CN114914475A - Electric pile heat management method of proton membrane fuel cell - Google Patents
Electric pile heat management method of proton membrane fuel cell Download PDFInfo
- Publication number
- CN114914475A CN114914475A CN202210739265.8A CN202210739265A CN114914475A CN 114914475 A CN114914475 A CN 114914475A CN 202210739265 A CN202210739265 A CN 202210739265A CN 114914475 A CN114914475 A CN 114914475A
- Authority
- CN
- China
- Prior art keywords
- stack
- liquid
- thermal management
- temperature
- phase change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007726 management method Methods 0.000 title claims abstract description 53
- 239000012528 membrane Substances 0.000 title claims abstract description 32
- 239000000446 fuel Substances 0.000 title claims abstract description 29
- 230000008859 change Effects 0.000 claims abstract description 51
- 239000007788 liquid Substances 0.000 claims description 55
- 239000012071 phase Substances 0.000 claims description 31
- 239000007791 liquid phase Substances 0.000 claims description 23
- 238000001914 filtration Methods 0.000 claims description 4
- 239000011810 insulating material Substances 0.000 claims description 3
- 230000005611 electricity Effects 0.000 claims 1
- 239000012530 fluid Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04067—Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04701—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本发明涉及质子膜燃料电池,具体涉及一种质子膜燃料电池的电堆热管理方法。The invention relates to a proton membrane fuel cell, in particular to a stack thermal management method for the proton membrane fuel cell.
背景技术Background technique
质子交换膜燃料电池是一种燃料电池的电堆,作为一种真正的绿色环保能源 ,其极高的理论比能量(对氢-空气体系而言,其理论比能量高达32940WhP kg ,远远大于现有其它任何一种化学电源)被认为是未来交通工具、 分布式电站及各类电子产品等最主要的供能电源之一。质子交换膜燃料电池的电堆对温度和含水量要求高,交换膜的工作温度为70~90℃,超过此温度会使其含水量急剧降低,导电性迅速下降。Proton exchange membrane fuel cell is a fuel cell stack, as a real green energy, its extremely high theoretical specific energy (for the hydrogen-air system, its theoretical specific energy is as high as 32940WhP kg, which is much larger than Existing any other chemical power source) is considered to be one of the most important energy sources for future vehicles, distributed power stations and various electronic products. The stack of the proton exchange membrane fuel cell has high requirements on temperature and water content. The working temperature of the exchange membrane is 70 to 90 ° C. If the temperature exceeds this temperature, the water content will drop sharply, and the electrical conductivity will drop rapidly.
发明内容SUMMARY OF THE INVENTION
针对现有技术中的问题,本发明提供一种质子膜燃料电池的电堆热管理方法,目的在于使质子交换膜燃料电池中交换膜的工作温度保持在70~90℃。In view of the problems in the prior art, the present invention provides a stack thermal management method for a proton membrane fuel cell, which aims to keep the working temperature of the exchange membrane in the proton exchange membrane fuel cell at 70-90°C.
一种质子膜燃料电池的电堆热管理方法,包括电堆热管理系统,所述电堆热管理系统包括设置于电堆内的电堆相变冷板,所述电堆相变冷板内设置有独立的若干个流道,在每个所述流道的进液口上均设置有电磁流量阀,在每个所述流道的出液口上均设置有第一温压传感器,所述流道的出液口均与气液分离器相连通,所述气液分离器下部的出液口依次经流量计、过滤器、机械泵、第二温压传感器后与每个所述电磁流量阀均相连通,在所述机械泵和过滤器之间的管路上设置有膨胀罐,在该管路上和膨胀罐上设置有加热器,所述气液分离器的出气口经冷凝器后与所述过滤器的进液口相连通;A stack thermal management method for a proton membrane fuel cell, comprising a stack thermal management system, the stack thermal management system comprising a stack phase change cold plate arranged in the stack, and the stack phase change cold plate is There are several independent flow channels, an electromagnetic flow valve is arranged on the liquid inlet of each of the flow channels, and a first temperature and pressure sensor is arranged on the liquid outlet of each of the flow channels. The liquid outlets of the channel are all connected with the gas-liquid separator, and the liquid outlet at the lower part of the gas-liquid separator is connected to each of the electromagnetic flow valves through a flow meter, a filter, a mechanical pump, and a second temperature and pressure sensor in turn. are connected, an expansion tank is arranged on the pipeline between the mechanical pump and the filter, a heater is arranged on the pipeline and the expansion tank, and the air outlet of the gas-liquid separator is connected to the The liquid inlet of the filter is communicated;
所述电堆热管理方法包括在所述电堆热管理系统中充注液气相变工质并使充注量达到最佳充注量;所述电堆热管理系统工作时,控制加热器并使电堆热管理系统内液气相变工质的压力达到0.4 MPa ~0.405MPa后,通过加热器、机械泵和电磁流量阀使所述第一温压传感器和第二温压传感器的温度值保持在70℃~71℃,并使流量计的流量值保持在机械泵输出流量值的20%~30%。The stack thermal management method includes charging liquid-phase change working medium in the stack thermal management system and making the charging amount reach an optimum charging amount; when the stack thermal management system is working, controlling the heater and After the pressure of the liquid-phase changeable working medium in the stack thermal management system reaches 0.4 MPa ~ 0.405 MPa, the temperature values of the first temperature and pressure sensor and the second temperature and pressure sensor are maintained through the heater, mechanical pump and electromagnetic flow valve. At 70℃~71℃, keep the flow value of the flowmeter at 20%~30% of the output flow value of the mechanical pump.
进一步:所述最佳充注量为,使电堆相变冷板处于55℃的工况环境内,在电堆热管理系统内充注液气相变工质,并使初始量的液气相变工质在电堆热管理系统循环流动,并在所述第一温压传感器之间的温差稳定后再向电堆热管理系统内加注液气相变工质,直至所述第一温压传感器之间的温差小于A时停止向电堆热管理系统内加注液气相变工质,所述A的取值在0.1℃~1℃之间。Further: the optimal charging amount is to make the stack phase change cold plate in the working condition environment of 55 ℃, fill the liquid-phase change working medium in the stack thermal management system, and make the initial amount of liquid-phase change The working medium circulates in the stack thermal management system, and after the temperature difference between the first temperature and pressure sensors is stable, the liquid-gas phase change working medium is injected into the stack thermal management system until the first temperature and pressure sensor When the temperature difference between them is less than A, stop filling the liquid-phase change working medium into the stack thermal management system, and the value of A is between 0.1°C and 1°C.
为避免液气相变工质泄露后导致质子膜燃料电池短路,进一步:所述液气相变工质为绝缘材料。In order to avoid the short circuit of the proton membrane fuel cell caused by the leakage of the liquid-gas phase change working medium, further: the liquid-phase change working medium is an insulating material.
进一步:所述液气相变工质为R134a,或者为R113,或者为R11,或者为R407c,或者为R410A。Further: the liquid-gas phase change working substance is R134a, or R113, or R11, or R407c, or R410A.
由于液体工质经过循环后会含有金属杂质,为避免这些杂质影响机械泵的寿命,进一步:所述过滤器的过滤精度小于60um。Since the liquid working medium will contain metal impurities after circulation, in order to avoid these impurities affecting the life of the mechanical pump, further: the filtration accuracy of the filter is less than 60um.
为避免机械泵进液口处的液压较大而损坏机械泵,进一步:在所述机械泵的进液口和出液口之间安装有安全阀。In order to avoid damage to the mechanical pump due to the high hydraulic pressure at the liquid inlet of the mechanical pump, further: a safety valve is installed between the liquid inlet and the liquid outlet of the mechanical pump.
为提高冷凝器的换热效率,进一步:在所述冷凝器的换热扁管内设置有毛细结构,在实际工作中,液体工质在毛细结构内流动,气体工质在换热扁管内的大空间流动,两相流液体实现了在工作状态下的的气液分离,避免了气体与液体在与外界换热时相互干扰,显著提高了换热效率。In order to improve the heat exchange efficiency of the condenser, further: a capillary structure is arranged in the heat exchange flat tube of the condenser. In actual work, the liquid working medium flows in the capillary structure, and the gas working medium is large in the heat exchange flat tube. Space flow, two-phase flow liquid realizes gas-liquid separation in working state, avoids mutual interference between gas and liquid when exchanging heat with the outside world, and significantly improves heat exchange efficiency.
为提高电堆相变冷板的换热效率,进一步:所述流道内为毛细结构。In order to improve the heat exchange efficiency of the stack phase change cold plate, further: the inside of the flow channel is a capillary structure.
进一步:所述毛细结构由微槽道或烧结丝网或烧结芯形成。Further: the capillary structure is formed by microchannels or sintered wire mesh or sintered core.
本发明的有益效果:电堆相变冷板内部液气相变工质温度相同,所有冷板表面温度一致高,使质子交换膜燃料电池中交换膜的工作温度保持在70~90℃,从而使电池保持在理想的温度条件下工作;通过液气相变工质配合具有毛细结构的电堆相变冷板,保证电堆在运行过程中的温度均匀性,提高了质子交换膜燃料电池的电堆的冷却效果,提高质子交换膜燃料电池的电堆热容量和使用寿命。The beneficial effects of the present invention: the temperature of the liquid and gas phase change working medium inside the stack phase change cold plate is the same, and the surface temperature of all the cold plates is uniformly high, so that the working temperature of the exchange membrane in the proton exchange membrane fuel cell is maintained at 70-90°C, so that the The battery is kept working under ideal temperature conditions; the liquid-phase change working medium is combined with the stack phase change cold plate with capillary structure to ensure the temperature uniformity of the stack during operation and improve the stack of the proton exchange membrane fuel cell. The cooling effect is improved, and the stack heat capacity and service life of the proton exchange membrane fuel cell are improved.
附图说明Description of drawings
图1为本发明的系统结构图。FIG. 1 is a system structure diagram of the present invention.
图中,1、机械泵;2、安全阀;3、第二温压传感器;4、电磁流量阀;5、电堆相变冷板;6、第一温压传感器;7、控制器;8、气液分离器;10、冷凝器;11、过滤器;12、注液阀;13、膨胀罐;14、加热器;15、流量计。In the figure, 1, mechanical pump; 2, safety valve; 3, second temperature and pressure sensor; 4, electromagnetic flow valve; 5, stack phase change cold plate; 6, first temperature and pressure sensor; 7, controller; 8 , gas-liquid separator; 10, condenser; 11, filter; 12, liquid injection valve; 13, expansion tank; 14, heater; 15, flow meter.
具体实施方式Detailed ways
下面结合附图对本发明做详细说明。下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。本发明实例中的左、中、右、上、下等方位用语,仅是互为相对概念或是以产品的正常使用状态为参考的,而不应该认为是具有限制性的。The present invention will be described in detail below with reference to the accompanying drawings. The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present invention, but not to be construed as a limitation of the present invention. Orientation terms such as left, middle, right, upper and lower in the examples of the present invention are only relative concepts to each other or refer to the normal use state of the product, and should not be regarded as limiting.
一种质子膜燃料电池的电堆热管理方法,包括电堆热管理系统,所述电堆热管理系统包括设置于电堆内的电堆相变冷板5,所述电堆相变冷板5内设置有独立的若干个流道,所述流道内为毛细结构,在每个所述流道的进液口上均设置有电磁流量阀4,在每个所述流道的出液口上均设置有第一温压传感器6,所述流道的出液口均与气液分离器8相连通,所述气液分离器8下部的出液口依次经流量计15、过滤器11、机械泵1、第二温压传感器3后与每个所述电磁流量阀4均相连通,在所述机械泵1和过滤器11之间的管路上设置有膨胀罐13,所述膨胀罐13内充注有饱和状态的液气相变工质,并在该管路上和膨胀罐13上设置有加热器14,所述气液分离器8的出气口经冷凝器10后与所述过滤器11的进液口相连通。膨胀罐13内为饱和状态的气态和液态工质,膨胀罐13用于控制、调节电堆热管理系统内液气相变工质的工作温度和压力,加热膨胀罐13中的气态和液态工质,液气相变工质受热后,电堆热管理系统内液气相变工质的饱和温度、压力升高,即液态工质相变为气态,气态工质压力升高,液态工质压力也升高;其中,所述过滤器11的过滤精度小于60um。在所述机械泵1的进液口和出液口之间安装有安全阀2。在所述冷凝器10的换热扁管内设置有毛细结构,所述毛细结构由微槽道或烧结丝网或烧结芯形成;A stack thermal management method for a proton membrane fuel cell, comprising a stack thermal management system, the stack thermal management system comprising a stack phase change cold plate 5 arranged in the stack, the stack phase change cold plate 5 is provided with several independent flow channels, the inside of the flow channel is a capillary structure, an
电堆热管理方法包括在所述电堆热管理系统中充注液气相变工质并使充注量达到最佳充注量,通过膨胀罐13的注液阀12向电堆热管理系统内充注液气相变工质;所述电堆热管理系统工作时,控制加热器并使电堆热管理系统内液气相变工质的压力达到0.4MPa ~0.405MPa后,通过加热器14、机械泵1和电磁流量阀4使所述第一温压传感器6和第二温压传感器3的温度值保持在70℃~71℃,并使流量计15的流量值保持在机械泵1输出流量值的20%~30%,流量过大,则说明系统裕度太大,不经济;流量过小,会带来一定的散热风险,极端情况下可能会造成电堆温度过高;液态工质进入电堆相变冷板5中吸收电堆运行时产生的热量,70~80%左右的液气相变工质吸热相变为气液混合物,从而保证质子膜燃料电池的电堆在运行过程中处于工作温度70~90℃,保证质子膜燃料电池的电堆在运行过程中的温度均匀性,提高了质子膜燃料电池的电堆的冷却效果,提高质子膜燃料电池的电堆热容量和使用寿命。通过冷凝器和加热器,来保证电堆热管理系统的工作温度、压力的稳定。The stack thermal management method includes filling the liquid-gas phase change working medium in the stack thermal management system and making the charging amount reach the optimum charging amount, and injecting the liquid into the stack thermal management system through the liquid injection valve 12 of the expansion tank 13 Fill the liquid-phase change working medium; when the stack thermal management system is working, control the heater and make the pressure of the liquid-gas change working medium in the stack heat management system reach 0.4MPa ~ 0.405MPa, then pass the
总结:当相变压力与相伴温度同步变化,当相变压力超出一定范围,压力偏高时,电堆工作温度偏高,稳定性较差。当压力偏低时,电堆工作温度性较好,但成本偏高,可实施性较差。Summary: When the phase transition pressure changes synchronously with the accompanying temperature, when the phase transition pressure exceeds a certain range and the pressure is high, the working temperature of the stack is high and the stability is poor. When the pressure is low, the working temperature of the stack is good, but the cost is high and the implementability is poor.
所述最佳充注量为,使电堆相变冷板处于55℃的工况环境内,在电堆热管理系统内充注液气相变工质,并使初始量的液气相变工质在电堆热管理系统循环流动,并在所述第一温压传感器6之间的温差稳定后再向电堆热管理系统内加注液气相变工质,直至所述第一温压传感器6之间的温差小于A时停止向电堆热管理系统内加注液气相变工质,所述A的取值在0.1℃~1℃之间。电堆相变冷板5内部工质温度相同,电堆相变冷板5表面温度几乎一致,保证了电池在比较理想的温度条件下工作,此时的充注量为最佳充注量,在55℃下工作时,工质温差能保持在极小的范围内,这样不会有充注过多带来的浪费,也不会有充注过少造成的电堆工作温度偏高,能保证系统安全稳定的运行。所述液气相变工质为绝缘材料,所述液气相变工质为R134a,或者为R113,或者为R11,或者为R407c,或者为R410A,机械泵1为液气相变工质提供驱动力,使液气相变工质在电堆热管理系统内的其它部件中流动,液气相变工质经电堆相变冷板5吸热后相变为两相气液混合工质,两相气液混合工质进入气液分离器8,液体工质被分离出来进入过滤器11,气态工质进入冷凝器10被环境大气冷却成液体工质后进入过滤器11,经冷凝器10后产生的液体工质和经气液分离器8分离出来的液体工质汇合后进入过滤器11中进行过滤,使得流体洁净度高于60μm,而后回到机械泵1中,由此完成一个循环。The optimal charging amount is to make the stack phase change cold plate in the working condition environment of 55 ° C, to charge the liquid-phase change working medium in the stack thermal management system, and to make the initial amount of the liquid-phase change working medium. The stack thermal management system is circulated, and after the temperature difference between the first temperature and pressure sensors 6 is stable, the liquid-phase change working medium is injected into the stack thermal management system until the first temperature and pressure sensor 6 When the temperature difference between them is less than A, stop filling the liquid-phase change working medium into the stack thermal management system, and the value of A is between 0.1°C and 1°C. The temperature of the working medium inside the stack phase change cold plate 5 is the same, and the surface temperature of the stack phase change cold plate 5 is almost the same, which ensures that the battery works under ideal temperature conditions. The charging amount at this time is the optimal charging amount. When working at 55°C, the temperature difference of the working fluid can be kept within a very small range, so that there will be no waste caused by too much charging, and there will be no high working temperature of the stack caused by too little charging. Ensure the safe and stable operation of the system. The liquid-phase change working medium is an insulating material, and the liquid-phase changing working medium is R134a, or R113, or R11, or R407c, or R410A, and the mechanical pump 1 provides the driving force for the liquid-phase changing working medium, The liquid-phase change working medium flows in other components in the thermal management system of the stack, and the liquid-phase working medium absorbs heat through the stack phase change cold plate 5 and then changes into a two-phase gas-liquid mixed working medium, and the two-phase gas-liquid The mixed working medium enters the gas-
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The foregoing has shown and described the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments, and the descriptions in the above-mentioned embodiments and the description are only to illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210739265.8A CN114914475B (en) | 2022-06-28 | 2022-06-28 | Electric pile heat management method for proton film fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210739265.8A CN114914475B (en) | 2022-06-28 | 2022-06-28 | Electric pile heat management method for proton film fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114914475A true CN114914475A (en) | 2022-08-16 |
CN114914475B CN114914475B (en) | 2024-02-27 |
Family
ID=82772299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210739265.8A Active CN114914475B (en) | 2022-06-28 | 2022-06-28 | Electric pile heat management method for proton film fuel cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114914475B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007324071A (en) * | 2006-06-05 | 2007-12-13 | Toyota Motor Corp | Fuel cell system |
CN104934619A (en) * | 2015-04-30 | 2015-09-23 | 西南交通大学 | Thermal management system of water-cooling proton exchange membrane fuel cell and control method of thermal management system |
CN206875753U (en) * | 2017-05-15 | 2018-01-12 | 武汉地质资源环境工业技术研究院有限公司 | Hydrogen Energy and the heat pump of solar energy complementation |
US20180183080A1 (en) * | 2016-12-26 | 2018-06-28 | Denso Corporation | Fuel cell cooling system |
CN109167087A (en) * | 2018-09-17 | 2019-01-08 | 新乡市特美特热控技术股份有限公司 | Fuel cell air management system |
-
2022
- 2022-06-28 CN CN202210739265.8A patent/CN114914475B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007324071A (en) * | 2006-06-05 | 2007-12-13 | Toyota Motor Corp | Fuel cell system |
CN104934619A (en) * | 2015-04-30 | 2015-09-23 | 西南交通大学 | Thermal management system of water-cooling proton exchange membrane fuel cell and control method of thermal management system |
US20180183080A1 (en) * | 2016-12-26 | 2018-06-28 | Denso Corporation | Fuel cell cooling system |
CN206875753U (en) * | 2017-05-15 | 2018-01-12 | 武汉地质资源环境工业技术研究院有限公司 | Hydrogen Energy and the heat pump of solar energy complementation |
CN109167087A (en) * | 2018-09-17 | 2019-01-08 | 新乡市特美特热控技术股份有限公司 | Fuel cell air management system |
Non-Patent Citations (2)
Title |
---|
刘永峰等: "进气温度对质子交换膜燃料电池性能影响的试验研究", 北京建筑大学学报, vol. 32, no. 02, pages 46 - 50 * |
肖合林等: "燃料电池发动机系统计算分析", 武汉理工大学学报, vol. 26, no. 05, pages 64 - 67 * |
Also Published As
Publication number | Publication date |
---|---|
CN114914475B (en) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4099171B2 (en) | Cooling system for fuel cell stack | |
CN109149012B (en) | Temperature control system based on magnetic refrigeration technology, electric vehicle battery pack thermal management system and method | |
CN106602105B (en) | proton exchange membrane fuel cell thermal management system | |
CN108461777B (en) | Heat treatment system for fuel cell stack | |
CN108123152B (en) | Fuel cell power generation system using liquid oxygen as oxidant | |
CN102306815A (en) | Liquid flow cell system | |
CN101083329A (en) | Minisize highly-effective thermal self-circulation cooling system for fuel cell | |
CN112864490A (en) | Bubbling type power battery thermal management system based on refrigerant gas-liquid two-phase heat exchange | |
CN219716981U (en) | Liquid cooling energy storage system | |
CN108232247A (en) | A kind of high-temperature fuel cell system and its operation method | |
CN111902986B (en) | Heat dissipation system for electrochemical climate control system | |
CN114914475B (en) | Electric pile heat management method for proton film fuel cell | |
CN207530048U (en) | Fuel cell cooling system and vehicle | |
CN216084962U (en) | Temperature control system of fuel cell test bench | |
US12055324B2 (en) | Heat pump unit | |
CN203432079U (en) | High-water temperature heat pump unit | |
CN112676549A (en) | Control system of high-temperature die temperature machine special for die casting | |
CN105841534A (en) | Anti-gravity loop heat pipe integrated with electrofluid power micropump and method | |
CN219062516U (en) | Flow distribution valve block and cooling circulation system | |
CN220021289U (en) | Heat exchange device, battery thermal management system and vehicle | |
CN114991249B (en) | Thermal management control method for electric excavator | |
CN115217525B (en) | Hydrogen electrical coupling system and control method based on isothermal compression and expansion of hydrogen | |
CN116404203B (en) | Electrolyte storage tank with heat exchange function | |
CN222027173U (en) | A core liquid kettle device for preparing hollow fiber membrane | |
CN203869361U (en) | High-water-temperature hot water machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A thermal management method for proton membrane fuel cell stack Granted publication date: 20240227 Pledgee: Xinxiang branch of Bank of China Ltd. Pledgor: XINXIANG TEMEITE THERMAL CONTROL TECHNOLOGY CO.,LTD. Registration number: Y2024980053671 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |