CN114890797A - 一种氮化硅陶瓷基片的制备方法 - Google Patents
一种氮化硅陶瓷基片的制备方法 Download PDFInfo
- Publication number
- CN114890797A CN114890797A CN202210437896.4A CN202210437896A CN114890797A CN 114890797 A CN114890797 A CN 114890797A CN 202210437896 A CN202210437896 A CN 202210437896A CN 114890797 A CN114890797 A CN 114890797A
- Authority
- CN
- China
- Prior art keywords
- silicon nitride
- raw material
- powder
- material powder
- sintering aid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/587—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
- C04B35/591—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/638—Removal thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/46—Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/608—Green bodies or pre-forms with well-defined density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/61—Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种氮化硅陶瓷基片的制备方法,包括:(1)将氮化硅粉、硅粉中至少一种的原料粉体、烧结助剂加入到含有分散剂的溶剂中并进行球磨混合,然后加入粘结剂和塑性剂,继续球磨混合,再经真空脱泡,得到混合浆料;所述粘结剂为聚碳酸亚丙酯,加入量为原料粉体和烧结助剂总质量的1~20 wt%;(2)使用流延成型设备将所得混合浆料制成生瓷片;(3)将多个生瓷片经切割和叠层后得到所需厚度的氮化硅素坯;(4)将所得氮化硅素坯进行脱粘和气压烧结,得到所述氮化硅陶瓷基片。
Description
技术领域
本发明涉及一种氮化硅陶瓷基片的制备方法,属于陶瓷的制备工艺和应用领域。
背景技术
电子器件高集成化和微小型化的发展趋势,使其功率越来越高,器件工作温度也逐渐上升,一旦超过芯片的安全工作温度,会引起芯片的热失效和应力损坏,从而降低电子器件的使用寿命。为能够及时传输器件工作产生的热量,需要选用散热效果良好的基板材料。
陶瓷类常用基板材料有氧化铝、氧化铍和氮化铝。氧化铝陶瓷以成本低和工艺成熟的优点被广泛应用,但其热导率和机械性能均不高,无法满足散热要求和器件可靠性要求;氧化铍陶瓷热导率较高,能够有效散热,但是其原料具有毒性,在工业上无法被广泛应用;氮化铝陶瓷的热导率高达170~240W/(m·K),在散热方面具有突出优势,但其力学性能较差,容易因热冲击而开裂,应用前景也因此受限。氮化硅陶瓷是一种高热且高机械性能的结构陶瓷,其热导率优于氧化铝陶瓷,机械性能比氧化铝陶瓷和氮化铝陶瓷更具有优越性,因此,是一种理想的散热基板替代材料。
氮化硅陶瓷基板成型方法主要有两种:一种是干压成型,该法制备的氮化硅陶瓷基板较厚,需要进一步切割成所需厚度的基板,增加了成本;另一种是流延成型,厚度易控制,且适合大规模生产,成本也较低。相比于干压成型,流延成型更具有优越性。
氮化硅流延成型工艺相对成熟,一般采用的是有机流延体系。其流延成型工艺以聚乙烯醇缩丁醛酯(PVB,Polyvinyl Butyral)作为粘结剂,这种粘结剂裂解后残留碳较多,对最终材料性能存在影响。
发明内容
针对传统流延成型工艺以PVB为粘结剂制备氮化硅陶瓷基片材料存在的问题,提出对流延成型的配方和工艺进行调整,进而提供一种氮化硅陶瓷基片的制备方法,包括:
(1)将氮化硅粉、硅粉中至少一种的原料粉体、烧结助剂加入到含有分散剂的溶剂中并进行球磨混合,然后加入粘结剂和塑性剂,继续球磨混合,再经真空脱泡,得到混合浆料;所述粘结剂为聚碳酸亚丙酯,加入量为原料粉体和烧结助剂总质量的1~20wt%(优选为1~15wt%);
(2)使用流延成型设备将所得混合浆料制成生瓷片;
(3)将多个生瓷片经切割和叠层后得到所需厚度的氮化硅素坯;
(4)将所得氮化硅素坯进行脱粘和气压烧结,得到所述氮化硅陶瓷基片。
本发明着重于将PPC运用到氮化硅流延成型中,通过调控,以获得高质量流延膜。实验证明,PPC用作粘结剂,同样可获得低碳含量、无缺陷的流延膜,且制备的陶瓷也具有高热导率和优异抗弯强度。
较佳的,所述的烧结助剂选自MgO、Y2O3或者稀土氧化物中的至少一种;其中原料粉体和烧结助剂的质量比为(75~97):(25~3),二者质量百分比之和为100wt%。所述烧结助剂中稀土氧化物为原料粉体和烧结助剂总质量的5~20wt%。
较佳的,所述溶剂为乙酸乙酯、丁酮或者乙酸乙酯和丁酮的混合溶剂;当所述溶剂为乙酸乙酯和丁酮的混合溶剂时,丁酮的质量含量70~90wt%之间,乙酸乙酯的质量含量在10~30wt%之间,二者质量百分比之和为100wt%;所述溶剂质量为原料粉体和烧结助剂总质量的30~60wt%。当原料粉体为氮化硅粉时,溶剂质量为原料粉体和烧结助剂总质量的优选为40~50wt%;当原料粉体为硅粉时,溶剂质量为原料粉体和烧结助剂总质量的优选为35~45wt%。若是溶剂过多,浆料较稀,流延膜粉体含量低且收缩大,会导致基板密度低和平整度,从而影响基板热导率和抗弯强度。若是溶剂过少,浆料过稠,流延膜内粉体颗粒分布不均匀,会存在团聚现象,导致缺陷较多,从而影响基板结构,继而阻碍基板的热导率和抗弯强度。
较佳的,所述氮化硅粉体的粒径范围为0.1~10μm,所述硅粉的粒径范围为0.1~10μm,所述烧结助剂的粒径范围为0.1~10μm。
较佳的,所述分散剂为蓖麻油、三油酸甘油酯和磷酸酯中的至少一种,加入量为原料粉体和烧结助剂总质量的0.5%~10%。
较佳的,所述塑性剂为邻苯二甲酸丁卞酯和聚乙二醇-400的混合物,所述塑性剂的总含量为粘结剂含量的0.1~5倍,为原料粉体和烧结助剂总质量的1~5wt%,其中邻苯二甲酸丁苄酯与聚乙二醇-400的质量比为0.1~5。
较佳的,所述球磨混合的转速为10~500转/分钟,球磨总时间为48~144小时。所述真空脱泡的真空度≤220mbar,搅拌速率为10~50r/min,脱泡时间为10~50分钟
较佳的,当原料粉体为氮化硅粉时,粘结剂的加入量为原料粉体和烧结助剂总质量的12~17wt%,优选为13.5wt%;当原料粉体为硅粉时,粘结剂的加入量为原料粉体和烧结助剂总质量的12~15wt%,优选为13wt%。若是粘结剂过多,浆料过稠,流延膜的缺陷和所含有机物较多,粉体含量相应较低,不利于陶瓷的烧结,导致基板密度降低,影响基板热导率和抗弯强度;若是粘结剂过少,流延膜强度较低,不易保存和制样,基板的密度、平整度和均匀性也会相应受到影响,继而影响基板热性能和力学性能。
较佳的,所述流延成型工艺中,刮刀高度为10~100mm,流延速率为50~150mm/min。较佳的,所述生瓷片的厚度为5~40mm。
较佳的,所述脱粘的气氛为真空,温度为400~600℃,保温时间是1~24小时;优选,所述脱粘的升温速率为1~10℃/min。
较佳的,当原料粉中含有硅粉时,在脱粘之后且气压烧结之前,将脱粘后的氮化硅素坯在氮气气氛中、1200~1500℃下氮化处理2~48小时;优选地,所述氮化处理的升温速率1~10℃/min。
较佳的,所述气压烧结的参数包括;烧结气氛为氮气,温度为1700~1900℃,保温时间为1~24小时,气压为0.1~10MPa;优选地,所述气压烧结的升温速率和降温速率分别为1~5℃/min。
另一方面,本发明提供了一种根据上述制备方法制备的氮化硅陶瓷基片。
有益效果:
本发明采用流延成型工艺,以氮化硅粉、硅粉的至少一种为原料,以MgO、CaO和稀土氧化物为烧结助剂体系,通过添加合适的有机溶剂、分散剂、粘结剂和塑性剂以及控制含量配比,制备出具有表面光滑无缺陷的素坯。然后将素坯叠压得到素坯块体,通过合理的脱粘、(氮化)、烧结工艺制备出具有高热导率、优异力学性能的氮化硅陶瓷基板材料。
本发明提出的氮化硅陶瓷基片材料的制备方案,和目前常用的流延成型制备方案相比,具有不变形、杂质含量低的优势。本发明所制备的氮化硅陶瓷基片材料的基本性能如下:密度3.2~3.4g/cm3,抗弯强度为600~1100MPa,热导率50~100W/(m·K),游离碳含量:<0.15%。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明提出以PPC为粘结剂,通过流延成型、(氮化)、烧结制备氮化硅陶瓷基片,和常用的氮化硅陶瓷基片制备技术不同。因为采用PPC为粘结剂,可以有效降低氮化硅陶瓷内杂质含量,有利于提高氮化硅陶瓷性能的提高。
具体地,聚碳酸亚丙酯(PPC,Poly propylene carbonate)具有分解无残留、碳残量低、在有氧和无氧环境下均可安全分解等优点,将其运用到氮化硅陶瓷流延成型有助于减少氮化硅陶瓷内杂质,提高氮化硅陶瓷流延成型。除此之外,流延膜叠压后如何采取合适的脱粘、氮化、烧结工艺而不发生分层、翘曲,对规模化制备具有优异热导率以及力学性能的氮化硅陶瓷基板具有重要意义。本发明优化了流延配方,降低了游离碳含量,所制备的流延膜表面光滑无缺陷,经烧结的致密陶瓷具有较高热导率和抗弯强度。
本发明提出的流延成型技术,主要包括以氮化硅粉/硅粉和烧结助剂为原料,以乙酸乙酯、丁酮、乙酸乙酯/丁酮为溶剂,以蓖麻油、三油酸甘油酯和磷酸酯为分散剂,以PPC为粘结剂,以邻苯二甲酸丁苄酯和聚乙二醇-400混合物为塑性剂,经过浆料制备、真空脱泡和流延成型获得素坯。再经过脱粘、(氮化)和烧结得到氮化硅陶瓷基片。以下将通过实施例说明本发明提供的高导热氮化硅陶瓷基片材料的制备方法。
将原料粉和烧结助剂混合得到混合粉体。其中,氮化硅粉和硅粉的粒径范围为0.1~10μm。以氧化镁或和氧化钙作为烧结助剂A,以稀土氧化物中的一种或者多种作为烧结助剂B,其中烧结助剂A与B的质量比为1:(1~10)。所述原料粉和烧结助剂的质量比为(75~97):(25~3)。
将混合粉体在含有分散剂的溶剂中球磨,然后加入粘结剂、塑性剂二次球磨,得到结构均匀的混合浆料。有机溶剂为乙酸乙酯、丁酮的至少一种,溶剂质量占原料粉与烧结助剂混合粉体总质量的10%~50%。所述分散剂为所述分散剂为蓖麻油、三油酸甘油酯和磷酸酯中的至少一种,加入量为混合粉体总质量的0.5%~10%。所述粘结剂为PPC,加入量为混合粉体总质量的1%~20%。所述塑性剂为邻苯二甲酸丁卞酯和聚乙二醇-400混合物,塑性剂混合物总含量是粘结剂含量的10%~50%,其中邻苯二甲酸丁苄酯与聚乙二醇-400的质量比为0.1~10。本发明中针对氮化硅流延体系,使用PPC粘结剂有效降低塑性剂含量,从而减少浆料中有机物总含量,有利于提高陶瓷密度和性能。
将浆料经过真空脱泡后,再经流延成型工艺获得流延素坯(生瓷片)。所述真空脱泡的真空度为220mbar,搅拌速率为10~50r/min,脱泡时间为10~50mins。
将流延素坯切割、叠层后,进行排胶处理,再经(氮化)、烧结得到氮化硅陶瓷基板。所述脱粘工艺在真空中进行,脱粘温度为400~600℃,时间为1~24h,升温速率为1~5℃/min。所述氮化温度在1200~1450℃范围内,氮化气氛为N2,时间为2~48h,升温速率为1~10℃/min。所述烧结的方式为气压烧结。所述烧结的气氛为N2,温度为1700~1900℃,气压为0.1~10MPa,时间1~24h,升温速率为1~10℃/min。所述叠层的压力为1~10MPa,保压时间为1~10分钟。
本发明中,采用阿基米德排水法方法测试所得氮化硅陶瓷基板的密度为3.2~3.4g/cm3。
本发明中,采用三点弯曲方法测试所得氮化硅陶瓷基板的抗弯强度为600~1100MPa。
本发明中,采用激光导热仪器测试所得氮化硅陶瓷基板的热导率为50~100W/(m·K)。
本发明中,采用化学方法测试所得氮化硅陶瓷基板的游离碳含量<0.15%。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
将4g三油酸甘油酯作为分散剂,加入到62.7g乙酸乙酯/丁酮溶剂体系中(乙酸乙酯和丁酮质量比为78:22,占混合粉体的43.1wt%),充分分散后,将128g氮化硅粉和17.52g烧结助剂(4.38g氧化镁,13.14g氧化铒)加入其中。球磨24h后,再加入19.6g粘结剂PPC(13.5wt%),4.9g塑性剂(2.45g邻苯二甲酸丁卞酯和2.45g聚乙二醇-400,塑性剂与粘结剂比值R=0.25),球磨48h后,真空下脱泡20mins,然后采用流延成型制备流延膜。刮刀高度为40mm,流延速度为120mm/min。干燥后裁切成50mm×50mm的流延膜(厚度为0.183mm)。取10片流延膜放入50mm×50mm的模具中,利用手动液压机施压20MPa,保压1min后放入60℃烘箱中保温1h,取出再次施加同样的压力,待自然冷却后得到氮化硅素坯。然后素坯放入真空脱粘炉中600℃真空脱粘2小时,升温速率1℃/min。脱粘后将样品在氮气中1830℃烧结,气压0.3MPa,烧结时间2h,结束后随炉冷却。
实施例2
本实施例2的氮化硅陶瓷基板的过程参照实施例1,区别仅在于:溶剂加入量为原料粉体和烧结助剂总质量的45.9wt%。
实施例3
本实施例3的氮化硅陶瓷基板的过程参照实施例1,区别仅在于:聚碳酸亚丙酯加入量为原料粉体和烧结助剂总质量的11.5wt%。
实施例4
本实施例4的氮化硅陶瓷基板的过程参照实施例1,区别仅在于:聚碳酸亚丙酯加入量为原料粉体和烧结助剂总质量的12.5wt%。
实施例5
本实施例5的氮化硅陶瓷基板的过程参照实施例1,区别仅在于:聚碳酸亚丙酯加入量为原料粉体和烧结助剂总质量的14.0wt%。
实施例6
将4.8g三油酸甘油酯作为分散剂,加入到60g乙酸乙酯/丁酮溶剂体系中(乙酸乙酯和丁酮质量比为78:22,占混合粉体的38.33wt%),充分分散后,将127.55g硅粉和28.99g烧结助剂(7.24g氧化镁;21.75g氧化铒,占总粉体的14wt%)加入其中。球磨后,再加入20.35g粘结剂PPC(13.0wt%),4g塑性剂(2g邻苯二甲酸丁卞酯和2g聚乙二醇-400,塑性剂与粘结剂比值R=0.20),球磨48h后,真空下脱泡20mins,然后采用流延成型制备流延膜。刮刀高度为40mm,流延速度为120mm/min。干燥后裁切成50mm×50mm的流延膜(厚度为0.167mm)。取10片流延膜放入50mm×50mm的模具中,利用手动液压机施压20MPa,保压1min后放入60℃烘箱中保温1h,取出再次施加同样的压力,待自然冷却后得到氮化硅素坯。然后素坯放入真空脱粘炉中600℃真空脱粘2小时,升温速率1℃/min。脱粘后将样品在氮气中1420℃氮化,保温2h。然后再于氮气中1830℃烧结,气压0.3MPa,烧结时间2h,结束后随炉冷却。
实施例7
本实施例7的氮化硅陶瓷基板的过程参照实施例6,区别仅在于:聚碳酸亚丙酯加入量为原料粉体和烧结助剂总质量的11wt%。
实施例8
本实施例8的氮化硅陶瓷基板的过程参照实施例6,区别仅在于:聚碳酸亚丙酯加入量为原料粉体和烧结助剂总质量的12wt%。
实施例9
本实施例9的氮化硅陶瓷基板的过程参照实施例6,区别仅在于:氧化铒加入量为原料粉体和烧结助剂总质量的9wt%。
实施例10
本实施例10的氮化硅陶瓷基板的过程参照实施例6,区别仅在于:氧化铒加入量为原料粉体和烧结助剂总质量的17wt%。
对比例1
本对比例1与实施例1的区别仅在于:该对比例1中以PVB粘结剂等量替换PPC,其他与实施例1相同,此处不再累述。
对比例2
本对比例2与实施例1的区别仅在于:聚碳酸亚丙酯加入量为原料粉体和烧结助剂总质量的17wt%。
对比例3
本对比例3与实施例6的区别仅在于:以氧化钇烧结助剂替换氧化铒烧结助剂,其他与实施例1相同,此处不再累述。
表1为实施例和对比例中所述样品的性能:
由表1可知,更高固相含量所制备的陶瓷具有更高的密度、热导率和抗弯强度,增加PPC含量有利于生瓷片拉伸强度和断裂应变的提高,但使密度降低;含PVB样品比PPC样品具有更低的残碳量。
综上所述,本发明采用PPC为粘结剂,制得的氮化硅陶瓷基板纯度和性能都较好,具有较低的游离碳含量、较高的热导率和优异的力学性能。本发明中,由于采用了PPC粘结剂,使用的塑性剂含量也相应减少,从而减少了总有机物含量,有利于素坯密度的提高以及陶瓷性能的提升。
Claims (10)
1.一种氮化硅陶瓷基片的制备方法,其特征在于,包括:
(1)将氮化硅粉、硅粉中至少一种的原料粉体、烧结助剂加入到含有分散剂的溶剂中并进行球磨混合,然后加入粘结剂和塑性剂,继续球磨混合,再经真空脱泡,得到混合浆料;所述粘结剂为聚碳酸亚丙酯,加入量为原料粉体和烧结助剂总质量的1~20 wt%;
(2)使用流延成型设备将所得混合浆料制成生瓷片;
(3)将多个生瓷片经切割和叠层后得到所需厚度的氮化硅素坯;
(4)将所得氮化硅素坯进行脱粘和气压烧结,得到所述氮化硅陶瓷基片。
2.根据权利要求1所述的制备方法,其特征在于,所述烧结助剂选自MgO、Y2O3或者稀土氧化物中的至少一种;其中原料粉体和烧结助剂的质量比为(75~97):(25~3),二者质量百分比之和为100wt%;所述烧结助剂中稀土氧化物为原料粉体和烧结助剂总质量的5~20wt%。
3.根据权利要求1所述的制备方法,其特征在于,所述溶剂为乙酸乙酯、丁酮或者乙酸乙酯和丁酮的混合溶剂;当所述溶剂为乙酸乙酯和丁酮的混合溶剂时,丁酮的质量含量70~90 wt%之间,乙酸乙酯的质量含量在10~30 wt%之间,二者质量百分比之和为100wt%;所述溶剂质量为原料粉体和烧结助剂总质量的30~60 wt%;当原料粉体为氮化硅粉时,溶剂质量优选为40~50 wt%;当原料粉体为硅粉时,溶剂质量优选为35~45 wt%。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于,所述氮化硅粉体的粒径范围为0.1~10μm,所述硅粉的粒径范围为0.1~10μm,所述烧结助剂的粒径范围为0.1~10μm。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于,所述分散剂为蓖麻油、三油酸甘油酯和磷酸酯中的至少一种,加入量为原料粉体和烧结助剂总质量的0.5~10 wt%;
所述塑性剂为邻苯二甲酸丁卞酯和聚乙二醇-400的混合物,所述塑性剂的总含量为粘结剂含量的0.1~5倍,为原料粉体和烧结助剂总质量的1~5 wt%,其中邻苯二甲酸丁苄酯与聚乙二醇-400的质量比为0.1~5;
当原料粉体为氮化硅粉时,粘结剂的加入量为原料粉体和烧结助剂总质量的12~17wt%,优选为13.5wt%;
当原料粉体为硅粉时,粘结剂的加入量为原料粉体和烧结助剂总质量的12~15wt%,优选为13wt%。
6.根据权利要求1-5中任一项所述的制备方法,其特征在于,所述球磨混合的转速为10~500转/分钟,球磨总时间为48~144小时;
所述真空脱泡的真空度≤220 mbar,搅拌速率为10~50 r/min,脱泡时间为10~50 分钟;
所述生瓷片的厚度为5~40 mm。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于,所述脱粘的气氛为真空,温度为400~600℃,保温时间是1~24小时;优选,所述脱粘的升温速率为1~10℃/min。
8.根据权利要求1-7中任一项所述的制备方法,其特征在于,当原料粉中含有硅粉时,在脱粘之后且气压烧结之前,将脱粘后的氮化硅素坯在氮气气氛中、1200~1500℃下氮化处理2~48小时;优选地,所述氮化处理的升温速率1~10℃/min。
9.根据权利要求1-8中任一项所述的制备方法,其特征在于,所述气压烧结的参数包括;烧结气氛为氮气,温度为1700~1900℃,保温时间为1~24小时,气压为0.1~10 MPa;优选地,所述气压烧结的升温速率和降温速率分别为1~5℃/min。
10.一种根据权利要求1-9中任一项中所述的制备方法制备的氮化硅陶瓷基片。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210437896.4A CN114890797A (zh) | 2022-04-25 | 2022-04-25 | 一种氮化硅陶瓷基片的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210437896.4A CN114890797A (zh) | 2022-04-25 | 2022-04-25 | 一种氮化硅陶瓷基片的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114890797A true CN114890797A (zh) | 2022-08-12 |
Family
ID=82717827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210437896.4A Pending CN114890797A (zh) | 2022-04-25 | 2022-04-25 | 一种氮化硅陶瓷基片的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114890797A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115536402A (zh) * | 2022-09-26 | 2022-12-30 | 中国科学院上海硅酸盐研究所 | 一种氮化硅/钨高温共烧陶瓷基板的制备方法 |
CN116462515A (zh) * | 2023-03-13 | 2023-07-21 | 乐山职业技术学院 | 一种氮化硅陶瓷基板及其制备方法 |
CN116639985A (zh) * | 2023-06-07 | 2023-08-25 | 湖南湘瓷科艺有限公司 | 一种高导热率氮化硅陶瓷基板及其应用 |
CN117800740A (zh) * | 2022-09-26 | 2024-04-02 | 比亚迪股份有限公司 | 一种氮化硅陶瓷组合物、氮化硅陶瓷及其制备方法 |
CN119591411A (zh) * | 2024-12-06 | 2025-03-11 | 广东国研新材料有限公司 | 氮化硅陶瓷基片及其制备方法、流延浆料的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089070A (en) * | 1989-12-07 | 1992-02-18 | Pac Polymers Inc. | Poly(propylene carbonate)-containing ceramic tape formulations and the green tapes resulting therefrom |
JP2011020916A (ja) * | 2009-06-18 | 2011-02-03 | Toudai Tlo Ltd | 焼結セラミックス成形用組成物、焼結セラミックスの製法、及びセラミックス |
CN104193340A (zh) * | 2014-09-03 | 2014-12-10 | 合肥圣达电子科技实业公司 | 流延成型法制备用于多层布线基板的AlN生瓷片的方法及制得的AlN生瓷片 |
CN106830948A (zh) * | 2016-11-14 | 2017-06-13 | 中国科学院上海硅酸盐研究所 | 基于聚碳酸亚丙酯粘结剂的陶瓷流延浆料及其制备方法和应用 |
CN109400175A (zh) * | 2018-11-15 | 2019-03-01 | 中国科学院上海硅酸盐研究所 | 一种高导热氮化硅陶瓷基片材料的制备方法 |
CN112830797A (zh) * | 2021-01-20 | 2021-05-25 | 中国科学院上海硅酸盐研究所 | 一种高热导、净尺寸氮化硅陶瓷基片的制备方法 |
-
2022
- 2022-04-25 CN CN202210437896.4A patent/CN114890797A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5089070A (en) * | 1989-12-07 | 1992-02-18 | Pac Polymers Inc. | Poly(propylene carbonate)-containing ceramic tape formulations and the green tapes resulting therefrom |
JP2011020916A (ja) * | 2009-06-18 | 2011-02-03 | Toudai Tlo Ltd | 焼結セラミックス成形用組成物、焼結セラミックスの製法、及びセラミックス |
CN104193340A (zh) * | 2014-09-03 | 2014-12-10 | 合肥圣达电子科技实业公司 | 流延成型法制备用于多层布线基板的AlN生瓷片的方法及制得的AlN生瓷片 |
CN106830948A (zh) * | 2016-11-14 | 2017-06-13 | 中国科学院上海硅酸盐研究所 | 基于聚碳酸亚丙酯粘结剂的陶瓷流延浆料及其制备方法和应用 |
CN109400175A (zh) * | 2018-11-15 | 2019-03-01 | 中国科学院上海硅酸盐研究所 | 一种高导热氮化硅陶瓷基片材料的制备方法 |
CN112830797A (zh) * | 2021-01-20 | 2021-05-25 | 中国科学院上海硅酸盐研究所 | 一种高热导、净尺寸氮化硅陶瓷基片的制备方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115536402A (zh) * | 2022-09-26 | 2022-12-30 | 中国科学院上海硅酸盐研究所 | 一种氮化硅/钨高温共烧陶瓷基板的制备方法 |
CN117800740A (zh) * | 2022-09-26 | 2024-04-02 | 比亚迪股份有限公司 | 一种氮化硅陶瓷组合物、氮化硅陶瓷及其制备方法 |
CN116462515A (zh) * | 2023-03-13 | 2023-07-21 | 乐山职业技术学院 | 一种氮化硅陶瓷基板及其制备方法 |
CN116462515B (zh) * | 2023-03-13 | 2024-06-21 | 乐山职业技术学院 | 一种氮化硅陶瓷基板及其制备方法 |
CN116639985A (zh) * | 2023-06-07 | 2023-08-25 | 湖南湘瓷科艺有限公司 | 一种高导热率氮化硅陶瓷基板及其应用 |
CN116639985B (zh) * | 2023-06-07 | 2024-05-28 | 湖南湘瓷科艺有限公司 | 一种高导热率氮化硅陶瓷基板及其应用 |
CN119591411A (zh) * | 2024-12-06 | 2025-03-11 | 广东国研新材料有限公司 | 氮化硅陶瓷基片及其制备方法、流延浆料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114890797A (zh) | 一种氮化硅陶瓷基片的制备方法 | |
CN113200747B (zh) | 一种低温烧结的氮化铝陶瓷材料、氮化铝流延浆料及应用 | |
CN112811912B (zh) | 一种高性能氮化硅陶瓷基片的批量化烧结方法 | |
KR101751531B1 (ko) | 질화 규소 기판 제조방법 | |
WO2022156636A1 (zh) | 一种高热导、净尺寸氮化硅陶瓷基片的制备方法 | |
WO2022156634A1 (zh) | 一种覆铜板的氮化硅陶瓷基片的制备方法 | |
KR20190033021A (ko) | 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물 | |
CN115028461A (zh) | 一种硅粉流延成型制备高导热氮化硅陶瓷基片的方法 | |
CN106631039A (zh) | 一种氮化硅陶瓷基板的制备方法 | |
CN113307631B (zh) | 一种无压烧结制备高综合性能氮化硅陶瓷的方法 | |
CN114538900A (zh) | 一种高纯超薄高强度氧化铝陶瓷基板及其制备方法和应用 | |
WO2022156637A1 (zh) | 一种氮化硅陶瓷材料的制备方法 | |
CN112939607A (zh) | 一种高热导率氮化铝陶瓷及其制备方法 | |
CN112142474A (zh) | 一种水基流延成型高导热氮化铝陶瓷基板的制备方法 | |
CN115028460B (zh) | 一种高导热氮化硅陶瓷基片的制备方法 | |
KR20190032966A (ko) | 질화규소 소결체 제조를 위한 테이프 캐스팅용 슬러리 조성물 | |
CN118894717B (zh) | 一种氧化铝陶瓷基板及其制备方法 | |
CN114804912A (zh) | 一种高韧性耐高温的定向排列氮化硅独石多孔陶瓷制备的方法 | |
CN113185303A (zh) | 一种包覆氮化铝粉体的制备方法及制得的氮化铝陶瓷基板 | |
CN111285692A (zh) | 一种高导热Si3N4陶瓷及其制备方法 | |
CN113213944A (zh) | 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法 | |
WO2021060731A1 (ko) | 질화알루미늄 소결체 및 질화알루미늄 소결체의 제조방법 | |
CN115745625A (zh) | 一种高导热氮化硅基板及其制备方法 | |
JPWO2022156635A5 (zh) | ||
CN118754679A (zh) | 一种掺杂硅粉的氮化硅陶瓷基片的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |