CN115036374A - Solar cell and method for making the same, photovoltaic module - Google Patents
Solar cell and method for making the same, photovoltaic module Download PDFInfo
- Publication number
- CN115036374A CN115036374A CN202110204237.1A CN202110204237A CN115036374A CN 115036374 A CN115036374 A CN 115036374A CN 202110204237 A CN202110204237 A CN 202110204237A CN 115036374 A CN115036374 A CN 115036374A
- Authority
- CN
- China
- Prior art keywords
- passivation layer
- substrate
- solar cell
- passivation
- front surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000002161 passivation Methods 0.000 claims abstract description 308
- 239000000758 substrate Substances 0.000 claims abstract description 81
- 239000000463 material Substances 0.000 claims abstract description 78
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 34
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 33
- 239000010703 silicon Substances 0.000 claims abstract description 33
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 31
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 30
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 230000008569 process Effects 0.000 claims description 24
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 16
- 238000006243 chemical reaction Methods 0.000 claims description 15
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 10
- 229910000077 silane Inorganic materials 0.000 claims description 10
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 9
- 230000009471 action Effects 0.000 claims description 7
- 238000005468 ion implantation Methods 0.000 claims description 7
- -1 nitrogen ions Chemical class 0.000 claims description 6
- 238000005019 vapor deposition process Methods 0.000 claims description 5
- 235000013842 nitrous oxide Nutrition 0.000 claims 2
- 230000009286 beneficial effect Effects 0.000 abstract description 21
- 229910020286 SiOxNy Inorganic materials 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 272
- 210000004027 cell Anatomy 0.000 description 44
- 230000000694 effects Effects 0.000 description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 11
- 229920005591 polysilicon Polymers 0.000 description 10
- 239000005388 borosilicate glass Substances 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 239000001272 nitrous oxide Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000005137 deposition process Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 238000002310 reflectometry Methods 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 125000004430 oxygen atom Chemical group O* 0.000 description 4
- 239000005022 packaging material Substances 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000005385 borate glass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000001579 optical reflectometry Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- 238000003631 wet chemical etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/30—Coatings
- H10F77/306—Coatings for devices having potential barriers
- H10F77/311—Coatings for devices having potential barriers for photovoltaic cells
- H10F77/315—Coatings for devices having potential barriers for photovoltaic cells the coatings being antireflective or having enhancing optical properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
本发明实施例提供一种太阳能电池及其制作方法、光伏组件,太阳能电池包括:N型基底以及位于所述基底前表面的P型发射极;位于所述基底前表面且在远离所述P型发射极的方向上依次堆叠的第一钝化层、第二钝化层、第三钝化层以及第四钝化层,所述第一钝化层包括氧化硅材料,所述第二钝化层包括第一氮氧化硅SiOxNy材料,所述第三钝化层包括氮化硅SimNn材料,所述第四钝化层包括第二氮氧化硅SiOiNj材料,所述第二钝化层包括靠近所述第一钝化层的第一部分和靠近所述第三钝化层的第二部分,所述第一部分的氮原子浓度小于所述第二部分的氮原子浓度;位于所述基底后表面的钝化接触结构。本发明实施例有利于提高太阳能电池的光利用率。
Embodiments of the present invention provide a solar cell, a manufacturing method thereof, and a photovoltaic assembly. The solar cell includes: an N-type substrate and a P-type emitter located on the front surface of the substrate; a solar cell located on the front surface of the substrate and away from the P-type A first passivation layer, a second passivation layer, a third passivation layer and a fourth passivation layer are stacked in sequence in the direction of the emitter, the first passivation layer includes a silicon oxide material, and the second passivation layer The layer includes a first silicon oxynitride SiOxNy material, the third passivation layer includes a silicon nitride SimNn material, and the fourth passivation layer includes a second silicon oxynitride SiOiNj material, so The second passivation layer includes a first part close to the first passivation layer and a second part close to the third passivation layer, and the nitrogen atom concentration of the first part is smaller than the nitrogen atom concentration of the second part ; a passivation contact structure on the back surface of the substrate. The embodiments of the present invention are beneficial to improve the light utilization rate of the solar cell.
Description
技术领域technical field
本发明实施例涉及光伏领域,特别涉及一种太阳能电池及其制作方法、光伏组件。Embodiments of the present invention relate to the field of photovoltaics, and in particular, to a solar cell, a manufacturing method thereof, and a photovoltaic assembly.
背景技术Background technique
太阳光的反射率或吸收率是电池效率的关键因素。目前业内钝化晶硅太阳能电池,常采用氧化铝/氮化硅(AlOx/SiNy)叠层作为发射极钝化层。沉积氧化铝材料所需要的镀膜设备以及前驱体气源(三甲基铝等)成本较高,不利于现代工业化大批量生成;氮化硅材料的折射率较高,不利于电池正面的减反射,在使用乙烯-醋酸乙烯酯(EVA)或聚烯烃(POE)等封装材料之后,太阳能组件外观呈蓝色,不利于黑组件的制作。The reflectivity or absorption of sunlight is a key factor in cell efficiency. At present, for passivating crystalline silicon solar cells in the industry, an aluminum oxide/silicon nitride (AlO x /SiN y ) stack is often used as the emitter passivation layer. The high cost of coating equipment and precursor gas sources (trimethyl aluminum, etc.) required for the deposition of aluminum oxide materials is not conducive to mass production in modern industrialization; the high refractive index of silicon nitride materials is not conducive to the anti-reflection of the front of the battery , After using ethylene-vinyl acetate (EVA) or polyolefin (POE) and other packaging materials, the appearance of solar modules is blue, which is not conducive to the production of black modules.
因此,希望开发一种非氧化铝钝化体系且具有低成本、高光利用率的新型N型电池以取代氧化铝钝化体系的N型电池。Therefore, it is hoped to develop a new type of N-type cell with non-alumina passivation system, low cost and high light utilization rate to replace the N-type cell of the alumina passivation system.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种太阳能电池及其制作方法、光伏组件,有利于提高太阳能电池的太阳光利用率。Embodiments of the present invention provide a solar cell, a manufacturing method thereof, and a photovoltaic assembly, which are beneficial to improve the utilization rate of sunlight of the solar cell.
为解决上述问题,本发明实施例提供一种太阳能电池,包括:N型基底以及位于所述基底前表面的P型发射极;位于所述基底前表面且在远离所述P型发射极的方向上依次堆叠的第一钝化层、第二钝化层、第三钝化层以及第四钝化层,所述第一钝化层包括氧化硅材料,所述第二钝化层包括第一氮氧化硅SiOxNy材料,所述第三钝化层包括氮化硅SimNn材料,所述第四钝化层包括第二氮氧化硅SiOiNj材料,所述第二钝化层包括靠近所述第一钝化层的第一部分和靠近所述第三钝化层的第二部分,所述第一部分的氮原子浓度小于所述第二部分的氮原子浓度;位于所述基底后表面的钝化接触结构。To solve the above problem, an embodiment of the present invention provides a solar cell, comprising: an N-type substrate and a P-type emitter located on the front surface of the substrate; a solar cell located on the front surface of the substrate and in a direction away from the P-type emitter a first passivation layer, a second passivation layer, a third passivation layer and a fourth passivation layer stacked in sequence, the first passivation layer includes a silicon oxide material, and the second passivation layer includes a first passivation layer Silicon oxynitride SiO x N y material, the third passivation layer includes silicon nitride Si m N n material, the fourth passivation layer includes a second silicon oxynitride SiO i N j material, the second passivation layer The passivation layer includes a first part close to the first passivation layer and a second part close to the third passivation layer, the nitrogen atom concentration of the first part is smaller than the nitrogen atom concentration of the second part; Passivated contact structures on the back surface of the substrate.
另外,在所述基底朝向所述第三钝化层的方向上,所述第二钝化层中不同区域的氮原子浓度递增。In addition, in the direction of the substrate toward the third passivation layer, the nitrogen atom concentration in different regions in the second passivation layer increases.
另外,所述第二钝化层中x/y∈[1.51,2.58],所述第二钝化层的第二折射率为1.60~1.71。In addition, in the second passivation layer x/y∈[1.51, 2.58], the second refractive index of the second passivation layer is 1.60˜1.71.
另外,在垂直于所述基底前表面的方向上,所述第二钝化层的厚度为1nm~25nm。In addition, in a direction perpendicular to the front surface of the substrate, the thickness of the second passivation layer is 1 nm˜25 nm.
另外,在所述基底朝向所述第四钝化层的方向上,所述第三钝化层中不同区域的氮原子浓度递增。In addition, in the direction of the substrate toward the fourth passivation layer, the nitrogen atom concentration in different regions in the third passivation layer increases.
另外,所述第三钝化层中m/n∈[3.12,5.41],所述第三钝化层的第三折射率为1.98~2.20。In addition, in the third passivation layer, m/n∈[3.12, 5.41], and the third refractive index of the third passivation layer is 1.98˜2.20.
另外,所述第四钝化层中i/j∈[1.98,8.47],所述第四钝化层的第四折射率为1.50~1.70。In addition, in the fourth passivation layer i/j∈[1.98, 8.47], the fourth refractive index of the fourth passivation layer is 1.50˜1.70.
相应地,本发明实施例还提供一种太阳能组件,包括上述任一项所述的太阳能电池。Correspondingly, an embodiment of the present invention further provides a solar module, including any one of the solar cells described above.
相应地,本发明实施例还提供一种太阳能电池的制作方法,包括:提供N型基底以及位于所述基底前表面的P型发射极;在所述基底前表面且在远离所述P型发射极的方向上形成依次堆叠的第一钝化层、第二钝化层、第三钝化层和第四钝化层,所述第一钝化层包括氧化硅材料,所述第二钝化层包括第一氮氧化硅SiOxNy材料,所述第三钝化层包括氮化硅SimNn材料,所述第四钝化层包括第二氮氧化硅SiOiNj材料,所述第二钝化层包括靠近所述第一钝化层的第一部分和靠近所述第三钝化层的第二部分,所述第一部分的氮原子浓度小于所述第二部分的氮原子浓度;在所述基底后表面形成钝化接触结构。Correspondingly, an embodiment of the present invention also provides a method for fabricating a solar cell, including: providing an N-type substrate and a P-type emitter on the front surface of the substrate; and on the front surface of the substrate and away from the P-type emitter A first passivation layer, a second passivation layer, a third passivation layer and a fourth passivation layer are sequentially stacked in the direction of the pole, the first passivation layer includes a silicon oxide material, and the second passivation layer is The layer includes a first silicon oxynitride SiOxNy material, the third passivation layer includes a silicon nitride SimNn material, and the fourth passivation layer includes a second silicon oxynitride SiOiNj material, so The second passivation layer includes a first part close to the first passivation layer and a second part close to the third passivation layer, and the nitrogen atom concentration of the first part is smaller than the nitrogen atom concentration of the second part ; A passivation contact structure is formed on the rear surface of the substrate.
另外,形成所述第二钝化层的工艺步骤包括:向反应腔室内通入硅烷、笑气以及氨气,并在第一脉冲功率作用下进行等离子体气相沉积工艺,形成包含氮氧化硅材料的第二钝化膜;其中,硅烷与笑气的流量比不小于1/10,第一脉冲功率为30~40mW/cm2;向所述反应腔室内通入氨气,并在第二脉冲功率作用下对所述第二钝化膜进行氮离子的离子注入工艺,形成所述第二钝化层;其中,第二脉冲功率为15~25mW/cm2,离子注入时间为300s~600s。In addition, the process step of forming the second passivation layer includes: feeding silane, nitrous oxide and ammonia gas into the reaction chamber, and performing a plasma vapor deposition process under the action of the first pulse power to form a material comprising silicon oxynitride The second passivation film; wherein, the flow ratio of silane and nitrous oxide is not less than 1/10, the first pulse power is 30 ~ 40mW/cm 2 ; ammonia gas is introduced into the reaction chamber, and in the second pulse An ion implantation process of nitrogen ions is performed on the second passivation film under the action of power to form the second passivation layer; wherein, the second pulse power is 15-25 mW/cm 2 , and the ion implantation time is 300s-600s.
与现有技术相比,本发明实施例提供的技术方案具有以下优点:Compared with the prior art, the technical solutions provided by the embodiments of the present invention have the following advantages:
上述技术方案中,第一部分具有较低的氮原子浓度,材料特性更接近第一钝化层中的氧化硅材料,第二部分具有较高的氮原子浓度,材料特性更接近第三钝化层中的氮化硅材料,如此,第二钝化层与相邻的第一钝化层和第三钝化层具有较好的晶格匹配效果和较低的界面缺陷密度,有利于降低膜层界面处的光损耗和提高光利用率;此外,采用折射率相对较低的氮氧化硅材料作为第四钝化层,有利于减小太阳能电池外层与封装材料之间的折射率之差,从而减少光反射和提高光利用率,提高太阳能电池的短路电流。In the above technical solution, the first part has a lower nitrogen atom concentration, and the material properties are closer to the silicon oxide material in the first passivation layer; the second part has a higher nitrogen atom concentration, and the material properties are closer to the third passivation layer. In this way, the second passivation layer and the adjacent first passivation layer and the third passivation layer have better lattice matching effect and lower interface defect density, which is beneficial to reduce the film layer In addition, the use of silicon oxynitride material with a relatively low refractive index as the fourth passivation layer is beneficial to reduce the refractive index difference between the outer layer of the solar cell and the packaging material, Thereby, light reflection is reduced, light utilization rate is improved, and the short-circuit current of the solar cell is improved.
另外,在基底朝向第四钝化层的方向上,第三钝化层中不同区域的氮原子浓度递增,第三钝化层不同区域的折射率递减,有利于提高光利用率。In addition, in the direction of the substrate toward the fourth passivation layer, the nitrogen atom concentration in different regions of the third passivation layer increases, and the refractive index in different regions of the third passivation layer decreases, which is beneficial to improve the light utilization rate.
附图说明Description of drawings
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,除非有特别申明,附图中的图不构成比例限制。One or more embodiments are exemplified by the pictures in the accompanying drawings, which do not constitute a scale limitation unless otherwise stated.
图1为本发明实施例提供的太阳能电池的结构示意图;1 is a schematic structural diagram of a solar cell provided by an embodiment of the present invention;
图2为图1所示太阳能电池的局部结构示意图;FIG. 2 is a schematic diagram of a partial structure of the solar cell shown in FIG. 1;
图3为本发明实施例提供的太阳能组件的外观示意图;3 is a schematic view of the appearance of a solar module provided by an embodiment of the present invention;
图4为本发明实施例提供的太阳能电池的反射率变化示意图;FIG. 4 is a schematic diagram of a change in reflectivity of a solar cell according to an embodiment of the present invention;
图5至图14为本发明实施例提供的太阳能电池的制作方法各步骤对应的结构示意图。5 to 14 are schematic structural diagrams corresponding to each step of the method for fabricating a solar cell according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。In order to make the objectives, technical solutions and advantages of the embodiments of the present invention clearer, each embodiment of the present invention will be described in detail below with reference to the accompanying drawings. However, those of ordinary skill in the art can appreciate that, in various embodiments of the present invention, many technical details are provided for the reader to better understand the present application. However, even without these technical details and various changes and modifications based on the following embodiments, the technical solutions claimed in the present application can be realized.
参考图1和图2,太阳能电池包括:N型基底100以及位于基底100前表面的P型发射极111;位于基底100前表面且在远离P型发射极111的方向上依次层叠的第一钝化层112、第二钝化层113、第三钝化层114以及第四钝化层115,第一钝化层112包括氧化硅材料,第二钝化层113包括第一氮氧化硅SiOxNy材料,第三钝化层114包括氮化硅SimNn材料,第四钝化层115包括第二氮氧化硅SiOiNj材料,第二钝化层113包括靠近第一钝化层112的第一部分113a和靠近第三钝化层114的第二部分113b,第一部分113a的氮原子浓度小于第二部分113b的氮原子浓度;位于基底100后表面的钝化接触结构125。Referring to FIGS. 1 and 2 , the solar cell includes: an N-
其中,第一部分113a与第一钝化层112接触,第二部分113b与第三钝化层114接触,在垂直于基底100前表面的方向上,第一部分113a和第二部分113b具有一定的深度。The
在一些实施例中,基底100为掺杂有N型离子(例如,磷等五主族元素)的硅基底,基底100前表面为基底100朝向阳光的表面,基底100后表面为基底100背离阳光的表面;P型发射极111位于基底100朝阳侧的至少部分表层空间内,P型发射极111掺杂有P型离子(例如,硼等三主族元素),P型发射极111与N型基底100形成PN结。In some embodiments, the
硅基底的材料包括单晶硅、多晶硅、非晶硅以及微晶硅,第一钝化层112中的氧化硅材料基于硅基底原位生成或者单独沉积形成,在垂直于基底100前表面的方向上,第一钝化层112的厚度为1~3nm,例如为1.5nm、2nm或2.5nm;在其他实施例中,基底的材料还可以为碳单质、有机材料以及多元化合物,多元化合物包括砷化镓、碲化镉、铜铟硒等。The material of the silicon substrate includes monocrystalline silicon, polycrystalline silicon, amorphous silicon and microcrystalline silicon. The silicon oxide material in the
在一些实施例中,在基底100朝向第三钝化层114的方向上,第二钝化层113中不同区域的氮原子浓度递增,换句话说,第二钝化层113中不同区域的第一氮氧化硅SiOxNy材料的x/y值逐渐递减。由于第一部分113a中氧原子占比相对较大,氮原子占比相对较小,因此第一部分113a的材料特性更为接近氧化硅;由于第二部分113b中氧原子占比相对较小,氮原子占比相对较大,因此第二部分113b的材料特性更为接近氮化硅。In some embodiments, in the direction of the
由于氧化硅材料的材料特性介于硅基底和第一氮氧化硅SiOxNy材料之间,设置第一钝化层112作为第二钝化层113与基底100的中间层,同时设置第一部分113a具有浓度较大的氧原子,有利于进一步提高第二钝化层113与基底100的匹配性,避免因膜层材料特性差异较大而形成缺陷密度较大的膜层间界面,保证基底100与第一钝化层112、第一钝化层112与第二钝化层113之间具有较优的晶格匹配特性,减少因界面缺陷产生光入射损耗和载流子传输损耗,提高光电转换效率。Since the material properties of the silicon oxide material are between those of the silicon substrate and the first silicon oxynitride SiOxNy material, the
相应地,设置第二部分113b具有浓度较大的氮原子,有利于使得第二钝化层113和第三钝化层114具有良好的晶格匹配效果,降低第二钝化层113与第三钝化层114之间的界面态缺陷密度,减少因界面缺陷产生太阳光入射损耗和载流子传输损耗,提高光电转换效率。Correspondingly, setting the
以x/y的值为第一比值,由于第二钝化层113中不同区域的第一比值的大小决定该区域的折射率大小,因此,基于第二钝化层113的第二折射率的需求,需要限定第二钝化层113中第一比值的范围。理论上,第一比值越大,即氮原子浓度越小,第一氮氧化硅材料的折射率越小,第一比值越小,即氮原子浓度越大,第一氮氧化硅材料的折射率越大。Taking the value of x/y as the first ratio, since the size of the first ratio of the different regions in the
在一些实施例中,通过调整第一比值的大小,使得第一氮氧化硅材料以及第二钝化层113具有相对较高的第二折射率。如此,在后续引入第四钝化层115时,可使得第二钝化层113的第二折射率大于第四钝化层115的第四折射率,或者与第四折射率相近,从而提高入射光线的利用效率和太阳能电池的光电转换效率;相应地,在保证入射光线利用效率的前提下,第四钝化层115的第四折射率具有相对较大的可选范围,即有利于扩大第四钝化层115的材料选用范围,以及提高第四钝化层115的第四折射率在一定范围内可调的灵活性,从而更好地适配太阳能电池的封装组件的折射率,使得第四钝化层115可进一步与封装组件的材料的折射率匹配,降低太阳能组件朝阳面的光反射,优化太阳能组件对不同波段太阳光的吸收性能,提升太阳能电池的短路电流和电池效率。In some embodiments, by adjusting the size of the first ratio, the first silicon oxynitride material and the
其中,第二钝化层113中第一比值为1.51~2.58,相应地,由第一比值确定的第二钝化层113的第二折射率为1.60~1.71。如此,既使得第二钝化层113与相邻膜层具有较好的晶格匹配,又使得第二钝化层113具有较高的入射光利用率,以及使得第四钝化层115具有折射率一定范围内可调的灵活性。Wherein, the first ratio in the
第二钝化层113的厚度与第二钝化层113的钝化效果和入射光利用率有关。具体地,第二钝化层113的厚度越薄,第二钝化层113施加于第一钝化层112的应力越小,第一钝化层112与第二钝化层113之间的界面态缺陷密度越低,第二钝化层113的钝化效果越好;同时,第二钝化层113的厚度越薄,第二钝化层113的陷光能力越弱,第二钝化层113的光损耗越低,太阳能电池的入射光利用率越高;第二钝化层113的厚度越厚,越容易调节第二钝化层113内不同区域的氮原子浓度,以提高与相邻膜层的晶格匹配性,降低光损耗。The thickness of the
其中,在垂直于N型基底100前表面的方向上,第二钝化层113的厚度可设置为1nm~25nm,例如为5nm、10nm、15nm或20nm。如此,有利于使得第二钝化层113具有较弱的陷光能力,以及使得第二钝化层113相对的表层具有差值较大的氮原子浓度,以提高与相邻膜层的晶格匹配特性。Wherein, in the direction perpendicular to the front surface of the N-
第三钝化层114由氮化硅SimNn材料组成,氮化硅SimNn材料中的氮化硅的硅原子的数量与氮原子的数量具有第二比值,通过调整第二比值的大小,可调整第三钝化层114的折射率大小。The
在一些实施例中,第二比值为3~5,具体为3.12~5.41,例如为3.72、4.32或4.92,相应地,第三钝化层114的第三折射率为1.98~2.20,例如为2.05、2.1或2.15。具有上述原子数量比的氮化硅具有较高的折射率,有利于减少光线的反射和出射,增强可见光的吸收,便于制备暗蓝色甚至黑色的太阳能电池,使其满足黑色组件的要求。In some embodiments, the second ratio is 3-5, specifically 3.12-5.41, such as 3.72, 4.32 or 4.92, and correspondingly, the third refractive index of the
需要说明的是,第二比值是在第一比值的基础上设定的,以使得在第二钝化层113表面电荷的影响下,第三钝化层114具有良好的氢钝化效果,且使得第三钝化层114的第三折射率大于第二钝化层113的第二折射率和第四钝化层115的第四折射率,保证第二钝化层113和第三钝化层114作为一个整体相对于第四钝化层115具有较高的折射率,从而减少光线的反射和出射,提升太阳能电池的光电转换效率。It should be noted that the second ratio is set on the basis of the first ratio, so that under the influence of the surface charge of the
第三钝化层114的厚度与第三钝化层114的氢钝化效果和成本有关,理论上厚度越厚,氢钝化效果越强,同时,厚度越厚,氢钝化效果的增强越慢;此外,厚度越厚,成本越高,且太阳能电池的封装尺寸越厚。The thickness of the
在一些实施例中,在垂直于N型基底100的方向上,第三钝化层114的厚度为40nm~60nm,例如为45nm、50nm或55nm。当第三钝化层114的厚度在40nm~60nm区间时,有利于保证第三钝化层114携带的正电荷数量满足界面氢钝化要求,降低载流子的表面复合速率;此外,有利于降低第三钝化层114的制造成本,减薄太阳能电池的封装尺寸。In some embodiments, in the direction perpendicular to the N-
需要说明的是,关于第三钝化层114的折射率以及厚度的限定属于对第三钝化层114的整体限定,实际上,第三钝化层114既可以是单层膜层,也可以是由依次层叠的多层膜层组成。具体来说,第三钝化层114可以由2~5层子膜层构成,在基底100朝向第三钝化层114的方向上,不同子膜层的氮原子浓度递增,折射率递减,每一子膜层的折射率都满足关于第三钝化层114的折射率的限定,如此,有利于进一步提高入射光的利用率。It should be noted that the limitation on the refractive index and thickness of the
第四钝化层115由第二氮氧化硅SiOiNj材料组成,第二氮氧化硅SiOiNj材料中的氧原子的数量与氮原子的数量具有第三比值,通过调整第三比值的大小,可调整第四钝化层115的折射率大小。The
在一些实施例中,第三比值为1.98~8.47,例如为2.5、5或6.5,第四钝化层115的第四折射率为1.50~1.70,例如为1.55、1.60或1.65。如此,有利于使得第四钝化层115的第四折射率小于或相近于第二钝化层113的第二折射率,从而提高入射光线的利用效率和太阳能电池的光电转换效率;此外,有利于使得第四钝化层115的第四折射率大于封装组件材料的折射率且小于第三钝化层114的第三折射率,避免因太阳能电池表层材料与封装组件材料折射率差异过大而导致的光线反射,增强光线的吸收,便于制备黑色或者暗蓝色太阳能组件。In some embodiments, the third ratio is 1.98˜8.47, such as 2.5, 5 or 6.5, and the fourth refractive index of the
封装组件材料通常为乙烯-醋酸乙烯酯(EVA)或聚烯烃(POE)等透明材料,该类材料的折射率一般处于1.40~1.50的范围内,与氮化硅材料的折射率差异较大,例如第三钝化层114的折射率为1.98~2.20,设置折射率处于中间值的第四钝化层115,有利于增强光线的吸收。相较于传统的氧化铝/氮化硅钝化减反射层,参考图3,封装后的太阳能组件在太阳光照射下呈现暗蓝色甚至黑色。The packaging component materials are usually transparent materials such as ethylene-vinyl acetate (EVA) or polyolefin (POE). For example, the refractive index of the
太阳能电池吸收光线的能力主要体现在第三钝化层114的折射率和厚度以及第四钝化层115的折射率和厚度上。由于第三钝化层114的折射率和厚度以及第四钝化层115的折射率已经确定,为进一步保证太阳能电池具有较高的吸光能力,可设置第四钝化层115的厚度为40nm~60nm,例如为45nm、50nm或55nm。The ability of the solar cell to absorb light is mainly reflected in the refractive index and thickness of the
上述实施例中,通过设置材料特性处于基底100和第二钝化层113之间的第一钝化层112、具有渐变氮原子浓度的第二钝化层113和第三钝化层114以及具有中间折射率的第四钝化层115,优化太阳能电池对不同波段的太阳光的入射和吸收,从而提高太阳能电池的短路电流和电池效率。参考图4,相对于现有氧化铝/氮化硅钝化减反射层,本申请提供的改进钝化叠层对近紫外的可见光波段、紫外光波段具有较低的反射率,例如,波长约为350nm的光线的反射率由20%左右下降至5%左右,下降了近4倍,进一步地,波长范围为350nm~1050nm的光线的平均反射率由2.1%~2.3%下降为1.4%~1.6%,改进的钝化叠层对光的利用率更高;进一步地,本发明提供的太阳能电池的短路电流Isc可提升30mA左右。In the above-mentioned embodiment, by setting the material properties of the
在一些实施例中,钝化接触结构125至少包括:在远离基底100的方向上依次设置的界面钝化层121和场钝化层122。其中,界面钝化层121的材料为电介质材料,用于实现基底100背面的界面钝化,例如,界面钝化层121为隧穿氧化层(比如,氧化硅层);场钝化层122的材料为实现场钝化效应的材料,比如掺杂硅层,掺杂硅层具体可以为掺杂多晶硅层、掺杂微晶硅层或掺杂非晶硅层的一种或多种。对于N型硅基底100,场钝化层122可以为N型掺杂多晶硅层。In some embodiments, the
在一些实施例中,在场钝化层122背离基底100的表面还设置有第五钝化层123。第五钝化层123的材料包括实现减反射功能的材料,例如氮化硅。其中,第五钝化层123可以是类似于第三钝化层114的多层子膜层,即在基底100朝向第五钝化层123的方向上,不同子膜层的折射率逐渐降低,每一子膜层受第五钝化层123的整体折射率的限制。In some embodiments, a
此外,太阳能电池还包括第一电极116和第二电极124,第一电极116与P型发射极111电连接,第二电极124贯穿第五钝化层123与场钝化层122电连接。在一些实施例中,第一电极116和/或所述第二电极124可以通过导电浆料(银浆、铝浆或者银铝浆)烧结印刷而成。In addition, the solar cell further includes a
在一些实施例中,第一部分具有较低的氮原子浓度,材料特性更接近第一钝化层中的氧化硅材料,第二部分具有较高的氮原子浓度,材料特性更接近第三钝化层中的氮化硅材料,如此,第二钝化层与相邻的第一钝化层和第三钝化层具有较好的晶格匹配效果和较低的界面缺陷密度,有利于降低太阳光的界面损耗和提高太阳光利用率;此外,采用折射率相对较低的氮氧化硅材料作为第四钝化层,有利于减小第四钝化层与封装材料之间的折射率之差,从而减小光反射和提高光利用率,提高太阳能电池的短路电流。In some embodiments, the first portion has a lower nitrogen atomic concentration and material properties closer to the silicon oxide material in the first passivation layer, and the second portion has a higher nitrogen atomic concentration and material properties closer to the third passivation layer The silicon nitride material in the layer, so that the second passivation layer and the adjacent first passivation layer and the third passivation layer have better lattice matching effect and lower interface defect density, which is beneficial to reduce solar energy. The interface loss of light and the improvement of the utilization rate of sunlight; in addition, the use of silicon oxynitride material with a relatively low refractive index as the fourth passivation layer is beneficial to reduce the refractive index difference between the fourth passivation layer and the packaging material , thereby reducing the light reflection and improving the light utilization rate, and improving the short-circuit current of the solar cell.
相应地,本发明实施例还提供一种太阳能组件,太阳能组件包括上述太阳能电池,太阳能电池具有P型发射极,且采用非氧化铝钝化体系,相较于N型发射极和氧化铝钝化体系的组合,本发明实施例提供的太阳能组件具有较低的光反射率和较低的光损耗,最终呈现较高的光电转换效率和较大的短路电流。Correspondingly, an embodiment of the present invention also provides a solar module, the solar module includes the above-mentioned solar cell, the solar cell has a P-type emitter, and adopts a non-alumina passivation system, compared with N-type emitter and alumina passivation With the combination of the systems, the solar modules provided by the embodiments of the present invention have lower light reflectivity and lower light loss, and finally exhibit higher photoelectric conversion efficiency and larger short-circuit current.
相应地,本发明实施例还提供一种太阳能电池的制作方法,可用于制作上述太阳能电池。Correspondingly, an embodiment of the present invention also provides a method for fabricating a solar cell, which can be used to fabricate the above-mentioned solar cell.
参考图5至图7,提供N型基底100并进行双面制绒,形成P型发射极111。Referring to FIGS. 5 to 7 , an N-
具体地,对N型基底100进行清洗,并采用湿法化学腐蚀的方式制备金字塔绒面,金字塔绒面可以降低基底100表面对光线的反射,从而增加基底100对光线的吸收利用率,提升太阳能电池的转换效率;此外,绒面制备可采用成熟的产线碱制绒工艺,形成45度正金字塔绒面。Specifically, the N-
在双面制绒之后,对基底100前表面进行硼扩散处理,形成P型发射极111,P型发射极111占据基底100朝阳侧的部分表层空间,P型发射极111与基底100构成PN结。After double-sided texturing, the front surface of the
需要说明的是,硼扩散处理还会同时在基底100前表面、后表面以及侧面生成不必要的硼硅玻璃,硼硅玻璃对基底100有一定的保护作用,可避免某些工艺制程对基底100表面造成损伤。换句话说,不必要的硼硅玻璃可作为基底100的掩膜层。It should be noted that the boron diffusion treatment will also generate unnecessary borosilicate glass on the front surface, the rear surface and the side surface of the
参考图8,对基底100后表面进行平坦化工艺(例如,抛光)。Referring to FIG. 8 , a planarization process (eg, polishing) is performed on the rear surface of the
后表面为太阳能电池背离阳光的一面,平坦化工艺可形成用于沉积后表面膜层所需的平坦表面。在进行平坦化工艺的过程中,后表面的硼硅玻璃被一并去除。The back surface is the side of the solar cell facing away from sunlight, and the planarization process can form the flat surface required for depositing the film layer on the back surface. During the planarization process, the borosilicate glass on the back surface is removed together.
参考图9和图10,形成界面钝化层121和场钝化层122,构成钝化接触结构。Referring to FIG. 9 and FIG. 10 , an
在一些实施例中,采用沉积工艺形成界面钝化层121,具体来说,界面钝化层121的材料包括氧化硅,沉积工艺包括化学气相沉积工艺;在其他实施例中,还可以采用原位生成工艺形成界面钝化层,具体来说,可以在硅基底的基础上,采用热氧化工艺以及硝酸钝化等工艺原位生成界面钝化层。In some embodiments, the
在一些实施例中,在形成界面钝化层121之后,沉积本征多晶硅以形成多晶硅层,并通过离子注入以及源扩散的方式掺杂磷离子,形成N型掺杂多晶硅层,掺杂多晶硅层作为场钝化层122。In some embodiments, after the
当采用沉积工艺形成界面钝化层121以及场钝化层122时,由于前表面有硼硅玻璃作为掩膜层对基底100前表面进行保护,因此,在进行沉积工艺时无需通过掩膜将沉积区域限定在后表面,后续可采用同一工艺同时去除前表面的硼酸玻璃以及沉积在前表面的氧化硅和多晶硅。如此,无需设置额外的掩膜,有利于减少工艺步骤,缩短工艺流程,降低工艺成本。When the deposition process is used to form the
在其他实施例中,当界面钝化层采用原位生成工艺形成时,沉积在基底前表面的硼硅玻璃表面的只有多晶硅。In other embodiments, when the interface passivation layer is formed by an in-situ generation process, only polysilicon is deposited on the surface of the borosilicate glass on the front surface of the substrate.
参考图11,在基底100前表面形成第一钝化层112。Referring to FIG. 11 , a
在一些实施例中,在形成第一钝化层112之前,需要去除绕镀在基底100前表面的多余的硼硅玻璃、氧化硅和多晶硅;在其他实施例中,在形成第一钝化层之前,需要去除绕镀在基底前表面的多余的硼硅玻璃和多晶硅。In some embodiments, before forming the
在一些实施例中,在去除多余材料之后,在450℃~500℃含氧气氛下氧化15min~30min,形成厚度为1nm~3nm的位于基底100前表面的超薄氧化硅层,以作为第一钝化层112;在其他实施例中,超薄氧化硅层的形成工艺还包括自然氧化、沉积工艺、臭氧氧化或硝酸钝化等方式。In some embodiments, after removing excess material, oxidation is performed at 450° C.˜500° C. in an oxygen-containing atmosphere for 15 min˜30 min to form an ultra-thin silicon oxide layer with a thickness of 1 nm˜3 nm on the front surface of the
参考图12,在第一钝化层112表面形成第二钝化层113。Referring to FIG. 12 , a
在一些实施例中,利用等离子体增强化学气相沉积工艺(PECVD)在第一钝化层112表面依次沉积第二钝化层113、第三钝化层114以及第四钝化层115。以管式PECVD为例,不同钝化层的沉积温度一般设置为450℃~500℃。In some embodiments, the
具体地,形成第二钝化层113的工艺步骤包括:向反应腔室内通入硅烷、笑气以及氨气,并在第一脉冲功率作用下进行等离子体气相沉积工艺,形成包含氮氧化硅材料的第二钝化膜;其中,硅烷与笑气的流量比不小于1/10,第一脉冲功率为30~40mW/cm2;向反应腔室内通入氨气,并在第二脉冲功率作用下对第二钝化膜进行氮离子的离子注入工艺,形成第二钝化层113;其中,第二脉冲功率为15~25mW/cm2,离子注入时间为300s~600s。需要说明的是,上述脉冲功率为单位面积脉冲功率。Specifically, the process steps of forming the
第二钝化层113包括靠近第一钝化层112的第一部分113a和背离第一钝化层112的第二部分113b,通过上述工艺,可使得第一部分113a中的氮原子浓度小于第二部分113b中的氮原子浓度,具体为,在基底100朝向第三钝化层114的方向上,第二钝化层113内不同区域的氮离子浓度升高,从而使得第二钝化层113与第一钝化层112和后续形成的第三钝化层具有较高的晶格匹配特性。The
参考图13,形成覆盖第二钝化层113表面的第三钝化层114。Referring to FIG. 13 , a
在一些实施例中,形成第三钝化层114的工艺步骤包括:向反应腔室内通入硅烷和氨气,并在第三脉冲功率作用下进行等离子体气相沉积工艺,形成包含氮化硅材料的第三钝化层114;其中,硅烷与氨气的流量比为1/10~1/5,第三脉冲功率为30~40mW/cm2。在垂直于基底100前表面的方向上,第三钝化层114的厚度为40nm~60nm,第三钝化层114的整体折射率为2.00~2.10,例如为2.25、2.5或2.75。In some embodiments, the process steps of forming the
在一些实施例中,形成第二钝化层113的工艺设备与形成第三钝化层114的工艺设备相同,无需引出额外的设备以形成氧化铝层,有利于降低硬件成本。In some embodiments, the process equipment for forming the
参考图14,形成覆盖第三钝化层114表面的第四钝化层115,在场钝化层122背离基底100的表面形成第五钝化层123。Referring to FIG. 14 , a
在一些实施例中,形成第四钝化层115的工艺步骤包括:向反应腔室内通入硅烷、笑气以及氨气,并在第四脉冲功率作用下进行等离子体气相沉积工艺,形成包含氮氧化硅材料的第四钝化层115;其中,硅烷与笑气的流量比不小于1/10,第四脉冲功率为25~40mW/cm2。在垂直于基底100前表面的方向上,第四钝化层115的厚度为40nm~60nm,第四钝化层115的整体折射率为1.50~1.70,例如为1.55、1.60或1.65。In some embodiments, the process steps of forming the
在一些实施例中,第五钝化层123可分为多层子膜层,例如2~4层膜层,在第五钝化层123朝向基底100的方向上,不同子膜层的折射率依次增加,如此,有利于提高太阳能电池的减反效果,使得太阳能电池后表面呈现全黑的效果。第五钝化层123的材料包括氮化硅。In some embodiments, the
参考图1,形成第一电极116以及第二电极124。Referring to FIG. 1, a
在形成第五钝化层123之后,进行金属化处理,具体包括丝网印刷工艺和高温烧结工艺,以形成与发射极111连接的第一电极116以及和场钝化层122连接的第二电极124。After the
在一些实施例中,第一部分具有较低的氮原子浓度,材料特性更接近第一钝化层中的氧化硅材料,第二部分具有较高的氮原子浓度,材料特性更接近第三钝化层中的氮化硅材料,如此,第二钝化层与相邻的第一钝化层和第三钝化层具有较好的晶格匹配效果和较低的界面缺陷密度,有利于降低太阳光的界面损耗和提高太阳光利用率;此外,采用折射率相对较低的氮氧化硅材料作为第四钝化层,有利于减小第四钝化层与封装材料之间的折射率之差,从而减小光反射和提高光利用率,提高太阳能电池的短路电流。In some embodiments, the first portion has a lower nitrogen atomic concentration and material properties closer to the silicon oxide material in the first passivation layer, and the second portion has a higher nitrogen atomic concentration and material properties closer to the third passivation layer The silicon nitride material in the layer, so that the second passivation layer and the adjacent first passivation layer and the third passivation layer have better lattice matching effect and lower interface defect density, which is beneficial to reduce solar energy. The interface loss of light and the improvement of the utilization rate of sunlight; in addition, the use of silicon oxynitride material with a relatively low refractive index as the fourth passivation layer is beneficial to reduce the refractive index difference between the fourth passivation layer and the packaging material , thereby reducing the light reflection and improving the light utilization rate, and improving the short-circuit current of the solar cell.
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各自更动与修改,因此本发明的保护范围应当以权利要求限定的范围为准。Those skilled in the art can understand that the above-mentioned embodiments are specific examples for realizing the present invention, and in practical applications, various changes in form and details can be made without departing from the spirit and the spirit of the present invention. scope. Any person skilled in the art can make respective changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110204237.1A CN115036374B (en) | 2021-02-23 | 2021-02-23 | Solar cell, manufacturing method thereof and photovoltaic module |
CN202311154777.9A CN117080277A (en) | 2021-02-23 | 2021-02-23 | Solar cell, manufacturing method thereof and photovoltaic module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110204237.1A CN115036374B (en) | 2021-02-23 | 2021-02-23 | Solar cell, manufacturing method thereof and photovoltaic module |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311154777.9A Division CN117080277A (en) | 2021-02-23 | 2021-02-23 | Solar cell, manufacturing method thereof and photovoltaic module |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115036374A true CN115036374A (en) | 2022-09-09 |
CN115036374B CN115036374B (en) | 2023-10-31 |
Family
ID=83118452
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311154777.9A Pending CN117080277A (en) | 2021-02-23 | 2021-02-23 | Solar cell, manufacturing method thereof and photovoltaic module |
CN202110204237.1A Active CN115036374B (en) | 2021-02-23 | 2021-02-23 | Solar cell, manufacturing method thereof and photovoltaic module |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311154777.9A Pending CN117080277A (en) | 2021-02-23 | 2021-02-23 | Solar cell, manufacturing method thereof and photovoltaic module |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN117080277A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243855A (en) * | 2010-05-20 | 2011-12-01 | Kyocera Corp | Solar cell element and method of manufacturing the same and solar cell module |
CN102751337A (en) * | 2012-07-31 | 2012-10-24 | 英利集团有限公司 | N type crystalline silicon solar battery and manufacturing method thereof |
CN104488118A (en) * | 2012-09-27 | 2015-04-01 | 东洋铝株式会社 | Conductive member, electrode, secondary battery, capacitor, method for producing conductive member, and method for producing electrode |
US20190181288A1 (en) * | 2016-11-07 | 2019-06-13 | Shin-Etsu Chemical Co., Ltd. | Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency |
CN110112243A (en) * | 2019-06-02 | 2019-08-09 | 苏州腾晖光伏技术有限公司 | Passivation structure on back of solar battery and preparation method thereof |
CN112201701A (en) * | 2020-09-30 | 2021-01-08 | 浙江晶科能源有限公司 | Solar cells and photovoltaic modules |
-
2021
- 2021-02-23 CN CN202311154777.9A patent/CN117080277A/en active Pending
- 2021-02-23 CN CN202110204237.1A patent/CN115036374B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243855A (en) * | 2010-05-20 | 2011-12-01 | Kyocera Corp | Solar cell element and method of manufacturing the same and solar cell module |
CN102751337A (en) * | 2012-07-31 | 2012-10-24 | 英利集团有限公司 | N type crystalline silicon solar battery and manufacturing method thereof |
CN104488118A (en) * | 2012-09-27 | 2015-04-01 | 东洋铝株式会社 | Conductive member, electrode, secondary battery, capacitor, method for producing conductive member, and method for producing electrode |
US20190181288A1 (en) * | 2016-11-07 | 2019-06-13 | Shin-Etsu Chemical Co., Ltd. | Solar cell with high photoelectric conversion efficiency and method for manufacturing solar cell with high photoelectric conversion efficiency |
CN110112243A (en) * | 2019-06-02 | 2019-08-09 | 苏州腾晖光伏技术有限公司 | Passivation structure on back of solar battery and preparation method thereof |
CN112201701A (en) * | 2020-09-30 | 2021-01-08 | 浙江晶科能源有限公司 | Solar cells and photovoltaic modules |
Also Published As
Publication number | Publication date |
---|---|
CN115036374B (en) | 2023-10-31 |
CN117080277A (en) | 2023-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115036375B (en) | Solar cell, manufacturing method thereof and solar module | |
CN115132851B (en) | Solar cell, manufacturing method thereof and photovoltaic module | |
CN115188833B (en) | Solar cell, manufacturing method thereof and photovoltaic module | |
CN115472701B (en) | Solar cells and photovoltaic modules | |
US20230420589A1 (en) | Solar cell, method for preparing same and solar cell module | |
CN218769547U (en) | Photovoltaic cells and photovoltaic modules | |
CN115172522B (en) | Solar cell, preparation method and photovoltaic module | |
CN115036374B (en) | Solar cell, manufacturing method thereof and photovoltaic module | |
CN115706173A (en) | Solar cell, preparation method thereof and photovoltaic module | |
CN115036388A (en) | Solar cell and manufacturing method thereof | |
CN116344680A (en) | Preparation method of heterojunction solar cell and heterojunction solar cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |