CN114993619A - A multi-optical axis zero-position consistency calibration mechanism for optoelectronic equipment - Google Patents
A multi-optical axis zero-position consistency calibration mechanism for optoelectronic equipment Download PDFInfo
- Publication number
- CN114993619A CN114993619A CN202210574786.2A CN202210574786A CN114993619A CN 114993619 A CN114993619 A CN 114993619A CN 202210574786 A CN202210574786 A CN 202210574786A CN 114993619 A CN114993619 A CN 114993619A
- Authority
- CN
- China
- Prior art keywords
- sliding sleeve
- rotating shaft
- locking
- optical axis
- locking member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005693 optoelectronics Effects 0.000 title claims description 28
- 230000003287 optical effect Effects 0.000 claims abstract description 26
- 238000000034 method Methods 0.000 description 10
- 239000002131 composite material Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0207—Details of measuring devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M11/00—Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
- G01M11/02—Testing optical properties
- G01M11/0207—Details of measuring devices
- G01M11/0214—Details of devices holding the object to be tested
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电设备技术领域,尤其涉及一种光电设备多光轴零位一致性标定机构。The invention relates to the technical field of optoelectronic devices, in particular to a multi-optical axis zero position consistency calibration mechanism for optoelectronic devices.
背景技术Background technique
随着科技发展,多传感器光电设备的应用发展越来越迅速,通过光电载荷协同其他设备形成的多传感器光电设备来实现对地对空对海等的观察和搜索活动,逐渐成为了航空航天航海观察搜索的主要方式。为了进一步提高设备的探测能力,光电设备的集成度越来越高,且目前国内外大多研究逐渐朝着红外中波、长波、可见光、激光测距等复合光电设备发展。为满足不同场合的需要,多传感器光电设备逐渐形成一种集多光谱、多传感器、多光路融合的综合光电系统。为了保证设备的功能实现和工程化,其装调除了要满足传统的焦面调试和可靠性的要求外,光轴一致性成为了复合光电设备装调与检测的重要环节,更是直接影响了系统的探测精度,只有确保各光轴在一定范围内是一致的,才能保证跟瞄及测距方向的一致性,确保输出目标物体运动参数信息的准确性。With the development of science and technology, the application of multi-sensor optoelectronic devices is developing more and more rapidly. The multi-sensor optoelectronic devices formed by optoelectronic loads in coordination with other devices can realize observation and search activities such as ground-to-air and sea-to-sea. It has gradually become an aerospace navigation device. Observe the main ways of searching. In order to further improve the detection capability of the device, the integration of optoelectronic devices is getting higher and higher, and most of the current research at home and abroad is gradually developing towards composite optoelectronic devices such as infrared mid-wave, long-wave, visible light, and laser ranging. In order to meet the needs of different occasions, multi-sensor optoelectronic devices have gradually formed a comprehensive optoelectronic system integrating multi-spectrum, multi-sensor, and multi-optical path fusion. In order to ensure the functional realization and engineering of the equipment, in addition to meeting the traditional focal plane debugging and reliability requirements, the optical axis consistency has become an important link in the installation and testing of composite optoelectronic equipment, and it directly affects the The detection accuracy of the system can only be ensured by ensuring that each optical axis is consistent within a certain range, in order to ensure the consistency of the aiming and ranging directions, and to ensure the accuracy of the output target object motion parameter information.
目前传统的调轴方法是使用目标模拟器提供不同波段的目标,以此作为光轴调试的基准,辅助伺服控制系统,保证目标模拟器出射的各个波段的光轴在设计层面上就是同一根光轴。但是现有的方法耗时耗力,需要多名专业人员协同配合,操作复杂,极大地增加了工作的复杂性与难度。At present, the traditional method of adjusting the axis is to use the target simulator to provide targets with different wavelength bands, as the benchmark for optical axis debugging, to assist the servo control system to ensure that the optical axis of each wavelength band emitted by the target simulator is the same light at the design level. axis. However, the existing method is time-consuming and labor-intensive, requires the cooperation of multiple professionals, and the operation is complicated, which greatly increases the complexity and difficulty of the work.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种光电设备多光轴零位一致性标定机构,用以提出一种结构简单,操作方便的零位一致性标定机构,解决多传感器光电设备的传统调轴方法耗时耗力、操作复杂的问题,。The embodiments of the present invention provide a multi-optical axis zero-position consistency calibration mechanism for optoelectronic equipment, which is used to propose a zero-position consistency calibration mechanism with a simple structure and convenient operation, so as to solve the time-consuming and time-consuming traditional axis adjustment method of multi-sensor optoelectronic equipment. power and complex problems.
本发明实施例提供一种光电设备多光轴零位一致性标定机构,包括:第一调节组件1、第二调节组件2以及固定组件3;The embodiment of the present invention provides a multi-optical axis zero position consistency calibration mechanism for optoelectronic equipment, including: a first adjustment component 1, a
所述固定组件3,包括定位筒31、转动轴32以及旋钮33,所述定位筒31的一端与光轴固定,其另一端设置有所述转动轴32,所述转动轴32上设置有所述旋钮33,调节所述旋钮33以移动和转动所述转动轴32;The
所述第一调节组件1连接于所述转动轴32的一侧,其包括第一滑套11、第一固定轴12以及第一锁紧件13,所述第一固定轴12的一端与所述转动轴32的一侧连接,所述第一滑套11可滑动套设在所述第一固定轴12上,所述第一滑套11周向设置有第二锁紧件,以基于所述第二锁紧件将所述第一滑套11固定在所述第一固定轴12上,所述第一锁紧件13可滑动连接于所述第一固定轴12的一端,滑动所述第一锁紧件13以调节所述第一滑套11的滑动位置并实现锁紧固定;The first adjusting assembly 1 is connected to one side of the rotating
所述第二调节组件2连接于所述转动轴32的另一侧,且所述第二调节组件2与所述第一调节组件1共轴,其包括第二滑套21、第二固定轴22以及第三锁紧件23,所述第二固定轴22的一端与所述转动轴32的另一侧连接,所述第二滑套21可滑动套设在所述第二固定轴22上,所述第二滑套21周向设置有第四锁紧件,以基于所述第四锁紧件将所述第二滑套21固定在所述第二固定轴22上,所述第三锁紧件23可滑动连接于所述第二固定轴22的一端,滑动所述第三锁紧件23以调节所述第二滑套21的滑动位置并实现锁紧固定。The
可选的,所述第二锁紧件为沿所述第一滑套11周向设置的锁紧螺钉;Optionally, the second locking member is a locking screw provided along the circumferential direction of the first sliding
所述第四锁紧件为沿所述第二滑套21周向设置的锁紧螺钉。The fourth locking member is a locking screw disposed along the circumferential direction of the second sliding
可选的,所述第一锁紧件13与所述第一固定轴12的一端螺纹配合连接;Optionally, the
所述第三锁紧件23与所述第二固定轴22的一端螺纹配合连接。The
可选的,所述第一锁紧件13的周向上设置有锁紧螺钉;Optionally, a locking screw is provided on the circumferential direction of the
所述第三锁紧件23的周向上设置有锁紧螺钉。A locking screw is provided on the circumferential direction of the
可选的,所述第二调节组件2与所述第一调节组件1共轴,且该共轴与所述定位筒31连接的光轴垂直。Optionally, the
可选的,所述第一固定轴12的一端与所述转动轴32的一侧可拆卸连接;Optionally, one end of the first fixed
所述第二固定轴22的一端与所述转动轴32的另一侧可拆卸连接。One end of the second fixed
本发明实施例的标定机构包括固定组件第一调节组件和第二调节组件,配合转动轴实现多传感器光电设备的零位一致性标定,本实施例的零位一致性标定机构结构简单,实用性强,操作方便,可调范围大。The calibration mechanism of the embodiment of the present invention includes a first adjustment component and a second adjustment component of the fixed component, and cooperates with the rotating shaft to realize the zero position consistency calibration of the multi-sensor photoelectric equipment. The zero position consistency calibration mechanism of this embodiment has a simple structure and is practical Strong, easy to operate, large adjustable range.
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。The above description is only an overview of the technical solutions of the present invention, in order to be able to understand the technical means of the present invention more clearly, it can be implemented according to the content of the description, and in order to make the above and other purposes, features and advantages of the present invention more obvious and easy to understand , the following specific embodiments of the present invention are given.
附图说明Description of drawings
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:Various other advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments. The drawings are for the purpose of illustrating preferred embodiments only and are not to be considered limiting of the invention. Also, the same components are denoted by the same reference numerals throughout the drawings. In the attached image:
图1为本申请实施例的多光轴零位一致性标定机构的基本结构示意图;1 is a schematic diagram of the basic structure of a multi-optical axis zero-position consistency calibration mechanism according to an embodiment of the application;
图2为本申请实施例的多光轴零位一致性标定机构的剖面示意图;2 is a schematic cross-sectional view of a multi-optical axis zero-position consistency calibration mechanism according to an embodiment of the application;
图3为本申请实施例的多光轴零位一致性标定机构的安装标定示例。FIG. 3 is an example of installation and calibration of the multi-optical axis zero-position consistency calibration mechanism according to an embodiment of the present application.
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。Exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. While exemplary embodiments of the present disclosure are shown in the drawings, it should be understood that the present disclosure may be embodied in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that the present disclosure will be more thoroughly understood, and will fully convey the scope of the present disclosure to those skilled in the art.
本发明实施例提供一种光电设备多光轴零位一致性标定机构,如图1、图2所示,包括:第一调节组件1、第二调节组件2以及固定组件3;An embodiment of the present invention provides a multi-optical axis zero-position consistency calibration mechanism for optoelectronic equipment, as shown in FIG. 1 and FIG.
所述固定组件3,包括定位筒31、转动轴32以及旋钮33,所述定位筒31的底端与光轴固定,其另一端(与底端相对的一端)设置有所述转动轴32,所述转动轴32上设置有所述旋钮33,调节所述旋钮33以移动和转动所述转动轴32。The
所述第一调节组件1连接于所述转动轴32的一侧,其包括第一滑套11、第一固定轴12以及第一锁紧件13,所述第一固定轴12的一端与所述转动轴32的一侧连接,所述第一滑套11可滑动套设在所述第一固定轴12上,所述第一滑套11周向设置有第二锁紧件,以基于所述第二锁紧件将所述第一滑套11固定在所述第一固定轴12上,所述第一锁紧件13可滑动连接于所述第一固定轴12的一端,滑动所述第一锁紧件13以调节所述第一滑套11的滑动位置并实现锁紧固定。本示例中,可以通过第一滑套11实现对应标定方向的粗调节,通过第一锁紧件13进一步可以对粗调节后的第一滑套11微调节。The first adjusting assembly 1 is connected to one side of the rotating
所述第二调节组件2连接于所述转动轴32的另一侧,且所述第二调节组件2与所述第一调节组件1共轴,其包括第二滑套21、第二固定轴22以及第三锁紧件23,所述第二固定轴22的一端与所述转动轴32的另一侧连接,所述第二滑套21可滑动套设在所述第二固定轴22上,所述第二滑套21周向设置有第四锁紧件,以基于所述第四锁紧件将所述第二滑套21固定在所述第二固定轴22上,所述第三锁紧件23可滑动连接于所述第二固定轴22的一端,滑动所述第三锁紧件23以调节所述第二滑套21的滑动位置并实现锁紧固定。本示例中,第二调节组件2的朝向与第一调节组件1的朝向相反,可以通过第二滑套21实现对应标定方向的粗调节,通过第三锁紧件23进一步可以对粗调节后的第二滑套21微调节。在一些实施例中,所述第二调节组件2与所述第一调节组件1共轴,且该共轴与所述定位筒31连接的光轴垂直。由此本实施例的调零机构尺寸可调范围大,可实现粗调与微调,能用于不同尺寸或规格的光电设备的调轴。The
本发明实施例的标定机构包括固定组件、第一调节组件和第二调节组件,配合转动轴实现多传感器光电设备的零位一致性标定,本实施例的零位一致性标定机构结构简单,实用性强,操作方便,可调范围大。The calibration mechanism of the embodiment of the present invention includes a fixed assembly, a first adjustment assembly and a second adjustment assembly, and cooperates with the rotating shaft to realize the zero position consistency calibration of the multi-sensor photoelectric equipment. The zero position consistency calibration mechanism of this embodiment has a simple structure and is practical Strong performance, convenient operation and large adjustable range.
在一些实施例中,所述第二锁紧件为沿所述第一滑套11周向设置的锁紧螺钉;所述第四锁紧件为沿所述第二滑套21周向设置的锁紧螺钉。具体的如图1所示,第一滑套11周向上可以设置三颗锁紧螺钉111,可以相互呈120°设置,类似的第二滑套21周向上可以设置三颗锁紧螺钉211,也可以相互呈120°设置。通过拧紧第一滑套11的锁紧螺钉111可以将第一滑套1固定在第一固定轴12上,第二滑套21的原理类似。In some embodiments, the second locking member is a locking screw disposed along the circumference of the first sliding
在一些实施例中,所述第一锁紧件13的周向上设置有锁紧螺钉;所述第三锁紧件23的周向上设置有锁紧螺钉。在一些实施例中,第一锁紧件13周向上设置有四颗锁紧螺钉131,可以相互呈90°设置。类似的,第三锁紧件23的周向上设置有四颗锁紧螺钉231,也可以相互呈90°设置。通过拧紧第一锁紧件13的锁紧螺钉131可以将第一锁紧件13固定在第一固定轴12的一端,第三锁紧件23的原理类似。In some embodiments, the first locking
在一些实施例中,所述第一锁紧件13与所述第一固定轴12的一端螺纹配合连接;所述第三锁紧件23与所述第二固定轴22的一端螺纹配合连接。具体的,通过螺纹配合实现微调第一滑套11以及第二滑套21。In some embodiments, the first locking
在一些实施例中,所述第一固定轴12的一端与所述转动轴32的一侧可拆卸连接,所述第二固定轴22的一端与所述转动轴32的另一侧可拆卸连接。具体的可以基于前述的螺纹配合方式可以实现可拆卸。In some embodiments, one end of the first fixed
图3示出了安装于某种多传感器光电设备上的多光轴一致性调零机构301的示意图。在本实施例中,定位筒31的底部安装在目标光电设备的光轴3上,保证了调零机构定位筒的轴线与第三光轴304的轴线同轴。目标光电设备具有设备外壳300,调零机构301设置在其内。第一光轴303安装在第三光轴304的左侧面,可以实现自转及随第三光轴304的公转;第二光轴302安装在固定设备上,只可实现自转。第一滑套11左端面抵住第一光轴303上的零件,第二滑套21的右端面抵住第二光轴302上的零件。通过旋转旋钮33实现转动轴32及第一调节组件1和第二调节组件2沿竖直方向(z方向)的转动与移动,同时通过调节第一滑套11及第一锁紧件13实现第一滑套11左端面与光轴1的粗调与微调,同时在锁紧螺钉111和锁紧螺钉131的作用下实现锁紧固定;通过调节第二滑套21及第三锁紧件23实现第二滑套21的右端面与第二光轴302的粗调与微调,同时在锁紧螺钉211和锁紧螺钉231的作用下实现锁紧固定。FIG. 3 shows a schematic diagram of a multi-optical axis consistent zero
由此最终实现光轴一致性调试与测量结果在5”以内,从而实现多传感器光电设备上光轴的机械标定。As a result, the optical axis consistency debugging and measurement results are finally within 5", so as to realize the mechanical calibration of the optical axis on the multi-sensor photoelectric device.
本申请实施例的多光轴零位一致性的标定机构通过第一调节组件1、第一调节组件2与固定组件3间的相互配合,能实现对不同尺寸和规格的光电设备的光轴调节,确保光轴的一致性。根据光电设备的尺寸调节标定机构的尺寸、间距与定位,从而达到适用于不同光电设备零位标定的目的。本实施例的标定机构具有结构新颖且合理,实用性强,可调范围大,且操作简单便捷,省时省力等优点。The multi-optical axis zero-position consistency calibration mechanism of the embodiment of the present application can realize the optical axis adjustment of optoelectronic devices of different sizes and specifications through the mutual cooperation between the first adjustment assembly 1 , the
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。It should be noted that, herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass non-exclusive inclusion, such that a process, method, article or device comprising a series of elements includes not only those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase "comprising a..." does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The above-mentioned serial numbers of the embodiments of the present invention are only for description, and do not represent the advantages or disadvantages of the embodiments.
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。The embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of the present invention, without departing from the scope of protection of the present invention and the claims, many forms can be made, which all belong to the protection of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210574786.2A CN114993619B (en) | 2022-05-25 | 2022-05-25 | A multi-axis zero position consistency calibration mechanism for optoelectronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210574786.2A CN114993619B (en) | 2022-05-25 | 2022-05-25 | A multi-axis zero position consistency calibration mechanism for optoelectronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114993619A true CN114993619A (en) | 2022-09-02 |
CN114993619B CN114993619B (en) | 2025-01-14 |
Family
ID=83030310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210574786.2A Active CN114993619B (en) | 2022-05-25 | 2022-05-25 | A multi-axis zero position consistency calibration mechanism for optoelectronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114993619B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011134122A1 (en) * | 2010-04-26 | 2011-11-03 | Liu Hao | Global tripod head |
CN103512728A (en) * | 2013-09-29 | 2014-01-15 | 四川九洲电器集团有限责任公司 | Total-range multi-optical-axis consistency calibration device and method |
CN111122129A (en) * | 2020-01-15 | 2020-05-08 | 深圳市罗博威视科技有限公司 | An optical axis calibration machine |
KR102240190B1 (en) * | 2019-11-29 | 2021-04-14 | 한국표준과학연구원 | System and method for measuring optical characteristics of VR/AR optical components |
CN113405777A (en) * | 2021-06-11 | 2021-09-17 | 北京亿舱科技有限公司 | Multi-optical-axis parallel adjusting device and multi-optical-axis parallel adjusting method |
-
2022
- 2022-05-25 CN CN202210574786.2A patent/CN114993619B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011134122A1 (en) * | 2010-04-26 | 2011-11-03 | Liu Hao | Global tripod head |
CN103512728A (en) * | 2013-09-29 | 2014-01-15 | 四川九洲电器集团有限责任公司 | Total-range multi-optical-axis consistency calibration device and method |
KR102240190B1 (en) * | 2019-11-29 | 2021-04-14 | 한국표준과학연구원 | System and method for measuring optical characteristics of VR/AR optical components |
CN111122129A (en) * | 2020-01-15 | 2020-05-08 | 深圳市罗博威视科技有限公司 | An optical axis calibration machine |
CN113405777A (en) * | 2021-06-11 | 2021-09-17 | 北京亿舱科技有限公司 | Multi-optical-axis parallel adjusting device and multi-optical-axis parallel adjusting method |
Non-Patent Citations (1)
Title |
---|
盖书国;: "一种多光轴光电装备光轴偏差实时测量方法及系统实现", 科技传播, no. 07, 10 April 2018 (2018-04-10) * |
Also Published As
Publication number | Publication date |
---|---|
CN114993619B (en) | 2025-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8870452B2 (en) | Optical system and focusing structure for infrared thermometer | |
CN101183026A (en) | Infrared temperature measurement online self-calibration device and method thereof | |
CN1687702A (en) | 2D photoelectric auto collimation equipment and measuring method based on dynamic differential compensation process | |
CN103226234A (en) | Method for adjusting optical axis of Pechan prism | |
CN104950420A (en) | System and method for calibrating optical axis of aspheric reflector | |
CN103852078A (en) | Device and method for measuring stray light protection angle of space optical attitude sensor | |
CN205300516U (en) | Rotating device for adjusting iris diaphragm and measuring mechanism of iris diaphragm | |
CN114993619A (en) | A multi-optical axis zero-position consistency calibration mechanism for optoelectronic equipment | |
CN103402114A (en) | Combined adjusting and butting method and mechanism for high-precision visible light imaging system | |
Deng et al. | Overview of AC servo control system for the large telescope | |
CN204790152U (en) | System for calibrating optical axis of aspheric reflector | |
CN103542790B (en) | System and method capable of realizing accurate measurement of off-axis quantity of off-axis reflector | |
Torres-Torriti et al. | The metrology system for the multi-object optical and near-infrared spectrograph MOONS | |
CN204301611U (en) | A kind of multi-mode seeker final assembly calibration device | |
Bin et al. | Study on computer-aided alignment method of Cassegrain system | |
Duan et al. | Research on reference fiber for closed-loop measurement of spectral survey telescope | |
CN101813521A (en) | MWIR/LWIR dual-band imaging spectrometer | |
Guo et al. | Alignment of a catadioptric infrared optical system | |
Gu et al. | A new method for measuring the position of the end of optical fibers for LAMOST | |
Zhang et al. | Application of high-precision matching about multisensor in fast stereo imaging | |
CN205156873U (en) | Portable pair of mesh measuring apparatu | |
Xie et al. | Design of large-diameter optical axis translation device | |
Yang et al. | Dispersion imaging spectrometer for detecting and locating energetic targets in real time | |
CN207280378U (en) | Portable groove measuring device | |
Liu et al. | Application and research of the accuracy calibration and detection instrument for installation of dual imaging module for aerial camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |