CN114983334A - A slit lamp self-adjustment control method and slit lamp based on machine vision - Google Patents
A slit lamp self-adjustment control method and slit lamp based on machine vision Download PDFInfo
- Publication number
- CN114983334A CN114983334A CN202210039862.XA CN202210039862A CN114983334A CN 114983334 A CN114983334 A CN 114983334A CN 202210039862 A CN202210039862 A CN 202210039862A CN 114983334 A CN114983334 A CN 114983334A
- Authority
- CN
- China
- Prior art keywords
- lesion
- area
- eye
- image
- slit lamp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000003902 lesion Effects 0.000 claims abstract description 170
- 201000010099 disease Diseases 0.000 claims abstract description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 18
- 238000001914 filtration Methods 0.000 claims abstract description 9
- 210000001747 pupil Anatomy 0.000 claims abstract description 7
- 208000030533 eye disease Diseases 0.000 claims description 32
- 238000005286 illumination Methods 0.000 claims description 27
- 239000011159 matrix material Substances 0.000 claims description 27
- 210000000744 eyelid Anatomy 0.000 claims description 6
- 208000013441 ocular lesion Diseases 0.000 claims description 3
- 238000013075 data extraction Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 4
- 238000003745 diagnosis Methods 0.000 abstract 1
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003709 image segmentation Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/13—Ophthalmic microscopes
- A61B3/135—Slit-lamp microscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0008—Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0075—Apparatus for testing the eyes; Instruments for examining the eyes provided with adjusting devices, e.g. operated by control lever
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Signal Processing (AREA)
- Eye Examination Apparatus (AREA)
Abstract
本发明提供了一种基于机器视觉的裂隙灯自调节控制方法,其包括步骤1)采用摄像装置进行眼部图像的采集;2)将所采集的眼部图像与数据库中的标准数据进行比对,确定眼部病灶区域,并将病灶区域进行标记;3)建立以瞳孔中心为坐标原点的二维坐标系,获取病灶区域的坐标;4)根据病灶区域的坐标生成操控数据,操控裂隙灯获取最佳的拍摄角度,根据被标记病灶区域的病灶图像判定眼部病灶类型,生成裂隙灯拍摄病灶时所需的滤光方式、投照光源的宽窄、照射角度的数据。本发明可以快速捕捉眼部病灶区域并对病灶类别进行识别,为裂隙灯的操作提供依据,保证裂隙灯成像效果以方便医生诊断疾病。The invention provides a slit lamp self-adjustment control method based on machine vision, which includes steps 1) using a camera to collect eye images; 2) comparing the collected eye images with standard data in a database , determine the eye lesion area, and mark the lesion area; 3) establish a two-dimensional coordinate system with the center of the pupil as the coordinate origin, and obtain the coordinates of the lesion area; 4) generate manipulation data according to the coordinates of the lesion area, and manipulate the slit lamp to obtain The optimal shooting angle determines the type of eye lesions according to the lesion image of the marked lesion area, and generates data on the filtering method, the width of the projection light source, and the irradiation angle required for the slit lamp to capture the lesion. The invention can quickly capture the eye lesion area and identify the lesion category, provide a basis for the operation of the slit lamp, ensure the imaging effect of the slit lamp, and facilitate the diagnosis of diseases by doctors.
Description
技术领域technical field
本发明涉及一种基于机器视觉的裂隙灯自调节控制方法和裂隙灯。The invention relates to a slit lamp self-adjustment control method and slit lamp based on machine vision.
背景技术Background technique
患有眼科疾病的患者,在进行眼科治疗时,需要对眼睛进行全方位的深入检查,以得到准确的分析,用最符合患者需求的方式对患者进行治疗,眼部检测中,最常用的是裂隙灯显微镜,裂隙灯显微镜由照明系统和双目显微镜组成,它不仅能使表浅的病变观察得十分清楚,而且可以调节焦点和光源宽窄,做成“光学切面”,使深部组织的病变也能清楚地显现,但是现有技术中,还存在以下问题:Patients with ophthalmic diseases need to conduct a comprehensive and in-depth examination of the eyes during ophthalmic treatment to obtain accurate analysis, and treat patients in the way that best meets the needs of the patient. Among the eye tests, the most commonly used is The slit lamp microscope consists of an illumination system and a binocular microscope. It can not only observe the superficial lesions very clearly, but also adjust the focus and the width of the light source to make an "optical section", so that the lesions in the deep tissue can also be observed. It can be clearly displayed, but in the prior art, there are still the following problems:
1)不能够辅助医生确定病灶位置和调整显微镜使裂隙灯对准病灶位置;1) It cannot assist the doctor to determine the location of the lesion and adjust the microscope so that the slit lamp is aligned with the location of the lesion;
2)对裂隙灯参数的调节需要手动调节,不能根据病灶区域图像判定病灶类型结合病灶图像对裂隙灯的参数进行调节。2) The adjustment of the slit lamp parameters requires manual adjustment, and the parameters of the slit lamp cannot be adjusted according to the image of the lesion area to determine the type of the lesion and the image of the lesion.
发明内容SUMMARY OF THE INVENTION
针对现有技术的缺陷,本发明提供了一种基于机器视觉的裂隙灯自调节控制方法和裂隙灯,可以快速捕捉眼部病灶区域并对病灶类别进行识别,为裂隙灯的操作提供依据,保证裂隙灯成像效果以方便医生诊断疾病。In view of the defects of the prior art, the present invention provides a slit lamp self-adjustment control method based on machine vision and a slit lamp, which can quickly capture the eye lesion area and identify the lesion type, provide a basis for the operation of the slit lamp, and ensure the Slit lamp imaging effects to facilitate doctors to diagnose diseases.
为了实现上述目的,本发明提供了一种基于机器视觉的裂隙灯自调节控制方法,其包括以下步骤:In order to achieve the above object, the present invention provides a machine vision-based slit lamp self-adjustment control method, which includes the following steps:
1)采用摄像装置进行眼部图像的采集;1) Using a camera to collect eye images;
2)将所采集的眼部图像与数据库中的标准数据进行比对,确定眼部病灶区域,并将病灶区域进行标记;2) Compare the collected eye image with the standard data in the database, determine the eye lesion area, and mark the lesion area;
3)建立以瞳孔中心为坐标原点的二维坐标系,获取病灶区域的坐标;3) Establish a two-dimensional coordinate system with the center of the pupil as the coordinate origin, and obtain the coordinates of the lesion area;
4)根据病灶区域的坐标生成操控数据,操控裂隙灯获取最佳的拍摄角度,根据被标记病灶区域的病灶图像判定眼部病灶类型,生成裂隙灯拍摄病灶时所需的滤光方式、投照光源的宽窄、照射角度的数据;4) Generate manipulation data according to the coordinates of the lesion area, control the slit lamp to obtain the best shooting angle, determine the type of eye lesion according to the lesion image of the marked lesion area, and generate the filter method and projection required for the slit lamp to photograph the lesion The data of the width and illumination angle of the light source;
其中判定被标记病灶区域的病灶图像的眼部病灶类型的过程为:The process of determining the ocular lesion type of the lesion image in the marked lesion area is as follows:
选取多种类型眼部疾病的眼部图像,通过算法提取每一病灶区域中病灶图像上的特定信息作为识别信息,进而生成能判定与每一类型眼部疾病的病灶图像所对应的判定矩阵P(P1,P2······Pn)并将其储存,其中P1表示一类疾病识别信息,P2表示第二类疾病识别信息,Pn表示第n类疾病识别信息,将被标记病灶区域的病灶图像与该判定矩阵进行一一比对以确定该被标记病灶区域的病灶图像所对应的的眼部疾病类型。Select eye images of various types of eye diseases, extract specific information on the lesion images in each lesion area as identification information through an algorithm, and then generate a judgment matrix P that can determine the lesion images corresponding to each type of eye disease (P1, P2... The lesion image is compared with the decision matrix one-to-one to determine the type of eye disease corresponding to the lesion image in the marked lesion area.
作为本发明的另一种具体实施方案,对步骤1)中所采集的眼部图像进行数据提取以将所采集的眼部图像分为眼部眼角图像、眼部瞳孔图像、眼部眼睑图像和眼皮部位图像。As another specific embodiment of the present invention, data extraction is performed on the eye image collected in step 1) to divide the collected eye image into canthus image, pupil image, eyelid image and Image of eyelid area.
作为本发明的另一种具体实施方案,在步骤2)中先对所采集的眼部图像进行二值化处理,预设对比阈值,对于灰度变化超过预设对比阈值的区域进行标记,作为病灶区域。As another specific embodiment of the present invention, in step 2), the collected eye image is first subjected to binarization processing, the contrast threshold is preset, and the area where the grayscale change exceeds the preset contrast threshold is marked as lesion area.
作为本发明的另一种具体实施方案,步骤4)中根据病灶区域的坐标生成操控数据的过程为:As another specific embodiment of the present invention, the process of generating manipulation data according to the coordinates of the lesion area in step 4) is:
根据所获取病灶区域的坐标建立病灶区域二维坐标集合f(x,y);Establish a two-dimensional coordinate set f(x, y) of the lesion area according to the acquired coordinates of the lesion area;
根据显微镜的位置和拍摄角度与病灶区域的关系建立坐标集合调整矩阵Si(Si1,Si2,Si3,Si4,i=1,2···n),其中Si1表示坐标区域,Si2表示显微镜调整X轴向坐标,Si3表示显微镜调整Y轴向坐标,Si4表示显微镜调整角度;A coordinate set adjustment matrix Si (Si1, Si2, Si3, Si4, i=1, 2...n) is established according to the relationship between the position and shooting angle of the microscope and the lesion area, where Si1 represents the coordinate area, and Si2 represents the microscope adjustment X axis To coordinate, Si3 represents the Y-axis coordinate of the microscope adjustment, Si4 represents the microscope adjustment angle;
判断病灶区域二维坐标集合f(x,y)所表示的区域是否存在于坐标区域Si1,如果存在则调用显微镜调整X轴向坐标Si2、调整Y轴向坐标Si3和显微镜调整角度Si4,提示显微镜位置应调整至X轴向坐标Si1、Y轴向坐标Si2,角度应调整至显微镜调整角度Si4。Determine whether the area represented by the two-dimensional coordinate set f(x, y) of the lesion area exists in the coordinate area Si1, and if so, call the microscope to adjust the X-axis coordinate Si2, the Y-axis coordinate Si3, and the microscope adjustment angle Si4, prompting the microscope The position should be adjusted to the X-axis coordinate Si1, the Y-axis coordinate Si2, and the angle should be adjusted to the microscope adjustment angle Si4.
作为本发明的另一种具体实施方案,步骤4)中病灶区域中病灶图像上的特定信息包括轮廓特征和色度特征。As another specific embodiment of the present invention, the specific information on the lesion image in the lesion area in step 4) includes contour features and chromaticity features.
作为本发明的另一种具体实施方案,步骤4)中根据被标记病灶区域的病灶图像判定眼部病灶类型时,将病灶图像分为病灶边缘区域和病灶中心区域,分别将病灶边缘区域、病灶中心区域的轮廓特征、色度特征与判定矩阵P内的第i(i=1,2···n)类疾病识别信息进行比较,记录吻合区域与不吻合区域,以确定病灶图像的吻合率Sz:As another specific embodiment of the present invention, in step 4), when judging the type of eye lesion according to the lesion image of the marked lesion area, the lesion image is divided into the lesion edge area and the lesion center area, and the lesion edge area and the lesion center area are respectively divided into The contour features and chromaticity features of the central area are compared with the i-th (i=1, 2...n) disease identification information in the judgment matrix P, and the matching area and the non-matching area are recorded to determine the matching rate of the lesion image. Sz:
其中S1表示病灶边缘区域轮廓特征吻合率,S2表示病灶中间区域轮廓特征吻合率,S3表示病灶边缘区域色度吻合率,S4表示病灶中心区域色度吻合率,α1为S1对Sz的权重参数,α2为S2对Sz的权重参数,α3为S3对Sz的权重参数,α4为S4对Sz的权重参数;Among them, S1 represents the contour feature matching rate of the edge area of the lesion, S2 represents the contour feature matching rate of the middle area of the lesion, S3 represents the chromaticity matching rate of the edge area of the lesion, S4 represents the chromaticity matching rate of the center area of the lesion, and α1 is the weight parameter of S1 to Sz, α2 is the weight parameter of S2 to Sz, α3 is the weight parameter of S3 to Sz, and α4 is the weight parameter of S4 to Sz;
将病灶图像的吻合率Sz和设定的眼部疾病图像吻合率参数S进行对比:Compare the matching rate Sz of the lesion image with the set matching rate parameter S of the eye disease image:
当Sz>S时,判定该眼部疾病图像与第i类疾病识别信息所表示的眼部疾病为同一眼部疾病;When Sz>S, it is determined that the eye disease image and the eye disease represented by the i-th disease identification information are the same eye disease;
当Sz≤S时,判定眼部疾病图像与第i类疾病识别信息所表示的眼部疾病为不同眼部疾病。When Sz≤S, it is determined that the eye disease image and the eye disease represented by the i-th disease identification information are different eye diseases.
作为本发明的另一种具体实施方案,步骤4)中生成裂隙灯拍摄病灶时所需的滤光方式、投照光源的宽窄、照射角度的数据的过程为:As another specific embodiment of the present invention, in step 4), the process of generating the data of the filter mode, the width of the projection light source, and the illumination angle required for imaging the lesion by the slit lamp is as follows:
基于眼部病灶类型与初始滤光方式、初始投照光源的宽窄和初始照射角度的关系建立控制矩阵Ki(Ki1,Ki2,Ki3,Ki4,i=1,2···n),其中Ki1表示眼部病灶类型,Ki2表示初始滤光方式,Ki3表示初始投照光源的宽窄,Ki4表示初始照射角度,当确定眼部病灶类型Ki1后,即可确定初始滤光方式、初始投照光源宽窄以及初始照射角度。A control matrix Ki (Ki1, Ki2, Ki3, Ki4, i=1, 2...n) is established based on the relationship between the type of eye lesions and the initial filtering method, the width of the initial illumination light source and the initial illumination angle, where Ki1 represents The type of eye lesions, Ki2 represents the initial filtering method, Ki3 represents the width of the initial illumination light source, and Ki4 represents the initial illumination angle. Initial illumination angle.
作为本发明的另一种具体实施方案,进一步包括步骤5)再次进行眼部图像的采集,基于再次采集的眼部图像的清晰度、色度对投照光源的宽窄和照射角度进行修正。As another specific embodiment of the present invention, it further includes step 5) collecting the eye image again, and correcting the width and illumination angle of the projection light source based on the clarity and chromaticity of the eye image collected again.
作为本发明的另一种具体实施方案,步骤1)中的摄像装置包括广角摄像头和红外摄像头。As another specific embodiment of the present invention, the camera device in step 1) includes a wide-angle camera and an infrared camera.
本发明同时提供了一种实现上述的基于机器视觉的裂隙灯自调节控制方法的裂隙灯。The present invention also provides a slit lamp for realizing the above-mentioned machine vision-based slit lamp self-adjustment control method.
本发明具备以下有益效果:The present invention has the following beneficial effects:
本发明通过摄像装置拍摄图像信息,便于捕捉眼部病灶区域,同时,计算出显微镜对准病灶区域时的移动坐标以及照射角度,便于医生快速查看病灶区域,并根据预设算法判定疾病类型,相应的根据疾病类型调整裂隙灯的滤光方式、投照光源宽窄以及照射角度获得较高的图像质量,方便医生快速对准和矫正裂隙灯,对准病灶区域。The invention captures image information through the camera device, which is convenient for capturing the eye lesion area, and at the same time, calculates the moving coordinates and irradiation angle when the microscope is aimed at the lesion area, so that the doctor can quickly check the lesion area, and determine the disease type according to the preset algorithm, and correspondingly The filter method of the slit lamp, the width of the projection light source and the irradiation angle are adjusted according to the type of disease to obtain higher image quality, which is convenient for doctors to quickly align and correct the slit lamp and target the lesion area.
此外本发明识别病灶区域后,根据病灶的类型对裂隙灯的操作数据进行相应调整,保证裂隙灯成像效果方便医生诊断疾病。In addition, after identifying the lesion area, the invention adjusts the operation data of the slit lamp correspondingly according to the type of the lesion, so as to ensure that the imaging effect of the slit lamp is convenient for doctors to diagnose diseases.
下面结合附图对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1是本发明的流程示意图;Fig. 1 is the schematic flow sheet of the present invention;
图2是本发明可使用的一种裂隙灯的结构示意图;Figure 2 is a schematic structural diagram of a slit lamp that can be used in the present invention;
图3是本发明通过广角摄像头所拍摄的照片;Fig. 3 is the photo that the present invention takes by wide-angle camera;
图4是本发明通过红外摄像头所拍摄的照片;Fig. 4 is the photo that the present invention takes through infrared camera;
图5是本发明显示出病灶区域的照片。Figure 5 is a photograph of the present invention showing a lesion area.
具体实施方式Detailed ways
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施方式对本发明进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。In order to understand the above objects, features and advantages of the present invention more clearly, the present invention will be further described in detail below with reference to the accompanying drawings and specific embodiments. It should be noted that the embodiments of the present application and the features in the embodiments may be combined with each other in the case of no conflict.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用其他不同于在此描述的其他方式来实施,因此,本发明的保护范围并不限于下面公开的具体实施例的限制。Many specific details are set forth in the following description to facilitate a full understanding of the present invention. However, the present invention can also be implemented in other ways different from those described herein. Therefore, the protection scope of the present invention is not limited to the specific details disclosed below. Example limitations.
实施例1Example 1
本实施例提供了一种基于机器视觉的裂隙灯自调节控制方法,如图1-2所示,裂隙灯具有照明系统和显微镜系统,本实施例对裂隙灯的具体结构不做限定,旨在对裂隙灯的多参数(照射角度、光源宽度、滤光方式等)进行控制以获得最佳的使用效果。This embodiment provides a machine vision-based self-adjustment control method for the slit lamp. As shown in Figures 1-2, the slit lamp has an illumination system and a microscope system. The specific structure of the slit lamp is not limited in this embodiment. Control the multi-parameters of the slit lamp (irradiation angle, light source width, filter method, etc.) to obtain the best use effect.
其包括以下步骤:It includes the following steps:
1)采用摄像装置进行眼部图像的采集;1) Using a camera to collect eye images;
其中摄像装置包括广角摄像头和红外摄像头,通过广角摄像头和红外摄像头对眼部图像进行采集,如图3-4所示(图3中的所要显示的色彩被灰度处理),其中广角摄像头与红外摄像头同时工作,广角摄像头接收可见光,判断可见光下易于观察到的病变,红外摄像头接收红外光,判断红外光下易于观察到的病变。The camera device includes a wide-angle camera and an infrared camera, and the eye image is collected by the wide-angle camera and the infrared camera, as shown in Figure 3-4 (the color to be displayed in Figure 3 is processed in grayscale), where the wide-angle camera and the infrared camera are used. The cameras work at the same time. The wide-angle camera receives visible light to determine lesions that are easy to observe under visible light, and the infrared camera receives infrared light to determine lesions that are easy to observe under infrared light.
2)将所采集的眼部图像与数据库中的标准数据进行比对确定眼部病灶区域,并将病灶区域进行标记;2) Compare the collected eye image with the standard data in the database to determine the eye lesion area, and mark the lesion area;
其中以健康眼部数据库为基准建立标准数据库,通过图像对比技术分析得到眼部病灶区域,如图5所示,其中框选区域即为观察到的疑似病变的病灶区域。The standard database is established based on the healthy eye database, and the eye lesion area is obtained through image comparison technology analysis, as shown in Figure 5, where the framed area is the observed lesion area of suspected lesions.
具体而言,在获取采集的眼部图像后,先对所采集的眼部图像进行二值化处理,并通过在处理器中预设对比阈值的方式进行确定病灶区域,具体是对于灰度变化超过预设对比阈值的区域进行标记,作为病灶区域。Specifically, after acquiring the collected eye image, first perform binarization processing on the collected eye image, and determine the lesion area by presetting a contrast threshold in the processor, specifically for grayscale changes The area exceeding the preset contrast threshold was marked as the lesion area.
3)建立以瞳孔中心为坐标原点的二维坐标系,获取病灶区域的坐标;3) Establish a two-dimensional coordinate system with the center of the pupil as the coordinate origin, and obtain the coordinates of the lesion area;
如图5所示,根据照片中疑似病灶所在的位置,可以获取病灶区域的(X,Y)坐标,同时根据广角摄像头和红外摄像头对同一部分拍摄到图像的位置差,可以判断病灶区域的(Z)坐标。As shown in Figure 5, according to the location of the suspected lesion in the photo, the (X, Y) coordinates of the lesion area can be obtained. At the same time, according to the position difference of the image captured by the wide-angle camera and the infrared camera on the same part, the (X, Y) coordinates of the lesion area can be determined. Z) coordinate.
4)根据病灶区域的坐标生成操控数据,操控裂隙灯获取最佳的拍摄角度,根据被标记病灶区域的病灶图像判定眼部病灶类型,生成裂隙灯拍摄病灶时所需的滤光方式、投照光源的宽窄、照射角度的数据;4) Generate manipulation data according to the coordinates of the lesion area, control the slit lamp to obtain the best shooting angle, determine the type of eye lesion according to the lesion image of the marked lesion area, and generate the filter method and projection required for the slit lamp to photograph the lesion The data of the width and illumination angle of the light source;
其中根据病灶区域的坐标生成操控数据的过程为:The process of generating manipulation data according to the coordinates of the lesion area is as follows:
根据所获取病灶区域的坐标建立病灶区域二维坐标集合f(x,y);Establish a two-dimensional coordinate set f(x, y) of the lesion area according to the acquired coordinates of the lesion area;
根据显微镜的位置和拍摄角度与病灶区域的关系建立坐标集合调整矩阵Si(Si1,Si2,Si3,Si4,i=1,2···n),其中Si1表示坐标区域,Si2表示显微镜调整X轴向坐标,Si3表示显微镜调整Y轴向坐标,Si4表示显微镜调整角度;A coordinate set adjustment matrix Si (Si1, Si2, Si3, Si4, i=1, 2...n) is established according to the relationship between the position and shooting angle of the microscope and the lesion area, where Si1 represents the coordinate area, and Si2 represents the microscope adjustment X axis To coordinate, Si3 represents the Y-axis coordinate of the microscope adjustment, Si4 represents the microscope adjustment angle;
判断病灶区域二维坐标集合f(x,y)所表示的区域是否存在于坐标区域Si1,如果存在则调用显微镜调整X轴向坐标Si2、调整Y轴向坐标Si3和显微镜调整角度Si4,提示显微镜位置应调整至X轴向坐标Si1、Y轴向坐标Si2,角度应调整至显微镜调整角度Si4。Determine whether the area represented by the two-dimensional coordinate set f(x, y) of the lesion area exists in the coordinate area Si1, and if so, call the microscope to adjust the X-axis coordinate Si2, the Y-axis coordinate Si3, and the microscope adjustment angle Si4, prompting the microscope The position should be adjusted to the X-axis coordinate Si1, the Y-axis coordinate Si2, and the angle should be adjusted to the microscope adjustment angle Si4.
也即是说,当获得病灶区域的坐标后,便可通过预设置在处理器中的相关数据(即矩阵Si),得到与该病灶区域的坐标一一对应的显微镜系统的X轴向坐标、Y轴向坐标和调整角度数据。That is to say, after the coordinates of the lesion area are obtained, the X-axis coordinates of the microscope system, which correspond to the coordinates of the lesion area one-to-one, and Y-axis coordinate and adjustment angle data.
其中判定被标记病灶区域的病灶图像的眼部病灶类型的过程为:The process of determining the ocular lesion type of the lesion image in the marked lesion area is as follows:
选取多种类型眼部疾病的眼部图像,通过Ai算法提取每一病灶区域中病灶图像上的特定信息作为识别信息,进而生成能判定与每一类型眼部疾病的病灶图像所对应的判定矩阵P(P1,P2······Pn)并将其储存,其中P1表示一类疾病识别信息,P2表示第二类疾病识别信息,Pn表示第n类疾病识别信息,将被标记病灶区域的病灶图像与该判定矩阵进行一一比对以确定该被标记病灶区域的病灶图像所对应的的眼部疾病类型。Select eye images of various types of eye diseases, extract specific information on the lesion image in each lesion area as identification information through the Ai algorithm, and then generate a judgment matrix that can determine the lesion image corresponding to each type of eye disease P(P1, P2... A one-to-one comparison is performed between the lesion image of the marked lesion area and the decision matrix to determine the type of eye disease corresponding to the lesion image of the marked lesion area.
具体的,生成判定矩阵P的过程可以为:Specifically, the process of generating the decision matrix P may be:
先选取一种类型眼部疾病的眼部病灶图片,通过Ai算法提取该眼部病灶图片中病灶区域的特性信息,生成能判定该种类型疾病的识别信息并储存;First select an eye lesion picture of a type of eye disease, extract the characteristic information of the lesion area in the eye lesion picture through the Ai algorithm, generate identification information that can determine this type of disease, and store it;
重复上述过程,生成多种类型病灶区域的识别信息,进而生成与多种眼部疾病的病灶图像所对应的判定矩阵P。The above process is repeated to generate identification information of various types of lesion areas, and then generate the decision matrix P corresponding to the lesion images of various eye diseases.
其中生成裂隙灯拍摄病灶时所需的滤光方式、投照光源的宽窄、照射角度的数据的过程为:The process of generating the data of the filter method, the width of the projection light source, and the illumination angle required for imaging the lesion by the slit lamp is as follows:
基于眼部病灶类型与初始滤光方式、初始投照光源的宽窄和初始照射角度的关系建立控制矩阵Ki(Ki1,Ki2,Ki3,Ki4,i=1,2···n),其中Ki1表示眼部病灶类型,Ki2表示初始滤光方式,Ki3表示初始投照光源的宽窄,Ki4表示初始照射角度,当确定眼部病灶类型Ki1后,即可确定初始滤光方式、初始投照光源宽窄以及初始照射角度。A control matrix Ki (Ki1, Ki2, Ki3, Ki4, i=1, 2...n) is established based on the relationship between the type of eye lesions and the initial filtering method, the width of the initial illumination light source and the initial illumination angle, where Ki1 represents The type of eye lesions, Ki2 represents the initial filtering method, Ki3 represents the width of the initial illumination light source, and Ki4 represents the initial illumination angle. Initial illumination angle.
例如当疾病被确定为第1类型疾病时,通过处理器即可确定初始滤光方式为K12,初始投照光源宽窄为K13,初始照射角度为K14;For example, when the disease is determined to be the first type of disease, the processor can determine that the initial filtering mode is K12, the initial light source width is K13, and the initial illumination angle is K14;
其中Ai算法的一种具体过程为:A specific process of the Ai algorithm is:
将Transformer和Unet整合为一个模型实现眼前段图像分割和病灶识别;其中,U-net的encoder模块使用了vision transformer来编码;Transformer将来自卷积神经网络(CNN)特征图的标记化图像块编码为提取全局上下文的输入序列;解码器对编码的特征进行上采样,然后将其与高分辨率的CNN特征图进行组合,实现精确定位。Transformer and Unet are integrated into a model to achieve image segmentation and lesion recognition in the anterior segment; among them, the encoder module of U-net uses vision transformer to encode; Transformer encodes the tokenized image blocks from the convolutional neural network (CNN) feature map To extract the input sequence of global context; the decoder upsamples the encoded features and combines them with high-resolution CNN feature maps for precise localization.
本实施例所采用的病灶区域中病灶图像上的特定信息是轮廓特征和色度特征,为了便于图像比对处理,将步骤1)中所采集的眼部图像进行数据提取并将采集的眼部图像分为眼部眼角图像、眼部瞳孔图像、眼部眼睑图像和眼皮部位图像,通过控制器对每一类的图像内的眼部病灶区域的图像信息进行数据处理,图像处理过程中的指向性更强。The specific information on the image of the lesion in the lesion area used in this embodiment is the contour feature and the chromaticity feature. In order to facilitate the image comparison processing, the eye image collected in step 1) The image is divided into canthus image, pupil image, eyelid image and eyelid part image. The controller performs data processing on the image information of the eye lesion area in each type of image, and the direction of the image processing process. Sex is stronger.
进一步的,步骤4)中根据被标记病灶区域的病灶图像判定眼部病灶类型时,将病灶图像分为病灶边缘区域和病灶中心区域,分别将病灶边缘区域、病灶中心区域的轮廓特征、色度特征与判定矩阵P内的第i(i=1,2···n)类疾病识别信息进行比较,记录吻合区域与不吻合区域,以确定病灶图像的吻合率Sz:Further, in step 4), when judging the type of eye lesion according to the lesion image of the marked lesion area, the lesion image is divided into the lesion edge area and the lesion center area, and the contour features and chromaticity of the lesion edge area and the lesion center area are respectively divided into. The features are compared with the i-th (i=1, 2...n) disease identification information in the judgment matrix P, and the matching area and the non-matching area are recorded to determine the matching rate Sz of the lesion image:
其中S1表示病灶边缘区域轮廓特征吻合率,S2表示病灶中间区域轮廓特征吻合率,S3表示病灶边缘区域色度吻合率,S4表示病灶中心区域色度吻合率,α1为S1对Sz的权重参数,α2为S2对Sz的权重参数,α3为S3对Sz的权重参数,α4为S4对Sz的权重参数;Among them, S1 represents the contour feature matching rate of the edge area of the lesion, S2 represents the contour feature matching rate of the middle area of the lesion, S3 represents the chromaticity matching rate of the edge area of the lesion, S4 represents the chromaticity matching rate of the center area of the lesion, and α1 is the weight parameter of S1 to Sz, α2 is the weight parameter of S2 to Sz, α3 is the weight parameter of S3 to Sz, and α4 is the weight parameter of S4 to Sz;
将病灶图像的吻合率Sz和设定的眼部疾病图像吻合率参数S进行对比:Compare the matching rate Sz of the lesion image with the set matching rate parameter S of the eye disease image:
当Sz>S时,判定该眼部疾病图像与第i类疾病识别信息所表示的眼部疾病为同一眼部疾病;When Sz>S, it is determined that the eye disease image and the eye disease represented by the i-th disease identification information are the same eye disease;
当Sz≤S时,判定眼部疾病图像与第i类疾病识别信息所表示的眼部疾病为不同眼部疾病。When Sz≤S, it is determined that the eye disease image and the eye disease represented by the i-th disease identification information are different eye diseases.
本实施例中在确定初始滤光方式、初始投照光源宽窄以及初始照射角度后,进一步包括:In this embodiment, after determining the initial filtering mode, the width of the initial projection light source, and the initial illumination angle, the method further includes:
步骤5):再次进行眼部图像的采集,基于再次采集的眼部图像的清晰度、色度对投照光源的宽窄和照射角度进行修正,一种具体的修正过程为:Step 5): The eye image is collected again, and the width and illumination angle of the projection light source are corrected based on the clarity and chromaticity of the eye image collected again. A specific correction process is:
建立亮度矩阵C0和光源宽窄调节参数矩阵D0;Establish a brightness matrix C0 and a light source width adjustment parameter matrix D0;
对于亮度矩阵C0,C0(C1,C2,C3,C4),其中C1为第一预设亮度参数,C2为第二预设亮度参数,C3为第三预设亮度参数,C4为第四预设亮度参数,各预设亮度参数按照顺序依次增大;For the brightness matrix C0, C0 (C1, C2, C3, C4), where C1 is the first preset brightness parameter, C2 is the second preset brightness parameter, C3 is the third preset brightness parameter, and C4 is the fourth preset brightness parameter Brightness parameter, each preset brightness parameter increases in sequence;
对于光源宽窄度调节参数矩阵D0,D0(D1,D2,D3,D4),其中D1为第一预设光源宽窄调节参数,D2为第二预设光源宽窄调节参数,D3为第三预设光源宽窄调节参数,D4为第四预设光源宽窄调节参数;For the light source width adjustment parameter matrix D0, D0 (D1, D2, D3, D4), D1 is the first preset light source width adjustment parameter, D2 is the second preset light source width adjustment parameter, D3 is the third preset light source Width adjustment parameter, D4 is the fourth preset light source width adjustment parameter;
通过处理器检测眼部图像第i区域(第i区域可以是任意区域,操作中确实大部分情况是指病灶区域或者疑似有病灶的区域)的亮度Ci并将Ci与C0矩阵内参数做对比:The processor detects the brightness Ci of the ith area of the eye image (the ith area can be any area, in most cases, it refers to the lesion area or the area suspected of having lesions) and compares Ci with the parameters in the C0 matrix:
当Ci≤C1时,判定第i区域亮度不足并从D0矩阵中选取D1作为光源宽窄调节参数;When Ci≤C1, it is determined that the brightness of the i-th area is insufficient and D1 is selected from the D0 matrix as the light source width adjustment parameter;
当C1<Ci≤C2时,判定第i区域亮度不足并从D0矩阵中选取D2作为光源宽窄调节参数;When C1<Ci≤C2, it is determined that the brightness of the i-th area is insufficient and D2 is selected from the D0 matrix as the light source width adjustment parameter;
当C2<Ci≤C3时,判定第i区域亮度处于标准状态;When C2<Ci≤C3, it is determined that the brightness of the i-th area is in a standard state;
当C3<Ci≤C4时,判定第i区域亮度过高并从D0矩阵中选取D3作为光源宽窄调节参数;When C3<Ci≤C4, it is determined that the brightness of the i-th area is too high and D3 is selected from the D0 matrix as the light source width adjustment parameter;
当Ci>C4时,判定亮度第i区域过高并从D0矩阵中选取D4作为光源宽窄调节参数;When Ci>C4, it is determined that the ith region of brightness is too high and D4 is selected from the D0 matrix as the light source width adjustment parameter;
当判定第i区域亮度不处于标准状态时(标准状态即为C2<Ci≤C3的状态),将第i区域光源宽窄调节至Ci’;When it is determined that the brightness of the ith area is not in the standard state (the standard state is the state of C2<Ci≤C3), adjust the width of the light source in the ith area to Ci';
当判定第i区域光源宽窄不足时,Ci’=Ci+(C3-Ci)×Dj,j=1,2;When it is determined that the width of the light source in the i-th area is insufficient, Ci'=Ci+(C3-Ci)×Dj, j=1, 2;
当判定第i区域光源宽窄过高时,Ci’=Ci-(Ci-C2)×Dr,r=3,4;When it is determined that the width of the light source in the i-th area is too high, Ci'=Ci-(Ci-C2)×Dr, r=3,4;
当将第i区域光源宽窄调节至Ci’时,将Ci’与C0矩阵内参数做对比:When the width of the light source in the i-th area is adjusted to Ci', compare Ci' with the parameters in the C0 matrix:
当C2<Ci’≤C3时,判定第i区域亮度处于标准状态;When C2<Ci'≤C3, it is determined that the brightness of the i-th area is in a standard state;
当Ci’不在C2~C3时,重复上述操作,直至C2<Ci’≤C3。When Ci' is not in C2 to C3, repeat the above operation until C2<Ci'≤C3.
虽然本发明以较佳实施例揭露如上,但并非用以限定本发明实施的范围。任何本领域的普通技术人员,在不脱离本发明的发明范围内,当可作些许的改进,即凡是依照本发明所做的同等改进,应为本发明的范围所涵盖。Although the present invention is disclosed above with preferred embodiments, it is not intended to limit the scope of implementation of the present invention. Any person of ordinary skill in the art can make some improvements without departing from the scope of the present invention, that is, all equivalent improvements made according to the present invention should be covered by the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210039862.XA CN114983334B (en) | 2022-01-13 | 2022-01-13 | A slit lamp self-adjustment control method based on machine vision and slit lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210039862.XA CN114983334B (en) | 2022-01-13 | 2022-01-13 | A slit lamp self-adjustment control method based on machine vision and slit lamp |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114983334A true CN114983334A (en) | 2022-09-02 |
CN114983334B CN114983334B (en) | 2024-12-10 |
Family
ID=83023372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210039862.XA Active CN114983334B (en) | 2022-01-13 | 2022-01-13 | A slit lamp self-adjustment control method based on machine vision and slit lamp |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114983334B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116862906A (en) * | 2023-08-24 | 2023-10-10 | 武汉大学人民医院(湖北省人民医院) | Eye detection device and method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150371383A1 (en) * | 2013-01-04 | 2015-12-24 | Quantel Medical, Inc. | System and apparatus for providing ophthalmic images for diagnosis and treatment |
CN109767395A (en) * | 2018-12-29 | 2019-05-17 | 深圳市资福医疗技术有限公司 | A kind of capsule endoscope image processing method and device |
CN111984617A (en) * | 2020-08-20 | 2020-11-24 | 深圳市网绘科技有限公司 | Internet-based quality tracing method for picture retrieval and associated accessories |
CN112401829A (en) * | 2020-11-26 | 2021-02-26 | 温州眼视光国际创新中心 | Remote intelligent control system of slit lamp |
WO2021049341A1 (en) * | 2019-09-10 | 2021-03-18 | 株式会社トプコン | Slit lamp microscope, ophthalmic information processing device, ophthalmic system, method for controlling slit lamp microscope, program, and recording medium |
-
2022
- 2022-01-13 CN CN202210039862.XA patent/CN114983334B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150371383A1 (en) * | 2013-01-04 | 2015-12-24 | Quantel Medical, Inc. | System and apparatus for providing ophthalmic images for diagnosis and treatment |
CN109767395A (en) * | 2018-12-29 | 2019-05-17 | 深圳市资福医疗技术有限公司 | A kind of capsule endoscope image processing method and device |
WO2021049341A1 (en) * | 2019-09-10 | 2021-03-18 | 株式会社トプコン | Slit lamp microscope, ophthalmic information processing device, ophthalmic system, method for controlling slit lamp microscope, program, and recording medium |
CN111984617A (en) * | 2020-08-20 | 2020-11-24 | 深圳市网绘科技有限公司 | Internet-based quality tracing method for picture retrieval and associated accessories |
CN112401829A (en) * | 2020-11-26 | 2021-02-26 | 温州眼视光国际创新中心 | Remote intelligent control system of slit lamp |
Non-Patent Citations (1)
Title |
---|
李丽华;常勇强;: "裂隙灯的检查方法", 中国眼镜科技杂志, no. 05, 15 May 2013 (2013-05-15) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116862906A (en) * | 2023-08-24 | 2023-10-10 | 武汉大学人民医院(湖北省人民医院) | Eye detection device and method |
CN116862906B (en) * | 2023-08-24 | 2023-12-12 | 武汉大学人民医院(湖北省人民医院) | Eye detection device and method |
Also Published As
Publication number | Publication date |
---|---|
CN114983334B (en) | 2024-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7523684B2 (en) | Fundus camera and fully automatic fundus image capturing method | |
WO2020259209A1 (en) | Fundus image recognition method, apparatus and device, and storage medium | |
CN104203081B (en) | Method for combining a plurality of eye images into a multi-focus full-light image | |
CN110146974B (en) | Intelligent biological microscope | |
US20190110716A1 (en) | Method and apparatus for jaundice diagnosis based on an image | |
US10165939B2 (en) | Ophthalmologic apparatus and ophthalmologic apparatus control method | |
KR102267509B1 (en) | The method for measuring microcirculation in cochlea and the apparatus thereof | |
CN110215186A (en) | One kind being automatically aligned to positioning fundus camera and its working method | |
CN114983334A (en) | A slit lamp self-adjustment control method and slit lamp based on machine vision | |
US20230000344A1 (en) | Ophthalmology inspection device and pupil tracking method | |
KR101992016B1 (en) | fundus fluorescence image acquisition apparatus with optical source and focus automatic control function, and method thereof | |
KR102267162B1 (en) | Eye tracking system for mild cognitive impairment | |
Jagadale et al. | Early detection and categorization of cataract using slit-lamp images by hough circular transform | |
JP7430082B2 (en) | Ophthalmological equipment and its operating method | |
CN111358424B (en) | Fundus imaging brightness adjusting method and fundus camera | |
CN113658243B (en) | Fundus three-dimensional model establishing method, fundus camera apparatus, and storage medium | |
CN216352422U (en) | Multi-modal image acquisition device | |
TWI416433B (en) | Method of detecting red eye image and apparatus thereof | |
KR101348939B1 (en) | retinal camera | |
CN112220448B (en) | Fundus camera and fundus image synthesis method | |
CN213046833U (en) | Fundus camera | |
CN112669357A (en) | Fundus image synthesis method and fundus imager | |
WO2024084753A1 (en) | Eye observation device | |
US20170154418A1 (en) | Method of Labeling Invisible Fluorescence by Visible Light with Self-Correction | |
CN116437848A (en) | Ophthalmic observation device, ophthalmic image processing method, program, and recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |