CN115038136B - Multi-channel self-adaptive bandwidth switching method and system - Google Patents
Multi-channel self-adaptive bandwidth switching method and system Download PDFInfo
- Publication number
- CN115038136B CN115038136B CN202210575994.4A CN202210575994A CN115038136B CN 115038136 B CN115038136 B CN 115038136B CN 202210575994 A CN202210575994 A CN 202210575994A CN 115038136 B CN115038136 B CN 115038136B
- Authority
- CN
- China
- Prior art keywords
- channel
- signal
- physical
- link
- state
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 44
- 238000012790 confirmation Methods 0.000 claims abstract description 43
- 230000005540 biological transmission Effects 0.000 claims abstract description 31
- 238000009825 accumulation Methods 0.000 claims description 11
- 230000003044 adaptive effect Effects 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006854 communication Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/24—Reselection being triggered by specific parameters
- H04W36/30—Reselection being triggered by specific parameters by measured or perceived connection quality data
- H04W36/305—Handover due to radio link failure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/06—Airborne or Satellite Networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/50—Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
技术领域Technical Field
本发明属于航天器高速数据传输技术领域,具体涉及一种多通道自适应带宽切换方法及系统。The present invention belongs to the technical field of spacecraft high-speed data transmission, and in particular relates to a multi-channel adaptive bandwidth switching method and system.
背景技术Background technique
随着空间探测任务难度的增加,航天器内部需配备高分辨率的有效载荷,有效载荷间信息交换量和交换速率也随之增加。现有的总线技术已经不能支持超高速率星载数据网络,因此欧洲航空航天局提出了新一代超高速串行链路SpaceFibre技术以满足有效载荷间数据交换的新需求。As the difficulty of space exploration missions increases, spacecraft need to be equipped with high-resolution payloads, and the amount and rate of information exchange between payloads also increase. Existing bus technology can no longer support ultra-high-speed satellite data networks, so the European Space Agency has proposed a new generation of ultra-high-speed serial link SpaceFibre technology to meet the new needs of data exchange between payloads.
SpaceFibre技术的一个重要特点是支持多通道功能,即单条物理链路包含多条物理通道。多通道功能不仅可以有效扩展数据传输带宽,还为数据传输的安全性提供了保障,以确保SpaceFibre技术可以应用于可靠性要求较高的场合。当一条物理链路上的某条或多条物理通道由于线缆故障等原因发生故障时,多通道功能可以提供热冗余切换服务。热冗余切换服务是指在不停机的情况下实现热冗余通道自动接替故障通道,从而在规定的时间内继续完成数据的收发。当不存在热冗余通道时,多通道功能可以提供降级切换服务。降级切换服务是指将数据自动地分发到剩余的活跃通道上完成数据的传输。活跃通道是指在通信过程中用于发送有效数据信息的物理通道。An important feature of SpaceFibre technology is that it supports multi-channel function, that is, a single physical link contains multiple physical channels. The multi-channel function can not only effectively expand the data transmission bandwidth, but also provide protection for the security of data transmission, so as to ensure that SpaceFibre technology can be used in situations with high reliability requirements. When one or more physical channels on a physical link fail due to cable failure or other reasons, the multi-channel function can provide hot redundant switching service. Hot redundant switching service means that the hot redundant channel automatically takes over the failed channel without stopping the machine, so as to continue to send and receive data within the specified time. When there is no hot redundant channel, the multi-channel function can provide degraded switching service. Degraded switching service means that data is automatically distributed to the remaining active channels to complete data transmission. Active channel refers to the physical channel used to send valid data information during the communication process.
热冗余切换服务和降级切换服务的关键是切换管理,切换结构对整个传输系统的有序和稳定运行起到至关重要的作用。现有技术只说明了SpaceFibre协议热冗余切换服务和降级切换服务的工作原理,并没有说明具体的切换管理实现方式。The key to hot redundant switching service and degraded switching service is switching management, and the switching structure plays a vital role in the orderly and stable operation of the entire transmission system. The prior art only describes the working principle of the hot redundant switching service and degraded switching service of the SpaceFibre protocol, but does not describe the specific implementation method of switching management.
发明内容Summary of the invention
本发明提出了一种多通道自适应带宽切换方法及系统,提供了SpaceFibre协议多通道热冗余切换服务和降级切换服务的实现架构。The present invention proposes a multi-channel adaptive bandwidth switching method and system, and provides a SpaceFibre protocol multi-channel hot redundant switching service and a degradation switching service implementation architecture.
本发明提出了一种多通道自适应带宽切换方法,所述方法首先基于物理链路的多条物理通道设置通道稳定时限和数据发送通道上限;然后实时检测每条物理通道的当前状态,根据物理通道状态及稳定时限对每条物理通道的状态进行确认,同时对所有物理通道的确认状态进行检测,当检测到链路中任一通道确认状态发生变化时根据实时无故障通道数与数据发送通道上限判断是否存在热冗余通道,若存在热冗余通道,则分配热冗余通道和活跃通道;若不存在热冗余通道,则分配活跃通道,从而实现多通道的带宽切换。The present invention proposes a multi-channel adaptive bandwidth switching method. The method first sets a channel stability time limit and a data transmission channel upper limit based on multiple physical channels of a physical link; then detects the current state of each physical channel in real time, confirms the state of each physical channel according to the physical channel state and the stability time limit, and detects the confirmation state of all physical channels at the same time. When it is detected that the confirmation state of any channel in the link changes, it is judged whether there is a hot redundant channel according to the real-time number of fault-free channels and the upper limit of the data transmission channel. If there is a hot redundant channel, the hot redundant channel and the active channel are allocated; if there is no hot redundant channel, the active channel is allocated, thereby realizing the bandwidth switching of multiple channels.
作为上述技术方案的改进之一,所述方法对某一条物理通道状态进行确认时,要求该条物理通道状态累计有效时间达到稳定时限,进而得到该条物理通道的确认状态,所有物理通道状态确认后形成链路状态确认信号。As one of the improvements of the above technical solution, when the method confirms the status of a physical channel, it is required that the cumulative effective time of the physical channel status reaches a stable time limit, and then the confirmation status of the physical channel is obtained. After all physical channel statuses are confirmed, a link status confirmation signal is formed.
作为上述技术方案的改进之一,所述方法对链路中所有通道的确认状态进行检测,若链路中所有通道的确认状态均未发生变化,则说明无需进行带宽切换;若链路中任一通道的确认状态发生变化,则进一步比较实时无故障物理通道数与数据发送通道上限,若所述实时无故障通道数不超过数据发送通道上限,则表示不存在热冗余通道;若实时无故障物理通道数大于数据发送通道上限,则表示存在热冗余通道。As one of the improvements of the above technical solution, the method detects the confirmation status of all channels in the link. If the confirmation status of all channels in the link has not changed, it means that there is no need to switch the bandwidth; if the confirmation status of any channel in the link has changed, the real-time number of fault-free physical channels is further compared with the upper limit of the data sending channel. If the real-time number of fault-free channels does not exceed the upper limit of the data sending channel, it means that there is no hot redundant channel; if the real-time number of fault-free physical channels is greater than the upper limit of the data sending channel, it means that there is a hot redundant channel.
作为上述技术方案的改进之一,所述方法将链路的物理通道编号为0至n-1,n为物理通道数,根据SpaceFibre协议规定:当存在热冗余通道时,编号较小的无故障物理通道作为活跃通道,剩余无故障物理通道作为热冗余通道。因此在分配热冗余通道和活跃通道时,将链路状态确认信号中从最低有效位(有效位是指转化为二进制后为1的位)开始,共l比特有效位对应的物理通道作为活跃通道并置位活跃通道信号相应l比特为1,活跃通道信号剩余n-l比特为0,将链路状态确认信号剩余高有效位对应的物理通道作为热冗余通道并置位热冗余通道信号相应m-l比特为1,热冗余通道信号剩余比特均为0。在分配活跃通道时,直接将链路状态确认信号中有效位对应的物理通道作为活跃通道并置位活跃通道信号的相应m比特为1,活跃通道信号的剩余n-m比特为0;热冗余通道信号n比特全为0。l为数据发送通道上限,m为实时无故障通道数。As one of the improvements of the above technical solution, the method numbers the physical channels of the link from 0 to n-1, where n is the number of physical channels. According to the SpaceFibre protocol, when there is a hot redundant channel, the smaller numbered fault-free physical channel is used as the active channel, and the remaining fault-free physical channels are used as hot redundant channels. Therefore, when allocating hot redundant channels and active channels, starting from the least significant bit (the valid bit refers to the bit that is 1 after conversion to binary) in the link status confirmation signal, the physical channel corresponding to a total of l bits of valid bits is used as the active channel and the corresponding l bits of the active channel signal are set to 1, and the remaining n-l bits of the active channel signal are 0. The physical channel corresponding to the remaining high-significant bits of the link status confirmation signal is used as the hot redundant channel and the corresponding m-l bits of the hot redundant channel signal are set to 1, and the remaining bits of the hot redundant channel signal are all 0. When allocating the active channel, the physical channel corresponding to the valid bit in the link status confirmation signal is directly used as the active channel and the corresponding m bits of the active channel signal are set to 1, and the remaining n-m bits of the active channel signal are 0; the n bits of the hot redundant channel signal are all 0. l is the upper limit of the data transmission channel, and m is the number of real-time fault-free channels.
本发明还提出了一种用于实现以上之一所述方法的多通道自适应带宽切换系统,所述系统包括:信号发送模块、物理通道簇、链路状态检测簇和热冗余控制模块;The present invention also proposes a multi-channel adaptive bandwidth switching system for implementing one of the above methods, the system comprising: a signal sending module, a physical channel cluster, a link status detection cluster and a hot redundancy control module;
所述信号发送模块,用于向所述链路状态检测簇发送稳定时限信号和向所述热冗余控制模块发送数据发送通道上限信号;所述稳定时限信号中设置有稳定时限;所述数据发送通道上限信号中设置有数据发送通道上限;The signal sending module is used to send a stable time limit signal to the link state detection cluster and send a data transmission channel upper limit signal to the hot redundancy control module; the stable time limit signal is provided with a stable time limit; the data transmission channel upper limit signal is provided with a data transmission channel upper limit;
所述物理通道簇包括n条物理通道,n=2k(k∈N),并编号为0至n-1,用于对物理通道的状态进行检测得到物理通道状态信号,并将物理通道状态信号传递给所述链路状态检测簇;The physical channel cluster includes n physical channels, n=2 k (k∈N), and is numbered from 0 to n-1, and is used to detect the state of the physical channel to obtain a physical channel state signal, and transmit the physical channel state signal to the link state detection cluster;
所述链路状态检测簇包括n个链路状态检测模块,并且每条物理通道对应单一链路状态检测模块;所述链路状态检测模块根据稳定时限信号和物理通道状态信号,对每条物理通道的状态进行确认后向所述热冗余控制模块发送链路状态确认信号;The link status detection cluster includes n link status detection modules, and each physical channel corresponds to a single link status detection module; the link status detection module confirms the status of each physical channel according to the stable time limit signal and the physical channel status signal, and then sends a link status confirmation signal to the hot redundancy control module;
所述热冗余控制模块根据数据发送通道上限信号和链路状态确认信号输出n比特活跃通道信号、n比特热冗余通道信号和k+1比特活跃通道数目信号,以对热冗余通道和活跃通道进行分配,或对活跃通道进行分配。活跃通道信号和热冗余通道信号中的每个比特位均对应相应编号的物理通道。当活跃通道信号中的某比特为有效位,则表示该有效位对应的物理通道为活跃通道。当热冗余通道信号中的某比特为有效位,则表示该有效位对应的物理通道为热冗余通道。The thermal redundancy control module outputs an n-bit active channel signal, an n-bit hot redundant channel signal and a k+1-bit active channel number signal according to the data transmission channel upper limit signal and the link status confirmation signal to allocate hot redundant channels and active channels, or to allocate active channels. Each bit in the active channel signal and the hot redundant channel signal corresponds to a physical channel with a corresponding number. When a bit in the active channel signal is a valid bit, it means that the physical channel corresponding to the valid bit is an active channel. When a bit in the hot redundant channel signal is a valid bit, it means that the physical channel corresponding to the valid bit is a hot redundant channel.
作为上述技术方案的一种改进,所述链路状态检测簇还包括选择器0、选择器1和计数器;As an improvement of the above technical solution, the link state detection cluster further includes a selector 0, a selector 1 and a counter;
所述选择器0以物理通道状态作为选通信号,生成计数器使能信号和计数器清零信号:当物理通道的状态为1时,计数器使能信号置位,计数器清零信号取消置位;当物理通道的状态为0时,计数器使能信号清除,计数器清零信号置位;The selector 0 uses the physical channel state as a selection signal to generate a counter enable signal and a counter clear signal: when the physical channel state is 1, the counter enable signal is set and the counter clear signal is unset; when the physical channel state is 0, the counter enable signal is cleared and the counter clear signal is set;
所述计数器清零信号和计数器使能信号传输到计数器进行时间累计:当计数器清零信号置位时,计数器值归零;当计数器使能信号为高电平时且时间累计值未达到稳定时限,则计数器值继续增加;当计数器使能信号且时间累计值增加至稳定时限,则计数器保持不变;The counter clear signal and the counter enable signal are transmitted to the counter for time accumulation: when the counter clear signal is set, the counter value returns to zero; when the counter enable signal is at a high level and the accumulated time value has not reached the stable time limit, the counter value continues to increase; when the counter enable signal and the accumulated time value increases to the stable time limit, the counter remains unchanged;
所述链路状态检测模块实时地将时间累计值与稳定时限进行比较,当时间累计值达到稳定时限则生成选择器1的选通信号;所述选择器1接收到选通信号后生成物理通道状态确认信号并传输到热冗余控制模块。The link status detection module compares the time accumulation value with the stable time limit in real time, and generates a selection signal for selector 1 when the time accumulation value reaches the stable time limit; after receiving the selection signal, the selector 1 generates a physical channel status confirmation signal and transmits it to the hot redundancy control module.
本发明提出了自适应带宽切换系统的硬件架构,解决了切换故障通道的问题;The present invention proposes a hardware architecture of an adaptive bandwidth switching system, which solves the problem of switching faulty channels;
本发明采用基于时间累计的物理通道状态确认处理以及低复杂度热冗余控制策略。The present invention adopts a physical channel state confirmation process based on time accumulation and a low-complexity hot redundancy control strategy.
本发明能够实现的技术效果:The technical effects that can be achieved by the present invention are:
1)可以实时检测物理链路变化;1) Can detect physical link changes in real time;
2)可实现带宽的自适应调整,自动切换故障的物理通道,无需外界干预;2) It can realize adaptive adjustment of bandwidth and automatically switch the faulty physical channel without external intervention;
3)不仅支持带宽的减少,还支持带宽的增加;3) Supports not only bandwidth reduction but also bandwidth increase;
4)切换方式简单易行,消除了复杂控制逻辑引入的物理通道切换隐患,保障了多通道传输系统实时、稳定、可靠。4) The switching method is simple and easy, eliminating the hidden dangers of physical channel switching introduced by complex control logic, and ensuring that the multi-channel transmission system is real-time, stable and reliable.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明系统结构框图;FIG1 is a block diagram of the system structure of the present invention;
图2为本发明系统链路状态检测模块结构框图;FIG2 is a block diagram of a link status detection module of the system of the present invention;
图3为本发明系统的热冗余控制模块切换方法流程图。FIG3 is a flow chart of a method for switching hot redundant control modules of the system of the present invention.
具体实施方式Detailed ways
以下结合实施例进一步说明本发明所提供的技术方案。The technical solution provided by the present invention is further illustrated below in conjunction with embodiments.
如图1为一种多通道热冗余切换系统的实现结构图。多通道热冗余切换系统分为信号发送模块、物理通道簇、链路状态检测簇和热冗余控制模块。其中物理通道簇共包含n=2k(k∈N)条物理通道,编号顺序分别为0至n-1。链路状态簇包含n个链路状态检测模块。物理通道簇与链路状态检测簇为满的单射关系,即每条物理通道对应单一链路状态检测模块。n条物理通道的状态组合而成的物理链路状态传递给链路状态检测簇。链路状态检测簇中的每个链路状态检测模块根据稳定时限信号和物理通道状态信号,对每条物理通道的当前状态进行确认处理。链路状态检测簇将链路状态确认信号传输至热冗余控制模块。热冗余控制模块根据数据发送通道上限信号和链路状态确认信号输出n比特活跃通道信号、n比特热冗余通道信号和k+1比特活跃通道数目信号。活跃通道信号和热冗余信号中的每个比特位均对应相应编号的物理通道。稳定时限信号和数据发送通道上限信号是由用户根据实际应用场景进行配置的。稳定时限信号决定了链路状态检测的时间和准确性:稳定时限过长会影响链路状态检测的反应速度,导致链路不能及时响应链路变化;稳定实现过短会影响链路状态检测的准确性,造成链路状态的错误检测。因此,在赋值稳定时限信号时需要综合考虑链路检测的速度和准确性。数据发送通道上限信号决定了物理通道的余度,通常来说冗余的余度越高,系统稳定性也就越高。但是余度过多会导致系统成本提高,也会带来切换管理的额外开销。所以,应用时要根据系统特点和可靠性要求,设计数据发送通道上限信号。FIG1 is a diagram of the implementation structure of a multi-channel hot redundant switching system. The multi-channel hot redundant switching system is divided into a signal sending module, a physical channel cluster, a link state detection cluster and a hot redundant control module. The physical channel cluster contains n=2 k (k∈N) physical channels, which are numbered from 0 to n-1. The link state cluster contains n link state detection modules. The physical channel cluster and the link state detection cluster are in a full single-shot relationship, that is, each physical channel corresponds to a single link state detection module. The physical link state composed of the states of n physical channels is transmitted to the link state detection cluster. Each link state detection module in the link state detection cluster confirms the current state of each physical channel according to the stable time limit signal and the physical channel state signal. The link state detection cluster transmits the link state confirmation signal to the hot redundant control module. The hot redundant control module outputs an n-bit active channel signal, an n-bit hot redundant channel signal and a k+1-bit active channel number signal according to the data sending channel upper limit signal and the link state confirmation signal. Each bit in the active channel signal and the hot redundant signal corresponds to a physical channel with a corresponding number. The stability time limit signal and the data transmission channel upper limit signal are configured by the user according to the actual application scenario. The stability time limit signal determines the time and accuracy of the link status detection: if the stability time limit is too long, it will affect the reaction speed of the link status detection, resulting in the link not being able to respond to link changes in time; if the stability time limit is too short, it will affect the accuracy of the link status detection, resulting in incorrect detection of the link status. Therefore, when assigning the stability time limit signal, it is necessary to comprehensively consider the speed and accuracy of the link detection. The data transmission channel upper limit signal determines the redundancy of the physical channel. Generally speaking, the higher the redundancy, the higher the system stability. However, too much redundancy will increase the system cost and bring additional overhead for switching management. Therefore, when applying, the data transmission channel upper limit signal should be designed according to the system characteristics and reliability requirements.
为了防止误检测,链路状态检测模块采用基于时间累计的物理通道状态确认处理。只有当物理通道状态信号累计有效时间达一定值时,链路状态检测模块才能完成确认处理操作并输出物理通道状态确认信号。n路物理通道状态确认信号共同组成链路状态确认信号。链路状态检测模块的实现结构如图2所示。外部输入的物理通道状态作为选择器0的选通信号,生成计数器使能信号和计数器清零信号:当物理通道的状态为1时,计数器使能信号置位,计数器清零信号取消置位;当物理通道的状态为0时,计数器使能信号清除,计数器清零信号置位。计数器清零信号和计数器使能信号传输到计数器进行时间累计:当计数器清零信号置位时,计数器值归零;当计数器使能信号为高电平时且时间累计值未达到稳定时限,则计数器继续增加;当计数器使能信号且时间累计值增加至稳定时限,则计数器保持不变。链路状态检测模块实时地将时间累计值与稳定时限进行比较,当时间累计值达到稳定时限值生成选择器1的选通信号。此时,选择器1生成物理通道状态确认信号并传输到热冗余控制模块。In order to prevent false detection, the link status detection module adopts the physical channel status confirmation processing based on time accumulation. Only when the physical channel status signal accumulates valid time to a certain value, the link status detection module can complete the confirmation processing operation and output the physical channel status confirmation signal. The n-way physical channel status confirmation signal together constitutes the link status confirmation signal. The implementation structure of the link status detection module is shown in Figure 2. The external input physical channel status is used as the selection signal of selector 0 to generate the counter enable signal and the counter clear signal: when the state of the physical channel is 1, the counter enable signal is set and the counter clear signal is unset; when the state of the physical channel is 0, the counter enable signal is cleared and the counter clear signal is set. The counter clear signal and the counter enable signal are transmitted to the counter for time accumulation: when the counter clear signal is set, the counter value returns to zero; when the counter enable signal is high and the time accumulation value has not reached the stable time limit, the counter continues to increase; when the counter enable signal and the time accumulation value increases to the stable time limit, the counter remains unchanged. The link status detection module compares the time accumulation value with the stable time limit in real time, and generates a selection signal for selector 1 when the time accumulation value reaches the stable time limit. At this time, selector 1 generates a physical channel status confirmation signal and transmits it to the hot redundancy control module.
如图3所示为热冗余控制模块流程图,该模块负责依据物理链路状态确认信号和数据发送通道上限信号进行带宽切换。热冗余控制模块接收到来自链路状态检测簇的链路确认信号,并与之前寄存的确认信号进行差异检查以检测通道状态变化。若两者相等,说明链路状态无变化,则热冗余控制再次进入检测通道状态变化步骤。若链路确认信号的新接收值与寄存值不同,说明链路状态发生了变化。此时,热冗余控制模块进入检测热冗余通道步骤。假设实时无故障通道数目为m(m≤n)。若l<m,则表示存在热冗余通道,热冗余控制模进入分配热冗余通道和活跃通道步骤:根据SpaceFibre协议规定,当存在热冗余通道时,编号较小的无故障物理通道作为活跃通道,剩余无故障物理通道作为热冗余通道。因此在分配热冗余通道和活跃通道时,将链路状态确认信号中从最低有效位开始共l比特有效位对应的物理通道作为活跃通道,活跃通道信号相应l比特为1,活跃通道信号剩余n-l比特为0。将链路状态确认信号剩余高有效位对应的物理通道作为热冗余通道,热冗余通道信号相应m-l比特为1,热冗余通道信号剩余比特均为0。若l≥m,则表示不存在热冗余通道,热冗余控制模块进入分配活跃通道步骤:将链路状态确认信号中有效位对应的物理通道作为活跃通道并置位活跃通道信号的相应m比特,活跃通道信号的剩余n-m比特为0;近端热冗余通道信号n比特位全为0。考虑存在下面的情况:n=5(共五条物理通道),m=3(某两条物理通道故障,假设故障物理通道的编号为0和3,则五条物理通道的当前状态用二进制表示为10110)。若令l=2(数据发送通道上限为2),则活跃通道信号为00110,热冗余通道信号为10000。若令l=3(数据发送通道上限为3),则活跃通道信号为10110,热冗余通道信号为00000。As shown in FIG3, the hot redundancy control module flow chart is responsible for switching bandwidth according to the physical link status confirmation signal and the data transmission channel upper limit signal. The hot redundancy control module receives the link confirmation signal from the link status detection cluster and performs a difference check with the previously stored confirmation signal to detect the channel status change. If the two are equal, it means that the link status has not changed, and the hot redundancy control enters the channel status change detection step again. If the new received value of the link confirmation signal is different from the stored value, it means that the link status has changed. At this time, the hot redundancy control module enters the hot redundancy channel detection step. Assume that the number of real-time fault-free channels is m (m≤n). If l<m, it means that there is a hot redundancy channel, and the hot redundancy control module enters the hot redundancy channel and active channel allocation step: According to the SpaceFibre protocol, when there is a hot redundancy channel, the smaller numbered fault-free physical channel is used as the active channel, and the remaining fault-free physical channels are used as hot redundancy channels. Therefore, when allocating hot redundancy channels and active channels, the physical channel corresponding to the l-bit valid bits starting from the least significant bit in the link status confirmation signal is used as the active channel, and the corresponding l bits of the active channel signal are 1, and the remaining n-l bits of the active channel signal are 0. The physical channel corresponding to the remaining high-significant bits of the link status confirmation signal is used as a hot redundant channel, the corresponding m-l bits of the hot redundant channel signal are 1, and the remaining bits of the hot redundant channel signal are all 0. If l≥m, it means that there is no hot redundant channel, and the hot redundant control module enters the step of allocating active channels: the physical channel corresponding to the valid bit in the link status confirmation signal is used as the active channel and the corresponding m bits of the active channel signal are set, and the remaining n-m bits of the active channel signal are 0; the n bits of the near-end hot redundant channel signal are all 0. Consider the following situation: n=5 (a total of five physical channels), m=3 (two physical channels are faulty, assuming that the faulty physical channels are numbered 0 and 3, then the current status of the five physical channels is represented by binary as 10110). If l=2 (the upper limit of the data transmission channel is 2), the active channel signal is 00110, and the hot redundant channel signal is 10000. If l=3 (the upper limit of the data transmission channel is 3), the active channel signal is 10110, and the hot redundant channel signal is 00000.
从上述对本发明的具体描述可以看出,本发明提供的切换方式简单易行,消除了复杂控制逻辑引入的物理通道切换隐患,保障了多通道传输系统实时、稳定、可靠。It can be seen from the above specific description of the present invention that the switching method provided by the present invention is simple and easy, eliminates the hidden dangers of physical channel switching introduced by complex control logic, and ensures that the multi-channel transmission system is real-time, stable and reliable.
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and are not intended to limit the present invention. Although the present invention is described in detail with reference to the embodiments, it should be understood by those skilled in the art that any modification or equivalent replacement of the technical solutions of the present invention does not depart from the spirit and scope of the technical solutions of the present invention and should be included in the scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210575994.4A CN115038136B (en) | 2022-05-25 | 2022-05-25 | Multi-channel self-adaptive bandwidth switching method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210575994.4A CN115038136B (en) | 2022-05-25 | 2022-05-25 | Multi-channel self-adaptive bandwidth switching method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115038136A CN115038136A (en) | 2022-09-09 |
CN115038136B true CN115038136B (en) | 2024-04-09 |
Family
ID=83121812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210575994.4A Active CN115038136B (en) | 2022-05-25 | 2022-05-25 | Multi-channel self-adaptive bandwidth switching method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115038136B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006074614A1 (en) * | 2005-01-14 | 2006-07-20 | Huawei Technologies Co., Ltd. | The self recovery method and system as well as information transfer approach in optical channel shared protection |
CN101281483A (en) * | 2008-05-12 | 2008-10-08 | 北京邮电大学 | Dual-computer redundant fault-tolerant system and its redundant switching method |
CN101808011A (en) * | 2010-03-31 | 2010-08-18 | 许继集团有限公司 | Telemechanical channel automatic switching method |
CN103779963A (en) * | 2013-12-18 | 2014-05-07 | 国网上海市电力公司 | Self-adaptive relay protection multi-communication mode intelligent switching apparatus |
CN104780064A (en) * | 2015-03-31 | 2015-07-15 | 北京航天发射技术研究所 | Fault detection method of dual-redundancy-channel hot-switching CAN bus |
CN106209328A (en) * | 2016-07-12 | 2016-12-07 | 邦彦技术股份有限公司 | Intelligent redundant backup method and system for channel |
RU2634189C1 (en) * | 2016-12-09 | 2017-10-24 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Multi-channel self-diagnosed computer system with reserve substitution and method of improving its fault-tolerance (versions) |
CN108964984A (en) * | 2018-06-13 | 2018-12-07 | 南京南瑞继保电气有限公司 | A kind of redundant channel seamless handover method of electric system boss station communication |
CN110808908A (en) * | 2019-09-27 | 2020-02-18 | 华东计算技术研究所(中国电子科技集团公司第三十二研究所) | System and method for switching redundant network in real time across platforms |
CN111969839A (en) * | 2020-08-03 | 2020-11-20 | 华中科技大学 | Multichannel linear adjustable power supply based on coding addressing and control method |
CN112423352A (en) * | 2020-11-09 | 2021-02-26 | 上海卫星工程研究所 | Inter-satellite link control method for multi-channel and rate autonomous switching |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6009106A (en) * | 1997-11-19 | 1999-12-28 | Digi International, Inc. | Dynamic bandwidth allocation within a communications channel |
US7567620B2 (en) * | 2004-06-30 | 2009-07-28 | Texas Instruments Incorporated | Data transmission scheme using channel group and DOCSIS implementation thereof |
US7787377B2 (en) * | 2006-02-03 | 2010-08-31 | Telefonaktiebolaget Lm Ericsson (Publ) | Selective redundancy for Voice over Internet transmissions |
US8861952B2 (en) * | 2007-02-28 | 2014-10-14 | Finisar Corporation | Redundancy and interoperability in multi-channel optoelectronic devices |
CN102118300B (en) * | 2009-12-31 | 2014-03-12 | 华为软件技术有限公司 | Method and device for transmitting data streams in multiple channels |
CN101908974B (en) * | 2010-07-16 | 2012-05-23 | 北京航天发射技术研究所 | Heat switching system and heat switching method of dual-redundant CAN bus |
US20130051220A1 (en) * | 2011-08-22 | 2013-02-28 | Igor Ryshakov | Method and Apparatus for Quick-Switch Fault Tolerant Backup Channel |
US9852096B2 (en) * | 2014-03-25 | 2017-12-26 | Hewlett Packard Enterprise Development Lp | High speed serial link in-band lane fail over for RAS and power management |
CN105790902B (en) * | 2014-12-22 | 2020-06-09 | 研祥智能科技股份有限公司 | Method and system for realizing redundant network card switching |
WO2017134419A1 (en) * | 2016-02-01 | 2017-08-10 | Star-Dundee Limited | Multi-lane communication |
CN106789345B (en) * | 2017-01-20 | 2019-07-23 | 厦门集微科技有限公司 | Passageway switching method and device |
CN107395400A (en) * | 2017-06-29 | 2017-11-24 | 天津大学 | The adaptive Dual-Ethernet redundance communicating method of space flight Ethernet time triggered |
CN108306690A (en) * | 2018-01-11 | 2018-07-20 | 青岛海信宽带多媒体技术有限公司 | Optical module and passageway switching method |
CN108965123B (en) * | 2018-07-24 | 2021-01-22 | 京东方科技集团股份有限公司 | A link switching method and network communication system |
CN109547338B (en) * | 2018-12-06 | 2021-03-05 | 中国航空工业集团公司洛阳电光设备研究所 | Time-triggered network reconstruction method based on virtual channel |
CN110380916B (en) * | 2019-08-26 | 2022-05-27 | 上海航天测控通信研究所 | Self-adaptive switching Ethernet cross redundancy backup system and method |
CN112034774B (en) * | 2020-07-20 | 2024-03-19 | 中国船舶重工集团公司第七一五研究所 | Thermal redundancy control method |
CN112929119B (en) * | 2021-02-04 | 2021-10-01 | 烽火通信科技股份有限公司 | Distributed system link switching method, device, equipment and storage medium |
CN115001896B (en) * | 2022-06-28 | 2024-01-19 | 中国人民解放军海军工程大学 | An adaptive switching method for redundant channels |
-
2022
- 2022-05-25 CN CN202210575994.4A patent/CN115038136B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006074614A1 (en) * | 2005-01-14 | 2006-07-20 | Huawei Technologies Co., Ltd. | The self recovery method and system as well as information transfer approach in optical channel shared protection |
CN101281483A (en) * | 2008-05-12 | 2008-10-08 | 北京邮电大学 | Dual-computer redundant fault-tolerant system and its redundant switching method |
CN101808011A (en) * | 2010-03-31 | 2010-08-18 | 许继集团有限公司 | Telemechanical channel automatic switching method |
CN103779963A (en) * | 2013-12-18 | 2014-05-07 | 国网上海市电力公司 | Self-adaptive relay protection multi-communication mode intelligent switching apparatus |
CN104780064A (en) * | 2015-03-31 | 2015-07-15 | 北京航天发射技术研究所 | Fault detection method of dual-redundancy-channel hot-switching CAN bus |
CN106209328A (en) * | 2016-07-12 | 2016-12-07 | 邦彦技术股份有限公司 | Intelligent redundant backup method and system for channel |
RU2634189C1 (en) * | 2016-12-09 | 2017-10-24 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Multi-channel self-diagnosed computer system with reserve substitution and method of improving its fault-tolerance (versions) |
CN108964984A (en) * | 2018-06-13 | 2018-12-07 | 南京南瑞继保电气有限公司 | A kind of redundant channel seamless handover method of electric system boss station communication |
CN110808908A (en) * | 2019-09-27 | 2020-02-18 | 华东计算技术研究所(中国电子科技集团公司第三十二研究所) | System and method for switching redundant network in real time across platforms |
CN111969839A (en) * | 2020-08-03 | 2020-11-20 | 华中科技大学 | Multichannel linear adjustable power supply based on coding addressing and control method |
CN112423352A (en) * | 2020-11-09 | 2021-02-26 | 上海卫星工程研究所 | Inter-satellite link control method for multi-channel and rate autonomous switching |
Non-Patent Citations (10)
Title |
---|
Chris McClements ; David McLaren.SpaceFibre network and routing switch.2017 IEEE Aerospace Conference.2017,全文. * |
Prakash Chauhan ; Sanjib Kr. Deka ; Nityananda Sarma.Efficient proactive channel switching in cognitive radio networks.2017 Conference on Information and Communication Technology (CICT).2018,全文. * |
SpaceFibre协议研究与路由器的实现;赵允齐;中国优秀硕士学位论文全文数据库;20210615;全文 * |
SpaceWire冗余网络故障检测恢复技术实现;曾华菘;张春熹;伊小素;陶聪凌;刘文莉;;计算机测量与控制;20160825(第08期);全文 * |
SpaceWire高速总线节点控制器的设计与实现;柳萌;安军社;史毅龙;江源源;姜文奇;电子技术应用;20181106;第44卷(第11期);全文 * |
Steve Parkes ; Albert Ferrer Florit ; Alberto Gonzalez Villafranca * |
Steve Parkes ; Chris McClements ; David McLaren ; Albert Ferrer Florit ; Alberto Gonzalez Villafranca.SpaceFibre networks: SpaceFibre, long paper.2016 International SpaceWire Conference (SpaceWire).2016,全文. * |
Sukhen Shil Computer Science and Engineering, Tezpur University, Tezpur, India * |
数据专线上网热备冗余技术的应用研究;周伟;;微型电脑应用;20170520(第05期);全文 * |
网络冗余系统中精确时钟同步方法;章涵冯;冬芹;褚健;仪器仪表学报;20080815(第08期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN115038136A (en) | 2022-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8681818B2 (en) | Frame generating apparatus, optical transmission system, frame generating method, and optical transmission method | |
CN112953803B (en) | Airborne redundant network data transmission method | |
US8830825B2 (en) | Method and system for priority based (1:1)n ethernet protection | |
JP5131029B2 (en) | Communication apparatus and path switching method | |
US7110353B1 (en) | Distributed digital cross-connect system and method | |
CN1581796A (en) | Switching method between permanent connection and exchage connection in optical network | |
US20060203847A1 (en) | Variable communication capacity data transmission device and data transmission device | |
CN107766267B (en) | Arbitration method and system for I2C bus | |
CN115038136B (en) | Multi-channel self-adaptive bandwidth switching method and system | |
CN101330369B (en) | Transmitting and receiving method and apparatus, channel protection method and system | |
US6938187B2 (en) | Tandem connection monitoring | |
US6285687B1 (en) | Timing system and method for distributing a timing signal | |
CN101207529B (en) | Method for link circuit fault detection and recovery based on PMD and corresponding apparatus | |
CN101039249B (en) | A method and multiplexing device for transmitting monitoring data | |
WO2021068335A1 (en) | Data processing method, apparatus and storage medium | |
JP2867865B2 (en) | Protection line switching control method | |
KR100630051B1 (en) | Data packet corruption and loss detection method of data communication system | |
JP2837038B2 (en) | Line handling part of packet switching equipment | |
CN116232465B (en) | System and method for realizing multi-machine parallel operation redundancy by optical fiber annular communication | |
KR100211992B1 (en) | A method of switch configuration information cahnge from 1:n protection in facility module protection for broadband digital cross-connect system | |
US7075888B1 (en) | Method for operating interface modules in an ATM communications device | |
JP4249051B2 (en) | Lower device and upper device | |
KR20000065980A (en) | Apparatus for duplicating and controlling cell bus in ATM system | |
JPS5963833A (en) | Monitoring method of transmissoin circuit | |
JPH04196830A (en) | 1:n transmission path switching system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |