digital control quantity from the time-to-digital conversion unit, and receives the temperature compensation from the temperature compensation unit. The data unit obtains the digital control quantity of the voltage-controlled crystal oscillator corresponding to the temperature data, adjusts the first digital control quantity according to the digital control quantity of the voltage-controlled crystal oscillator, and determines the second digital control quantity; The control unit receives the second digital control quantity, and filters and converts the second digital control quantity to determine the control voltage signal; the voltage-controlled crystal oscillator receives the control voltage signal from the digital low-pass filtering unit.

可选地,时间数字转换单元从解码单元接收标准频率,并根据本地频率调整电压参数对标准频率进行调整,确定第一数字控制量的操作,包括:计量装置中的各计量设备的从时钟从主时钟接收两次时间同步信标,包括发送两次时间同步信标的第一时间戳以及第二时间戳,并记录接收两次时间同步信标的第三时间戳以及第四时间戳;从时钟的时间数字转换单元根据第一时间戳、第二时间戳、第三时间戳以及第四时间戳,确定本地频率调整电压参数;数字转换单元根据本地频率调整电压参数对标准频率进行调整,确定第一数字控制量。Optionally, the time-to-digital conversion unit receives the standard frequency from the decoding unit, and adjusts the standard frequency according to the local frequency adjustment voltage parameter, and determines the operation of the first digital control amount, including: the slave clock of each metering device in the metering device The master clock receives the time synchronization beacon twice, including the first timestamp and the second timestamp of the time synchronization beacon sent twice, and records the third timestamp and the fourth timestamp of the time synchronization beacon received twice; The time-to-digital conversion unit determines the local frequency adjustment voltage parameter according to the first time stamp, the second time stamp, the third time stamp and the fourth time stamp; the digital conversion unit adjusts the standard frequency according to the local frequency adjustment voltage parameter, and determines the first time stamp Digital control volume.

可选地,频率控制模块还包括:控制选择单元以及双控开关,其中控制选择单元设置在时间数字转换单元与数字低通滤波单元之间,用于根据预先存储的不同温度下的锁频控制量,生成频率控制温度补偿系数;双控开关的第一触点设置在温度补偿控制单元和数字低通滤波单元之间,第二触点设置在控制选择单元与数字低通滤波单元之间。Optionally, the frequency control module further includes: a control selection unit and a dual-control switch, wherein the control selection unit is arranged between the time-to-digital conversion unit and the digital low-pass filter unit, and is used for frequency locking control according to pre-stored different temperatures. The first contact of the dual control switch is set between the temperature compensation control unit and the digital low-pass filtering unit, and the second contact is set between the control selection unit and the digital low-pass filtering unit.

可选地,在网络状态为在线状态的情况下,频率控制方式采用闭环控制的操作,还包括:将双控开关设置在第一触点。Optionally, when the network state is an online state, the frequency control mode adopts a closed-loop control operation, and further includes: arranging a dual-control switch on the first contact.

可选地,在网络状态为离线状态的情况下,频率控制方式采用开环控制的操作,还包括:将双控开关设置在第二触点。Optionally, when the network state is an offline state, the frequency control mode adopts an operation of open-loop control, and further includes: arranging a dual-control switch on the second contact.

可选地,存储器820还用于为处理器810提供处理以下处理步骤的指令:主时钟通过国网加密算法对压控晶体振荡器输出频率进行加密传输至从时钟。Optionally, the memory 820 is further configured to provide the processor 810 with instructions for processing the following processing steps: the master clock encrypts and transmits the output frequency of the voltage-controlled crystal oscillator to the slave clock through a national grid encryption algorithm.

可选地,计算计量装置的各计量设备之间的时间延迟以及时间偏移的操作,包括:主时钟向从时钟发送同步报文,并打包同步报文发送的第五时间戳;计量装置中的各计量设备的从时钟接收同步报文,并记录接收同步报文的第六时间戳;从时钟向主时钟发送延迟请求报文,并记录发送延迟请求报文的第七时间戳;主时钟接收延迟请求报文,记录接收延迟请求报文的第八时间戳,并将第八时间戳和延迟响应报文打包发送至从时钟;从时钟根据第五时间戳、第六时间戳、第七时间戳以及第八时间戳,确定上下行的时间延迟以及时间偏移。Optionally, the operation of calculating the time delay and time offset between various metering devices of the metering device includes: the master clock sends a synchronization message to the slave clock, and packages the fifth time stamp sent by the synchronization message; The slave clock of each metering device receives the synchronization message, and records the sixth time stamp of the received synchronization message; the slave clock sends the delay request message to the master clock, and records the seventh time stamp of the delay request message; the master clock Receive the delay request message, record the eighth timestamp of the received delay request message, and package the eighth timestamp and the delay response message to the slave clock; the slave clock is based on the fifth timestamp, sixth timestamp, seventh timestamp The timestamp and the eighth timestamp determine the time delay and time offset of the uplink and downlink.

从而根据本实施例,通过对不同的网络状态设置不同的频率控制策略,解决计量装置本地频率源的溯源问题,确保计量装置在线情况下频率准确性和离线情况下短期频率准确性。并通过计算计量装置各计量设备之间的时间延迟和时间偏移测算方法,实现绝对时间的溯源问题,满足电力信息化中对于时间同步的性能需求。达到台区层面计量装置各计量设备之间的时间准确同步的技术效果。进而解决现有技术中存在的台区层面数量众多的计量装置缺乏有效的时间同步手段,不能满足智能电网的需求的技术问题。Therefore, according to this embodiment, by setting different frequency control strategies for different network states, the problem of traceability of the local frequency source of the metering device is solved, and the frequency accuracy of the metering device is ensured online and short-term frequency accuracy offline. And by calculating the time delay and time offset measurement method between the various metering devices of the metering device, the problem of traceability of absolute time is realized, and the performance requirements for time synchronization in power informatization are met. To achieve the technical effect of accurate time synchronization between the metering devices of the metering device at the platform level. This further solves the technical problem in the prior art that a large number of metering devices at the station level lack effective time synchronization means and cannot meet the needs of the smart grid.

上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.

在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above-mentioned embodiments of the present invention, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference may be made to related descriptions of other embodiments.

在本发明所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed technical content may be implemented in other ways. The apparatus embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit. The above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。The integrated unit, if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present invention. The aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes .

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.

Claims (20)

1.一种计量装置的时钟频率同步方法,应用于台区层面内计量装置的各计量设备之间,其特征在于,包括:1. a clock frequency synchronization method of a metering device, applied between each metering equipment of the metering device in the platform level, is characterized in that, comprising: 检测所述计量装置的网络状况,确定所述计量装置的网络状态;Detecting the network status of the metering device, and determining the network status of the metering device; 根据所述网络状态,确定所述计量装置的频率控制方式;Determine the frequency control mode of the metering device according to the network state; 计算所述计量装置的所述各计量设备之间的时间延迟以及时间偏移;calculating the time delay and time offset between the various metering devices of the metering device; 根据所述时间延迟、所述时间偏移以及所述控制方式,对所述计量装置的所述各计量设备进行时钟频率同步。According to the time delay, the time offset, and the control method, clock frequency synchronization is performed on each of the metering devices of the metering apparatus. 2.根据权利要求1所述的方法,其特征在于,所述网络状态包括在线状态和离线状态,并且2. The method of claim 1, wherein the network state includes an online state and an offline state, and 根据所述网络状态,确定所述计量装置的频率控制方式的操作,包括:According to the network state, the operation of determining the frequency control mode of the metering device includes: 在所述网络状态为所述在线状态的情况下,所述频率控制方式采用闭环控制;When the network state is the online state, the frequency control method adopts closed-loop control; 在所述网络状态为所述离线状态的情况下,所述频率控制方式采用开环控制。When the network state is the offline state, the frequency control method adopts open-loop control. 3.根据权利要求2所述的方法,其特征在于,根据所述网络状态,确定所述计量装置的频率控制方式的操作,包括:3. The method according to claim 2, wherein, according to the network state, determining the operation of the frequency control mode of the metering device comprises: 通过预先设定的频率控制模块,根据所述网络状态,确定所述计量装置的所述频率控制方式。The frequency control mode of the metering device is determined according to the network state through a preset frequency control module. 4.根据权利要求3所述的方法,其特征在于,在所述网络状态为所述在线状态的情况下,所述频率控制方式采用闭环控制的操作,包括:4 . The method according to claim 3 , wherein, when the network state is the online state, the frequency control mode adopts a closed-loop control operation, comprising: 5 . 利用所述频率控制模块对载波信号进行解码,确定标准频率;Use the frequency control module to decode the carrier signal to determine the standard frequency; 利用所述频率控制模块,根据本地频率调整电压参数对所述标准频率进行调整,确定第一数字控制量;Using the frequency control module, the standard frequency is adjusted according to the local frequency adjustment voltage parameter, and the first digital control quantity is determined; 利用所述频率控制模块,通过采集的压控晶体振荡单元的温度数据对所述第一数字控制量进行调整,确定第二数字控制量;Utilize the frequency control module to adjust the first digital control quantity through the collected temperature data of the voltage-controlled crystal oscillator unit, and determine the second digital control quantity; 利用所述频率控制模块,对所述第二数字控制量进行滤波转换,确定控制电压信号;Using the frequency control module, filter and convert the second digital control variable to determine a control voltage signal; 通过所述电压控制信息,对所述压控晶体振荡单元进行调整,确定输出时钟频率。According to the voltage control information, the voltage-controlled crystal oscillator unit is adjusted to determine the output clock frequency. 5.根据权利要求3所述的方法,其特征在于,在所述网络状态为所述离线状态的情况下,所述频率控制方式采用开环控制,包括:5. The method according to claim 3, wherein, when the network state is the offline state, the frequency control method adopts open-loop control, comprising: 利用所述频率控制模块对载波信号进行解码,确定标准频率;Use the frequency control module to decode the carrier signal to determine the standard frequency; 利用所述频率控制模块,根据本地频率调整电压参数对所述标准频率进行调整,确定第一数字控制量;Using the frequency control module, the standard frequency is adjusted according to the local frequency adjustment voltage parameter, and the first digital control quantity is determined; 利用所述频率控制模块,根据预先存储的不同温度下的锁频控制量,生成频率控制温度补偿系数,并对所述第一数字控制量进行调整,生成第三数字控制量;Using the frequency control module, according to the pre-stored frequency-locking control quantities at different temperatures, a frequency control temperature compensation coefficient is generated, and the first digital control quantity is adjusted to generate a third digital control quantity; 利用所述频率控制模块,对所述第三数字控制量进行滤波转换,确定控制电压信号;Using the frequency control module, filtering and converting the third digital control variable to determine a control voltage signal; 通过所述电压控制信息,对所述压控晶体振荡单元进行调整,确定输出时钟频率。According to the voltage control information, the voltage-controlled crystal oscillator unit is adjusted to determine the output clock frequency. 6.根据权利要求4或5任意一项所述的方法,其特征在于,利用所述频率控制模块,根据本地频率调整电压参数对所述标准频率进行调整,确定第一数字控制量的操作,包括:6. The method according to any one of claims 4 or 5, wherein the frequency control module is used to adjust the standard frequency according to a local frequency adjustment voltage parameter to determine the operation of the first digital control quantity, include: 所述计量装置中的所述各计量设备的从时钟从主时钟接收两次时间同步信标,包括发送所述两次时间同步信标的第一时间戳以及第二时间戳,并记录接收所述两次时间同步信标的第三时间戳以及第四时间戳;The slave clock of each metering device in the metering device receives two time synchronization beacons from the master clock, including the first time stamp and the second time stamp for sending the two time synchronization beacons, and records the received time synchronization beacons. The third timestamp and the fourth timestamp of the two time synchronization beacons; 所述从时钟的所述时间数字转换单元根据所述第一时间戳、所述第二时间戳、所述第三时间戳以及所述第四时间戳,确定本地频率调整电压参数;The time-to-digital conversion unit of the slave clock determines a local frequency adjustment voltage parameter according to the first time stamp, the second time stamp, the third time stamp and the fourth time stamp; 所述数字转换单元根据所述本地频率调整电压参数对所述标准频率进行调整,确定所述第一数字控制量。The digital conversion unit adjusts the standard frequency according to the local frequency adjustment voltage parameter, and determines the first digital control quantity. 7.根据权利要求3所述的方法,其特征在于,根据所述网络状态,确定所述计量装置的频率控制方式的操作,还包括:7. The method according to claim 3, wherein, according to the network state, determining the operation of the frequency control mode of the metering device, further comprising: 通过预先设置在所述频率控制模块内的双控开关,实现所述频率控制方式。The frequency control mode is realized by a dual-control switch preset in the frequency control module. 8.根据权利要求6所述的方法,其特征在于,还包括:8. The method of claim 6, further comprising: 所述主时钟通过国网加密算法对所述压控晶体振荡器输出频率进行加密传输至所述从时钟。The master clock encrypts and transmits the output frequency of the voltage-controlled crystal oscillator to the slave clock through a national network encryption algorithm. 9.根据权利要求6所述的方法,其特征在于,计算所述计量装置的各计量设备之间的时间延迟以及时间偏移的操作,包括:9. The method according to claim 6, wherein the operation of calculating the time delay and time offset between the various metering devices of the metering device comprises: 所述主时钟向所述从时钟发送同步报文,并打包所述同步报文发送的第五时间戳;The master clock sends a synchronization message to the slave clock, and packages the fifth timestamp sent by the synchronization message; 所述计量装置中的所述各计量设备的从时钟接收所述同步报文,并记录接收所述同步报文的第六时间戳;The slave clock of each metering device in the metering device receives the synchronization message, and records a sixth time stamp of receiving the synchronization message; 所述从时钟向所述主时钟发送延迟请求报文,并记录发送所述延迟请求报文的第七时间戳;The slave clock sends a delay request message to the master clock, and records a seventh timestamp for sending the delay request message; 所述主时钟接收所述延迟请求报文,记录接收所述延迟请求报文的第八时间戳,并将所述第八时间戳和延迟响应报文打包发送至所述从时钟;The master clock receives the delay request message, records an eighth timestamp of receiving the delay request message, and packages the eighth timestamp and the delay response message to the slave clock; 所述从时钟根据所述第五时间戳、所述第六时间戳、所述第七时间戳以及第八时间戳,确定上下行的所述时间延迟以及所述时间偏移。The slave clock determines the uplink and downlink time delay and the time offset according to the fifth timestamp, the sixth timestamp, the seventh timestamp and the eighth timestamp. 10.一种计算机可读存储介质,其特征在于,所述存储介质包括存储的程序,其中,在所述程序运行时由处理器执行权利要求1至9中任意一项所述的方法。10. A computer-readable storage medium, characterized in that the storage medium comprises a stored program, wherein the method according to any one of claims 1 to 9 is executed by a processor when the program is executed. 11.一种计量装置的时钟频率同步装置,应用于台区层面内计量装置的各计量设备之间,其特征在于,包括:11. A clock frequency synchronizing device of a metering device, applied between each metering equipment of the metering device in the platform level, is characterized in that, comprising: 第一确定模块,用于检测所述计量装置的网络状况,确定所述计量装置的网络状态;a first determining module, configured to detect the network status of the metering device, and determine the network status of the metering device; 第二确定模块,用于根据所述网络状态,确定所述计量装置的频率控制方式,其中所述频率控制方式通过预先设置的频率控制模块实现;a second determining module, configured to determine a frequency control mode of the metering device according to the network state, wherein the frequency control mode is implemented by a preset frequency control module; 计算模块,用于计算所述计量装置的所述各计量设备之间的时间延迟以及时间偏移,其中所述各计量设备分别设置有所述频率控制模块;a calculation module, configured to calculate the time delay and time offset between the various measurement devices of the measurement device, wherein each of the measurement devices is respectively provided with the frequency control module; 同步模块,用于根据所述时间延迟、所述时间偏移以及所述控制方式,对所述计量装置的所述各计量设备进行时钟频率同步。A synchronization module, configured to synchronize the clock frequencies of the various metering devices of the metering device according to the time delay, the time offset and the control method. 12.根据权利要求11所述的装置,其特征在于,所述网络状态包括在线状态以及离线状态,并且第二确定模块,包括:12. The apparatus according to claim 11, wherein the network state includes an online state and an offline state, and the second determining module comprises: 第一采用子模块,用于在所述网络状态为所述在线状态的情况下,所述频率控制方式采用闭环控制;The first adopts a sub-module, which is used to adopt closed-loop control for the frequency control mode when the network state is the online state; 第二采用子模块,用于在所述网络状态为所述离线状态的情况下,所述频率控制方式采用开环控制。The second adopts a sub-module, which is used for adopting open-loop control in the frequency control mode when the network state is the offline state. 13.根据权利要求12所述的装置,其特征在于,第二确定模块,包括:13. The apparatus according to claim 12, wherein the second determining module comprises: 第一确定子模块,用于通过预先设定的频率控制模块,根据所述网络状态,确定所述计量装置的所述频率控制方式。The first determination sub-module is configured to determine the frequency control mode of the metering device according to the network state through a preset frequency control module. 14.根据权利要求13所述的装置,其特征在于,第一采用子模块,包括:14. The device according to claim 13, wherein the first adopting sub-module comprises: 第一确定单元,用于利用所述频率控制模块对载波信号进行解码,确定标准频率;a first determining unit, configured to decode the carrier signal by using the frequency control module to determine a standard frequency; 第二确定单元,用于利用所述频率控制模块,根据本地频率调整电压参数对所述标准频率进行调整,确定第一数字控制量;a second determining unit, configured to use the frequency control module to adjust the standard frequency according to the local frequency adjustment voltage parameter to determine the first digital control quantity; 第四确定单元,用于利用所述频率控制模块,对所述第二数字控制量进行滤波转换,确定控制电压信号;a fourth determining unit, configured to use the frequency control module to filter and convert the second digital control quantity to determine a control voltage signal; 第五确定单元,用于通过所述电压控制信息,对所述压控晶体振荡单元进行调整,确定输出时钟频率。The fifth determining unit is configured to adjust the voltage-controlled crystal oscillation unit according to the voltage control information to determine the output clock frequency. 15.根据权利要求13所述的装置,其特征在于,第二采用子模块,包括:15. The apparatus according to claim 13, wherein the second adopting sub-module comprises: 第六确定单元,用于利用所述频率控制模块对载波信号进行解码,确定标准频率;a sixth determining unit, configured to decode the carrier signal by using the frequency control module to determine the standard frequency; 第七确定单元,用于利用所述频率控制模块,根据本地频率调整电压参数对所述标准频率进行调整,确定第一数字控制量;a seventh determination unit, configured to use the frequency control module to adjust the standard frequency according to the local frequency adjustment voltage parameter, and determine the first digital control quantity; 第八确定单元,用于利用所述频率控制模块,根据预先存储的不同温度下的锁频控制量,生成频率控制温度补偿系数,并对所述第一数字控制量进行调整,生成第三数字控制量;The eighth determination unit is used for using the frequency control module to generate a frequency control temperature compensation coefficient according to the pre-stored frequency locking control quantities at different temperatures, and to adjust the first digital control quantity to generate a third digital control quantity. Control amount; 第九确定单元,用于利用所述频率控制模块,对所述第三数字控制量进行滤波转换,确定控制电压信号;a ninth determination unit, configured to use the frequency control module to filter and convert the third digital control quantity to determine a control voltage signal; 第十确定单元,用于通过所述电压控制信息,对所述压控晶体振荡单元进行调整,确定输出时钟频率。The tenth determining unit is configured to adjust the voltage-controlled crystal oscillation unit according to the voltage control information to determine the output clock frequency. 16.根据权利要求14或15任意一项所述的装置,其特征在于,第一确定子模块,包括:16. The apparatus according to any one of claims 14 or 15, wherein the first determination submodule comprises: 第一记录单元,用于所述计量装置中的所述各计量设备的从时钟从主时钟接收两次时间同步信标,包括发送所述两次时间同步信标的第一时间戳以及第二时间戳,并记录接收所述两次时间同步信标的第三时间戳以及第四时间戳;a first recording unit, used for the slave clock of each metering device in the metering device to receive two time synchronization beacons from the master clock, including a first time stamp and a second time for sending the two time synchronization beacons stamp, and record the third time stamp and the fourth time stamp of receiving the two time synchronization beacons; 第十一确定单元,用于所述从时钟的所述时间数字转换单元根据所述第一时间戳、所述第二时间戳、所述第三时间戳以及所述第四时间戳,确定本地频率调整电压参数;Eleventh determining unit, wherein the time-to-digital conversion unit for the slave clock determines the local time stamp according to the first time stamp, the second time stamp, the third time stamp and the fourth time stamp Frequency adjustment voltage parameters; 第十二确定单元,用于所述数字转换单元根据所述本地频率调整电压参数对所述标准频率进行调整,确定所述第一数字控制量。A twelfth determination unit is used for the digital conversion unit to adjust the standard frequency according to the local frequency adjustment voltage parameter to determine the first digital control quantity. 17.根据权利要求13所述的装置,其特征在于,第二确定模块,还包括:17. The apparatus according to claim 13, wherein the second determining module further comprises: 实现子模块,用于通过预先设置在所述频率控制模块内的双控开关,实现所述频率控制方式。The realization sub-module is used to realize the frequency control mode through the dual-control switch preset in the frequency control module. 18.根据权利要求16所述的装置,其特征在于,还包括:18. The apparatus of claim 16, further comprising: 加密模块,用于所述主时钟通过国网加密算法对所述压控晶体振荡器输出频率进行加密传输至所述从时钟。The encryption module is used for the master clock to encrypt and transmit the output frequency of the voltage-controlled crystal oscillator to the slave clock through the national network encryption algorithm. 19.根据权利要求16所述的装置,其特征在于,计算模块,包括:19. The apparatus according to claim 16, wherein the computing module comprises: 第一发送子模块,用于所述主时钟向所述从时钟发送同步报文,并打包所述同步报文发送的第五时间戳;a first sending submodule, used for the master clock to send a synchronization message to the slave clock, and to package a fifth time stamp sent by the synchronization message; 第一接收子模块,用于所述计量装置中的所述各计量设备的从时钟接收所述同步报文,并记录接收所述同步报文的第六时间戳;a first receiving sub-module, used for receiving the synchronization message from the clock of each metering device in the metering device, and recording the sixth time stamp of receiving the synchronization message; 第二发送子模块,用于所述从时钟向所述主时钟发送延迟请求报文,并记录发送所述延迟请求报文的第七时间戳;a second sending submodule, used for the slave clock to send a delay request message to the master clock, and to record a seventh time stamp for sending the delay request message; 第二接收子模块,用于所述主时钟接收所述延迟请求报文,记录接收所述延迟请求报文的第八时间戳,并将所述第八时间戳和延迟响应报文打包发送至所述从时钟;The second receiving submodule is used for the master clock to receive the delay request message, record the eighth timestamp of receiving the delay request message, and package and send the eighth timestamp and the delay response message to the slave clock; 第二确定子模块,用于所述从时钟根据所述第五时间戳、所述第六时间戳、所述第七时间戳以及第八时间戳,确定上下行的所述时间延迟以及所述时间偏移。The second determination submodule is used for the slave clock to determine the uplink and downlink time delay and the time delay according to the fifth timestamp, the sixth timestamp, the seventh timestamp and the eighth timestamp time offset. 20.一种计量装置的时钟频率同步装置,应用于台区层面内计量装置的各计量设备之间,其特征在于,包括:20. A clock frequency synchronization device of a metering device, which is applied between each metering equipment of the metering device in the platform level, characterized in that it comprises: 处理器;以及processor; and 存储器,与所述处理器连接,用于为所述处理器提供处理以下处理步骤的指令:a memory, connected to the processor, for providing the processor with instructions for processing the following processing steps: 检测所述计量装置的网络状况,确定所述计量装置的网络状态;Detecting the network status of the metering device, and determining the network status of the metering device; 根据所述网络状态,确定所述计量装置的频率控制方式,其中所述频率控制方式通过预先设置的频率控制模块实现;Determine the frequency control mode of the metering device according to the network state, wherein the frequency control mode is realized by a preset frequency control module; 计算所述计量装置的所述各计量设备之间的时间延迟以及时间偏移,其中所述各计量设备分别设置有所述频率控制模块;calculating the time delay and time offset between the various metering devices of the metering device, wherein each of the metering devices is respectively provided with the frequency control module; 根据所述时间延迟、所述时间偏移以及所述控制方式,对所述计量装置的所述各计量设备进行时钟频率同步。According to the time delay, the time offset, and the control method, clock frequency synchronization is performed on each of the metering devices of the metering apparatus.
CN202210750508.8A 2022-06-29 2022-06-29 Clock frequency synchronization method and device of metering device and storage medium Active CN115102657B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210750508.8A CN115102657B (en) 2022-06-29 2022-06-29 Clock frequency synchronization method and device of metering device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210750508.8A CN115102657B (en) 2022-06-29 2022-06-29 Clock frequency synchronization method and device of metering device and storage medium

Publications (2)

Publication Number Publication Date
CN115102657A true CN115102657A (en) 2022-09-23
CN115102657B CN115102657B (en) 2024-01-26

Family

ID=83295780

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210750508.8A Active CN115102657B (en) 2022-06-29 2022-06-29 Clock frequency synchronization method and device of metering device and storage medium

Country Status (1)

Country Link
CN (1) CN115102657B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116471211A (en) * 2023-06-19 2023-07-21 威胜信息技术股份有限公司 Accurate time setting method for electric power Internet of things

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104475A (en) * 2011-01-31 2011-06-22 上海交通大学 IEEE 1588-based synchronization system and synchronization method thereof
US20120187770A1 (en) * 2007-08-21 2012-07-26 Electro Industries/Gauge Tech System and method for synchronizing multiple generators with an electrical power distribution system
CN106100781A (en) * 2016-05-20 2016-11-09 中国南方电网有限责任公司电网技术研究中心 Clock tracking method and system based on E1 channel
CN111585683A (en) * 2020-05-11 2020-08-25 上海交通大学 High-reliability clock synchronization system and method for time-sensitive network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120187770A1 (en) * 2007-08-21 2012-07-26 Electro Industries/Gauge Tech System and method for synchronizing multiple generators with an electrical power distribution system
CN102104475A (en) * 2011-01-31 2011-06-22 上海交通大学 IEEE 1588-based synchronization system and synchronization method thereof
CN106100781A (en) * 2016-05-20 2016-11-09 中国南方电网有限责任公司电网技术研究中心 Clock tracking method and system based on E1 channel
CN111585683A (en) * 2020-05-11 2020-08-25 上海交通大学 High-reliability clock synchronization system and method for time-sensitive network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116471211A (en) * 2023-06-19 2023-07-21 威胜信息技术股份有限公司 Accurate time setting method for electric power Internet of things
CN116471211B (en) * 2023-06-19 2023-10-13 威胜信息技术股份有限公司 Accurate time setting method for electric power Internet of things

Also Published As

Publication number Publication date
CN115102657B (en) 2024-01-26

Similar Documents

Publication Publication Date Title
CN102064827B (en) Rubidium oscillator-based standard frequency and time adjusting method
CN102104475B (en) IEEE 1588-based synchronization system and synchronization method thereof
TWI411277B (en) Network slave node and time synchronization method in network applying the same
CN114050884B (en) Cross-network time synchronization method for industrial wireless and TSN fusion
US20110035511A1 (en) Remote Hardware Timestamp-Based Clock Synchronization
WO2018006686A1 (en) Method, apparatus and device for optimizing time synchronization between communication network devices
CN105532053A (en) Device synchronization over bluetooth
CN108259109B (en) Network equipment in PTP domain and TOD synchronization method
CN101977104A (en) IEEE1588 based accurate clock synchronization protocol system and synchronization method thereof
CN103763055A (en) Method for precise time synchronization
EP3531610B1 (en) Frequency synchronization method and slave clock
JP2002185489A (en) Synchronizing method and synchronizer
CN108599888A (en) A kind of distributed network clock synchronizing system
WO2009043299A1 (en) A determining method and device for the synchronization port of a transparent clock equipment
WO2012155663A1 (en) Method and network apparatus for adjusting frequency based on ieee 1588 protocol
US20160065358A1 (en) Synchronization method, intermediate node, and slave node of communication network system
CN106688207A (en) Method for determining the propagation time of a telegram in a communication network and corresponding network components
CN115102657B (en) Clock frequency synchronization method and device of metering device and storage medium
CN108683472A (en) A kind of clock synchronizing method based on Time delay measurement
CN106162856A (en) A kind of node synchronization method in wireless Ad Hoc network
JP2018006913A (en) Information communication system and information communication equipment
CN201557117U (en) GPS and nanosecond NTP two-way inputted synchronous networking clock
CN109818700B (en) Synchronization method and device of wide area system protection device, plant station and topological architecture
KR20100048124A (en) Time synchronization method in bridged local area network
TWI421667B (en) Method of clock synchronization and internet system using the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant