CN114897015A - Material detection method, device, equipment and storage medium - Google Patents
Material detection method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN114897015A CN114897015A CN202210481917.2A CN202210481917A CN114897015A CN 114897015 A CN114897015 A CN 114897015A CN 202210481917 A CN202210481917 A CN 202210481917A CN 114897015 A CN114897015 A CN 114897015A
- Authority
- CN
- China
- Prior art keywords
- pulse
- detected
- generate
- terahertz
- scan point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 137
- 238000001514 detection method Methods 0.000 title claims abstract description 47
- 238000003860 storage Methods 0.000 title claims abstract description 17
- 238000003384 imaging method Methods 0.000 claims abstract description 57
- 238000012545 processing Methods 0.000 claims abstract description 47
- 238000013507 mapping Methods 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 34
- 238000004590 computer program Methods 0.000 claims description 28
- 239000011159 matrix material Substances 0.000 claims description 18
- 239000013598 vector Substances 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 11
- 230000003595 spectral effect Effects 0.000 description 11
- 210000002569 neuron Anatomy 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000012549 training Methods 0.000 description 5
- 230000007547 defect Effects 0.000 description 4
- 230000007847 structural defect Effects 0.000 description 4
- 230000002860 competitive effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/02—Preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/08—Feature extraction
- G06F2218/10—Feature extraction by analysing the shape of a waveform, e.g. extracting parameters relating to peaks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Computational Linguistics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Quality & Reliability (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
技术领域technical field
本申请涉及材料检测技术领域,尤其涉及一种材料检测方法、装置、设备及存储介质。The present application relates to the technical field of material detection, and in particular, to a material detection method, device, equipment and storage medium.
背景技术Background technique
随着高新技术的发展,各种高性能的新材料被广泛应用于航天航空、电力电气等各个领域的设备中,而设备在生产、运输、运行过程中,材料内部会出现如气隙、孔洞、裂痕、夹杂等缺陷,这些缺陷从外观上无法鉴别且会影响设备性能、造成经济损失,甚至人员伤亡。太赫兹波成像技术是最被广泛使用的用于对特定材料内部缺陷进行无损检测的一种直观、快捷的手段之一。然而,目前现有的太赫兹成像技术大多使用单一的一个波谱特征参数来进行成像,这种方法会造成大量信息丢失,无法有效利用整个频率范围太赫兹波谱信息进行成像,不足以对类型多样、复杂的实际结构性缺陷进行有效成像,成像可靠性差。With the development of high-tech, various high-performance new materials are widely used in equipment in various fields such as aerospace, electric power and electrical, and during the production, transportation, and operation of equipment, there will be air gaps and holes inside the material. , cracks, inclusions and other defects, these defects cannot be identified from the appearance and will affect the performance of the equipment, cause economic losses, and even casualties. Terahertz imaging technology is one of the most widely used intuitive and fast methods for non-destructive testing of internal defects in specific materials. However, most of the existing terahertz imaging technologies use a single spectral characteristic parameter for imaging. This method will cause a lot of information loss, and cannot effectively use the terahertz spectral information in the entire frequency range for imaging, which is not enough for various types, Complex actual structural defects are effectively imaged, and the imaging reliability is poor.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本申请实施例提供了一种材料检测方法、装置、设备及存储介质,可以有效利用整个频率范围太赫兹波谱信息进行成像,减少太赫兹波谱信息丢失,提高成像可靠性。In view of this, embodiments of the present application provide a material detection method, device, device, and storage medium, which can effectively utilize terahertz spectral information in the entire frequency range for imaging, reduce the loss of terahertz spectral information, and improve imaging reliability.
本申请实施例的第一方面提供了一种材料检测方法,包括:A first aspect of the embodiments of the present application provides a material detection method, including:
获取待检测材料的太赫兹反射波形数据,从所述太赫兹反射波形数据中提取出有效脉冲特征并获取所述有效脉冲特征所对应的扫描点索引,生成所述待检测材料的有效脉冲特征集合和扫描点索引集合;Obtain the terahertz reflection waveform data of the material to be detected, extract the effective pulse feature from the terahertz reflection waveform data, obtain the scan point index corresponding to the effective pulse feature, and generate the effective pulse feature set of the material to be detected and the scanpoint index set;
采用预设的第一自组织映射网络对所述有效脉冲特征集合中的每个有效脉冲特征进行特征信息聚类处理,生成第一聚类类型集合;Using a preset first self-organizing mapping network to perform feature information clustering processing on each valid pulse feature in the valid pulse feature set, to generate a first cluster type set;
根据所述第一聚类类型集合,采用预设的第二自组织映射网络对所述扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成第二聚类类型集合;According to the first cluster type set, use a preset second self-organizing mapping network to perform pulse type clustering processing on each scan point in the scan point index set to generate a second cluster type set;
根据所述第二聚类类型集合,对所述待检测材料进行成像处理,生成所述待检测材料的成像结果图。According to the second cluster type set, imaging processing is performed on the material to be detected, and an imaging result map of the material to be detected is generated.
结合第一方面,在第一方面的第一种可能实现方式中,获取待检测材料的太赫兹反射波形数据的步骤,还包括:With reference to the first aspect, in a first possible implementation manner of the first aspect, the step of acquiring the terahertz reflection waveform data of the material to be detected further includes:
采用太赫兹成像设备对所述待检测材料进行太赫兹波扫描,生成所述待检测材料的双极性脉冲数据;Using a terahertz imaging device to perform terahertz wave scanning on the material to be detected, to generate bipolar pulse data of the material to be detected;
对所述双极性脉冲数据进行反卷积处理,生成对应的单极性脉冲数据,将所述单极性脉冲数据获取为所述待检测材料的太赫兹反射波形数据。Deconvolution processing is performed on the bipolar pulse data to generate corresponding unipolar pulse data, and the unipolar pulse data is acquired as terahertz reflection waveform data of the material to be detected.
结合第一方面或第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,从所述太赫兹反射波形数据中提取出有效脉冲特征的步骤,包括:With reference to the first aspect or the first possible implementation manner of the first aspect, in a second possible implementation manner of the first aspect, the step of extracting effective pulse characteristics from the terahertz reflected waveform data includes:
从所述太赫兹反射波形数据中提取每个扫描点对应的脉冲峰值,分别将所述每个扫描点对应的脉冲峰值与预设的峰值阈值进行比较,若所述脉冲峰值大于预设的峰值阈值,则将所述脉冲峰值确定为有效脉冲特征;The pulse peak value corresponding to each scan point is extracted from the terahertz reflection waveform data, and the pulse peak value corresponding to each scan point is compared with a preset peak value threshold. If the pulse peak value is greater than the preset peak value threshold, then the pulse peak value is determined as an effective pulse characteristic;
将所有被确定为有效脉冲特征的脉冲峰值进行集合,生成有效脉冲峰值集合,并根据所述有效脉冲峰值集合,从所述太赫兹反射波形数据中提取出与所述有效脉冲峰值集合中的每个脉冲峰值对应的峰值时间,将所述每个脉冲峰值对应的峰值时间进行集合,生成有效脉冲峰值时间集合。All pulse peaks determined to be effective pulse peaks are assembled to generate an effective pulse peak set, and according to the effective pulse peak set, each terahertz reflection waveform data that is related to the effective pulse peak set is extracted from the terahertz reflection waveform data. The peak time corresponding to each pulse peak value is collected, and the peak time corresponding to each pulse peak value is collected to generate a valid pulse peak time collection.
结合第一方面,在第一方面的第三种可能实现方式中,根据所述第一聚类类型集合,采用预设的第二自组织映射网络对所述扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成第二聚类类型集合的步骤,包括:With reference to the first aspect, in a third possible implementation manner of the first aspect, according to the first clustering type set, a preset second self-organizing mapping network is used to scan each scan point index set The steps of performing pulse type clustering processing on the points to generate the second cluster type set include:
根据所述第一聚类类型集合和所述扫描点索引集合,对所述扫描点索引集合中的每个扫描点进行的太赫兹波形信息进行编码处理,生成编码矩阵,将所述编码矩阵作为输入向量输入至所述第二自组织映射网络中进行脉冲类型聚类处理,以生成第二聚类类型集合。According to the first cluster type set and the scan point index set, encode the terahertz waveform information performed by each scan point in the scan point index set, generate an encoding matrix, and use the encoding matrix as The input vector is input into the second self-organizing map network for pulse type clustering processing to generate a second cluster type set.
结合第一方面,在第一方面的第四种可能实现方式中,根据所述第二聚类类型集合,对所述待检测材料进行成像处理,生成所述待检测材料的成像结果图的步骤,包括:With reference to the first aspect, in a fourth possible implementation manner of the first aspect, performing imaging processing on the material to be detected according to the second cluster type set, and generating an imaging result map of the material to be detected ,include:
根据所述第二聚类类型集合,将每个扫描点对应的脉冲类型转化为图像像素值,按照扫描点将所述每个扫描点对应的图像像素值填充至所述待检测材料的图像矩阵中,以生成所述待检测材料的成像结果图。According to the second cluster type set, the pulse type corresponding to each scan point is converted into an image pixel value, and the image pixel value corresponding to each scan point is filled into the image matrix of the material to be detected according to the scan point , to generate an imaging result map of the material to be detected.
本申请实施例的第二方面提供了一种材料检测装置,所述材料检测装置包括:A second aspect of the embodiments of the present application provides a material detection device, and the material detection device includes:
提取模块,用于获取待检测材料的太赫兹反射波形数据,从所述太赫兹反射波形数据中提取出有效脉冲特征并获取所述有效脉冲特征所对应的扫描点索引,生成所述待检测材料的有效脉冲特征集合和扫描点索引集合;The extraction module is used to obtain the terahertz reflection waveform data of the material to be detected, extract the effective pulse feature from the terahertz reflection waveform data, obtain the scanning point index corresponding to the effective pulse feature, and generate the material to be detected The effective pulse feature set and scan point index set of ;
第一聚类模块,用于采用预设的第一自组织映射网络对所述有效脉冲特征集合中的每个有效脉冲特征进行特征信息聚类处理,生成第一聚类类型集合;a first clustering module, configured to use a preset first self-organizing mapping network to perform feature information clustering processing on each valid pulse feature in the valid pulse feature set to generate a first cluster type set;
第二聚类模块,用于根据所述第一聚类类型集合,采用预设的第二自组织映射网络对所述扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成第二聚类类型集合;The second clustering module is configured to, according to the first clustering type set, use a preset second self-organizing mapping network to perform pulse type clustering processing on each scan point in the scan point index set, and generate a second clustering module. Binary cluster type set;
成像模块,用于根据所述第二聚类类型集合,对所述待检测材料进行成像处理,生成所述待检测材料的成像结果图。An imaging module, configured to perform imaging processing on the to-be-detected material according to the second cluster type set to generate an imaging result map of the to-be-detected material.
结合第二方面,在第二方面的第一种可能实现方式中,所述材料检测装置还包括:With reference to the second aspect, in a first possible implementation manner of the second aspect, the material detection device further includes:
扫描子模块,用于采用太赫兹成像设备对所述待检测材料进行太赫兹波扫描,生成所述待检测材料的双极性脉冲数据;a scanning sub-module, configured to perform terahertz wave scanning on the material to be detected by using a terahertz imaging device to generate bipolar pulse data of the material to be detected;
反卷积子模块,用于对所述双极性脉冲数据进行反卷积处理,生成对应的单极性脉冲数据,将所述单极性脉冲数据获取为所述待检测材料的太赫兹反射波形数据。The deconvolution submodule is used to perform deconvolution processing on the bipolar pulse data, generate corresponding unipolar pulse data, and obtain the unipolar pulse data as the terahertz reflection of the material to be detected waveform data.
结合第二方面或第二方面的第一种可能实现方式,在第二方面的第二种可能实现方式中,所述材料检测装置还包括:In combination with the second aspect or the first possible implementation manner of the second aspect, in a second possible implementation manner of the second aspect, the material detection device further includes:
比较子模块,用于从所述太赫兹反射波形数据中提取每个扫描点对应的脉冲峰值,分别将所述每个扫描点对应的脉冲峰值与预设的峰值阈值进行比较,若所述脉冲峰值大于预设的峰值阈值,则将所述脉冲峰值确定为有效脉冲特征;A comparison sub-module, configured to extract the pulse peak value corresponding to each scan point from the terahertz reflection waveform data, and compare the pulse peak value corresponding to each scan point with a preset peak threshold value, if the pulse peak value corresponds to each scan point If the peak value is greater than the preset peak value threshold, the pulse peak value is determined as an effective pulse characteristic;
提取子模块,用于将所有被确定为有效脉冲特征的脉冲峰值进行集合,生成有效脉冲峰值集合,并根据所述有效脉冲峰值集合,从所述太赫兹反射波形数据中提取出与所述有效脉冲峰值集合中的每个脉冲峰值对应的峰值时间,将所述每个脉冲峰值对应的峰值时间进行集合,生成有效脉冲峰值时间集合。The extraction sub-module is configured to collect all the pulse peaks determined as valid pulse characteristics to generate a valid pulse peak set, and according to the valid pulse peak set, extract from the terahertz reflected waveform data and the valid pulse peaks. For the peak time corresponding to each pulse peak in the pulse peak set, the peak time corresponding to each pulse peak is collected to generate a valid pulse peak time set.
本申请实施例的第三方面提供了一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在电子设备上运行的计算机程序,所述处理器执行所述计算机程序时实现第一方面提供的材料检测方法的各步骤。A third aspect of the embodiments of the present application provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the electronic device, the processor implementing the first computer program when the processor executes the computer program Each step of the material detection method provided in one aspect.
本申请实施例的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现第一方面提供的材料检测方法的各步骤。A fourth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements various aspects of the material detection method provided in the first aspect step.
本申请实施例提供的一种材料检测方法、装置、电子设备及存储介质,具有以下有益效果:A material detection method, device, electronic device, and storage medium provided by the embodiments of the present application have the following beneficial effects:
本申请通过获取待检测材料的太赫兹反射波形数据,从太赫兹反射波形数据中提取出有效脉冲特征并获取有效脉冲特征所对应的扫描点索引,生成待检测材料的有效脉冲特征集合和扫描点索引集合;采用预设的第一自组织映射网络对有效脉冲特征集合中的每个有效脉冲特征进行特征信息聚类处理,生成第一聚类类型集合;根据第一聚类类型集合,采用预设的第二自组织映射网络对扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成第二聚类类型集合;根据第二聚类类型集合,对待检测材料进行成像处理,生成待检测材料的成像结果图。基于该方法,通过两个自组织映射网络先后对脉冲特征、扫描点进行非监督式聚类处理,提高太赫兹成像的信息利用率,有效减少太赫兹波谱信息丢失,实现有效利用整个频率范围太赫兹波谱信息进行成像,可以对类型多样、复杂的实际结构性缺陷进行有效成像,提高成像可靠性。In the present application, by acquiring the terahertz reflection waveform data of the material to be detected, the effective pulse feature is extracted from the terahertz reflection waveform data, and the scan point index corresponding to the effective pulse feature is obtained, so as to generate the effective pulse feature set and scan point of the material to be detected. index set; use a preset first self-organizing mapping network to perform feature information clustering processing on each effective pulse feature in the effective pulse feature set, and generate a first cluster type set; according to the first cluster type set, use a preset The set second self-organizing mapping network performs pulse type clustering processing on each scan point in the scan point index set to generate a second cluster type set; according to the second cluster type set, perform imaging processing on the material to be detected to generate Image of the imaging result of the material to be tested. Based on this method, two self-organizing mapping networks are used to successively perform unsupervised clustering processing on pulse features and scanning points, which improves the information utilization rate of terahertz imaging, effectively reduces the loss of terahertz spectrum information, and realizes effective utilization of the entire frequency range of terahertz. Imaging with Hertzian spectral information can effectively image various and complex actual structural defects and improve imaging reliability.
附图说明Description of drawings
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions in the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only for the present application. In some embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本申请实施例提供的一种材料检测方法的实现流程图;Fig. 1 is the realization flow chart of a kind of material detection method that the embodiment of this application provides;
图2为本申请实施例提供的材料检测方法中获取待检测材料的太赫兹反射波形数据的一种方法流程示意图;2 is a schematic flowchart of a method for obtaining terahertz reflection waveform data of a material to be detected in the material detection method provided by the embodiment of the present application;
图3为双极性脉冲和单极性脉冲的一种对比图;Fig. 3 is a kind of comparison diagram of bipolar pulse and unipolar pulse;
图4为本申请实施例提供的材料检测方法中提取有效脉冲特征的一种方法流程示意图;4 is a schematic flowchart of a method for extracting effective pulse features in the material detection method provided by the embodiment of the present application;
图5为编码矩阵的一种结构示意图;Fig. 5 is a kind of structural representation of coding matrix;
图6为本申请实施例提供的一种材料检测装置的基础结构框图;6 is a block diagram of the basic structure of a material detection device provided by an embodiment of the present application;
图7为本申请实施例提供的材料检测装置的第一种细化结构框图;FIG. 7 is a block diagram of the first refined structure of the material detection device provided by the embodiment of the present application;
图8为本申请实施例提供的材料检测装置的第二种细化结构框图;FIG. 8 is a second refined structural block diagram of the material detection device provided by the embodiment of the present application;
图9为本申请实施例提供的一种电子设备的基本结构框图。FIG. 9 is a basic structural block diagram of an electronic device provided by an embodiment of the present application.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
本申请实施例提供的材料检测方法旨在利用自组织映射算法,通过两个自组织映射网络,先后对脉冲、扫描点进行非监督式的聚类;提出对同时存在多种内部缺陷情况下的太赫兹成像方法,可以检测与评估材料内部缺陷情况,减少出现故障与事故的可能性。基于该材料检测方法,成像参数能够有效反映整个波形的信息,提高成像性能;可以对各类型结构缺陷进行处理,具有通用性,不需要事先对波形数据进行人工分析,减少工作量;利用无监督学习方法,在不需要大量带标签数据的前提下,即可达成较好的效果,节省工作量;可以实现对材料内部结构性缺陷的成像,有助于设备状态的检测与评估,增强各类设备的安全性与稳定性。The material detection method provided by the embodiment of the present application aims to use the self-organizing mapping algorithm to perform unsupervised clustering of pulses and scanning points successively through two self-organizing mapping networks; Terahertz imaging methods can detect and evaluate internal defects in materials, reducing the possibility of failures and accidents. Based on the material detection method, the imaging parameters can effectively reflect the information of the entire waveform and improve the imaging performance; various types of structural defects can be processed, which is versatile, and does not require manual analysis of the waveform data in advance, reducing workload; using unsupervised The learning method can achieve better results and save workload without requiring a large amount of labeled data; it can realize the imaging of structural defects inside the material, which is helpful for the detection and evaluation of equipment status, and enhances various Device security and stability.
请参阅图1,图1为本申请实施例提供的一种材料检测方法的实现流程图。Please refer to FIG. 1 . FIG. 1 is a flowchart for realizing a material detection method provided by an embodiment of the present application.
详述如下:Details are as follows:
S11:获取待检测材料的太赫兹反射波形数据,从所述太赫兹反射波形数据中提取出有效脉冲特征并获取所述有效脉冲特征所对应的扫描点索引,生成所述待检测材料的有效脉冲特征集合和扫描点索引集合。S11: Acquire terahertz reflection waveform data of the material to be detected, extract an effective pulse feature from the terahertz reflection waveform data, acquire a scan point index corresponding to the effective pulse feature, and generate an effective pulse of the material to be detected Feature collection and scan point index collection.
本实施例中,太赫兹(Terahertz,简写THz)波是指频率在0.1~10THz范围内的电磁波,其波长位于0.03~3mm之间。太赫兹成像的原理为通过采用一太赫兹入射波扫描待检测材料的每一个扫描点,获取待检测材料每一个扫描点的反射波,根据反射波来赋予每个扫描点的波谱参数,其中,波谱参数包括脉冲幅值、脉冲相位、时间切片、频谱参数等,进而再通过每个扫描点的波谱参数来实现对待检测材料的成像。在本实施例中,首先通过采用太赫兹成像设备对待检测材料进行扫描,按照扫描点,获取每个扫描点对应的波谱参数,该每个扫描点所对应的波谱参数即为待检测材料的太赫兹反射波形数据。获得待检测材料的太赫兹反射波形数据后,提取出从该太赫兹反射波形数据中有效脉冲特征并获取每个有效脉冲特征所对应的扫描点索引,将提取到的有效脉冲特征进行集合,生成该待检测材料的有效脉冲特征集合,将每个有效脉冲特征所对应的扫描点索引进行集合,生成扫描点索引集合。具体地,在本实施例中,脉冲特征包括脉冲峰值和峰值时间。针对脉冲峰值特征,可以对应获得一个有效脉冲峰值集合。针对峰值时间特征,可以对应获得一个有效脉冲峰值时间集合。In this embodiment, a terahertz (Terahertz, abbreviated as THz) wave refers to an electromagnetic wave with a frequency in the range of 0.1-10 THz, and its wavelength is between 0.03-3 mm. The principle of terahertz imaging is to scan each scanning point of the material to be detected by using a terahertz incident wave, obtain the reflected wave of each scanning point of the material to be detected, and assign the spectral parameters of each scanning point according to the reflected wave, wherein, The spectral parameters include pulse amplitude, pulse phase, time slice, spectral parameters, etc., and then the imaging of the material to be detected is realized through the spectral parameters of each scanning point. In this embodiment, the material to be detected is firstly scanned by using a terahertz imaging device, and the spectral parameters corresponding to each scanning point are obtained according to the scanning points, and the spectral parameters corresponding to each scanning point are the terahertz of the material to be detected Hertz reflection waveform data. After obtaining the terahertz reflection waveform data of the material to be detected, extract the effective pulse characteristics from the terahertz reflection waveform data and obtain the scan point index corresponding to each effective pulse characteristic, and collect the extracted effective pulse characteristics to generate For the effective pulse feature set of the material to be detected, the scan point index corresponding to each effective pulse feature is collected to generate a scan point index set. Specifically, in this embodiment, the pulse characteristics include a pulse peak value and a peak value time. For the pulse peak value, a set of valid pulse peak values can be obtained correspondingly. For the peak time feature, a valid pulse peak time set can be obtained correspondingly.
本申请的一些实施例中,请参阅图2,图2为本申请实施例提供的材料检测方法中获取待检测材料的太赫兹反射波形数据的一种方法流程示意图。详细如下:In some embodiments of the present application, please refer to FIG. 2 , which is a schematic flowchart of a method for obtaining terahertz reflection waveform data of a material to be detected in the material detection method provided by the embodiment of the present application. Details are as follows:
S21:采用太赫兹成像设备对所述待检测材料进行太赫兹波扫描,生成所述待检测材料的双极性脉冲数据;S21: Using a terahertz imaging device to perform terahertz wave scanning on the material to be detected, to generate bipolar pulse data of the material to be detected;
S22:对所述双极性脉冲数据进行反卷积处理,生成对应的单极性脉冲数据,将所述单极性脉冲数据获取为所述待检测材料的太赫兹反射波形数据。S22: Perform deconvolution processing on the bipolar pulse data to generate corresponding unipolar pulse data, and obtain the unipolar pulse data as terahertz reflection waveform data of the material to be detected.
本实施例中,请一并参阅图3,图3为双极性脉冲和单极性脉冲的一种对比图。如图3所示,太赫兹成像设备进行扫描是所发射的脉冲一般为双极性脉冲。在本实施例中,为方便后续的数据聚类处理,获取待检测材料的太赫兹反射波形数据时,采用太赫兹成像设备对待检测材料进行太赫兹波扫描,生成待检测材料的双极性脉冲数据后,可以通过对该获得的双极性脉冲数据进行反卷积处理,生成对应的单极性脉冲数据,将该单极性脉冲数据获取为待检测材料的太赫兹反射波形数据。In this embodiment, please refer to FIG. 3 , which is a comparison diagram of bipolar pulses and unipolar pulses. As shown in FIG. 3 , the pulses emitted by the terahertz imaging device for scanning are generally bipolar pulses. In this embodiment, in order to facilitate subsequent data clustering processing, when acquiring the terahertz reflection waveform data of the material to be detected, a terahertz imaging device is used to scan the material to be detected with terahertz waves to generate bipolar pulses of the material to be detected After the data is obtained, the obtained bipolar pulse data can be deconvolved to generate corresponding unipolar pulse data, and the unipolar pulse data can be obtained as the terahertz reflection waveform data of the material to be detected.
本申请的一些实施例中,请参阅图4,图4为本申请实施例提供的材料检测方法中提取有效脉冲特征的一种方法流程示意图。详细如下:In some embodiments of the present application, please refer to FIG. 4 , which is a schematic flowchart of a method for extracting effective pulse features in the material detection method provided by the embodiments of the present application. Details are as follows:
S41:从所述太赫兹反射波形数据中提取每个扫描点对应的脉冲峰值,分别将所述每个扫描点对应的脉冲峰值与预设的峰值阈值进行比较,若所述脉冲峰值大于预设的峰值阈值,则将所述脉冲峰值确定为有效脉冲特征;S41: Extract the pulse peak value corresponding to each scan point from the terahertz reflection waveform data, and compare the pulse peak value corresponding to each scan point with a preset peak threshold value, if the pulse peak value is greater than the preset peak value the peak value threshold, then the pulse peak value is determined as an effective pulse characteristic;
S42:将所有被确定为有效脉冲特征的脉冲峰值进行集合,生成有效脉冲峰值集合,并根据所述有效脉冲峰值集合,从所述太赫兹反射波形数据中提取出与所述有效脉冲峰值集合中的每个脉冲峰值对应的峰值时间,将所述每个脉冲峰值对应的峰值时间进行集合,生成有效脉冲峰值时间集合。S42: Collect all pulse peaks determined to be valid pulse characteristics to generate a valid pulse peak set, and according to the valid pulse peak set, extract from the terahertz reflected waveform data and the valid pulse peak set The peak time corresponding to each pulse peak value is collected, and the peak time corresponding to each pulse peak value is collected to generate a valid pulse peak time collection.
本实施例中,待检测材料的有效脉冲特征集合包括有效脉冲峰值集合和有效脉冲峰值时间集合。由于对待检测材料进行扫描过程存在背景噪声,太赫兹反射波形数据中可能产生许多表现为小幅值的“假脉冲”,在本实施例中,可以通过阈值筛选的方式从太赫兹反射波形数据中来获得有效脉冲特征。示例性的,首先设置一个峰值阈值,然后从太赫兹反射波形数据中提取每个扫描点对应的脉冲峰值,并分别将每个扫描点对应的脉冲峰值逐一与峰值阈值进行比较。针对每个扫描点对应的脉冲峰值,若脉冲峰值小于峰值阈值,则表征该脉冲峰值为因噪声而产生的“假脉冲”,此时筛除该脉冲峰值,而若脉冲峰值大于峰值阈值,则表征该脉冲峰值并非为因噪声而产生的“假脉冲”,此时将该脉冲峰值确定为有效脉冲特征。进而,将筛选获得的所有被确定为有效脉冲特征的脉冲峰值进行集合,生成有效脉冲峰值集合。由于太赫兹反射波形数据中每个脉冲幅值都具有对应的时间信息,因此,获得有效脉冲峰值集合后,可以从太赫兹反射波形数据中提取出与该有效脉冲峰值集合中的每个脉冲峰值对应的峰值时间,进而将该每个脉冲峰值对应的峰值时间进行集合,生成有效脉冲峰值时间集合。最后,将该生成的有效脉冲峰值集合和有效脉冲峰值时间集合配置为该待检测材料的有效脉冲特征集合。In this embodiment, the effective pulse feature set of the material to be detected includes an effective pulse peak value set and an effective pulse peak time set. Due to the background noise in the scanning process of the material to be detected, many "false pulses" with small amplitudes may be generated in the terahertz reflection waveform data. to obtain effective pulse characteristics. Exemplarily, a peak threshold is first set, and then the pulse peak value corresponding to each scan point is extracted from the terahertz reflection waveform data, and the pulse peak value corresponding to each scan point is compared with the peak value threshold one by one. For the pulse peak value corresponding to each scan point, if the pulse peak value is less than the peak value threshold, it indicates that the pulse peak value is a "false pulse" caused by noise, and the pulse peak value is filtered out. If the pulse peak value is greater than the peak value threshold, then Characterizing the peak value of the pulse is not a "false pulse" caused by noise, and at this time, the peak value of the pulse is determined as an effective pulse characteristic. Furthermore, all the pulse peaks determined to be valid pulse characteristics obtained by screening are collected to generate a collection of valid pulse peaks. Since each pulse amplitude in the terahertz reflection waveform data has corresponding time information, after obtaining the effective pulse peak value set, it is possible to extract from the terahertz reflection waveform data and each pulse peak value in the effective pulse peak value set. The corresponding peak time, and then the peak time corresponding to each pulse peak is collected to generate a valid pulse peak time set. Finally, the generated effective pulse peak value set and effective pulse peak time set are configured as the effective pulse feature set of the material to be detected.
S12:采用预设的第一自组织映射网络对所述有效脉冲特征集合中的每个有效脉冲特征进行特征信息聚类处理,生成第一聚类类型集合。S12: Use a preset first self-organizing mapping network to perform feature information clustering processing on each valid pulse feature in the valid pulse feature set to generate a first cluster type set.
本实施例中,自组织映射(self-organizing map,SOM)是一种非监督式的学习方法,用于通过学习训练集中数据的特征,生成一个输入向量的低维度映射。自组织映射网络具体包括输入层和竞争层两层结构,其中,输入层神经元的个数与输入向量的维度相同,竞争层的尺寸取决于数据分析的目标。竞争层中每个神经元与输入层之间都通过权向量连接。在本实施例中,自组织映射网络的训练过程包括:首先采用训练集作为输入向量输入到自组织映射网络中进行训练,计算每个输入向量与所有竞争层神经元权向量之间的欧氏距离,然后将竞争层中与当前输入向量欧氏距离最近的神经元被作为最匹配单元(bestmatching unit,BMU);进而根据每次迭代得到的欧氏距离最近的神经元更新最匹配单元领域范围内神经元的权向量,直至迭代上限,即自组织映射网络训练至收敛状态为止。示例性的,在本实施例中,更新最匹配单元领域范围内神经元的权向量的公式表示为:In this embodiment, the self-organizing map (SOM) is an unsupervised learning method, which is used to generate a low-dimensional map of the input vector by learning the features of the data in the training set. The self-organizing mapping network specifically includes an input layer and a competitive layer. The number of neurons in the input layer is the same as the dimension of the input vector, and the size of the competitive layer depends on the goal of data analysis. Each neuron in the competition layer is connected with the input layer through a weight vector. In this embodiment, the training process of the self-organizing mapping network includes: firstly, the training set is used as an input vector to input into the self-organizing mapping network for training, and the Euclidean relationship between each input vector and the weight vectors of neurons in all competition layers is calculated. distance, and then the neuron in the competition layer with the closest Euclidean distance to the current input vector is used as the best matching unit (BMU); then, the field range of the best matching unit is updated according to the neuron with the closest Euclidean distance obtained in each iteration The weight vector of the inner neuron, until the upper limit of iteration, that is, the self-organizing map network is trained to a convergent state. Exemplarily, in this embodiment, the formula for updating the weight vector of neurons within the field of the most matching unit is expressed as:
Wv(s+1)=Wv(s)+θ(u,v,s)·α(s)·(D(t)-Wv(s))W v (s+1)=W v (s)+θ(u,v,s) α(s) (D(t)-W v (s))
其中,Wv是神经元v的权向量,s为当前的迭代数,u为BMU对应的索引号,D为输入向量集,t是当前输入向量的索引号。θ(u,v,s)是领域函数,α(s)是学习率。需要说明的是,在自组织映射网络的训练过程中,领域函数θ(u,v,s)和学习率α(s)随着迭代次数增加而减小。Among them, W v is the weight vector of neuron v, s is the current iteration number, u is the index number corresponding to the BMU, D is the input vector set, and t is the index number of the current input vector. θ(u, v, s) is the domain function and α(s) is the learning rate. It should be noted that during the training process of the self-organizing map network, the domain function θ(u, v, s) and the learning rate α(s) decrease with the increase of the number of iterations.
在本实施例中,预设的第一自组织映射网络是以脉冲特征集合为输入向量训练收敛状态的网络,用于将脉冲特征集合中所有脉冲按照各自的脉冲特征信息进行聚类。在本实施例中,获得待检测材料的有效脉冲特征集合和扫描点索引集合后,通过将待检测材料的有效脉冲特征集合中记载的脉冲特征数据作为输入向量输入到该预设的第一自组织映射网络中,采用该第一自组织映射网络对有效脉冲特征集合中的每个有效脉冲特征进行特征信息聚类处理,生成一个第一聚类类型集合,该第一聚类类型集合中记载有聚类获得的若干数量个聚类类型,聚类类型的数量根据第一自组织映射网络的聚类结果确定。In this embodiment, the preset first self-organizing mapping network is a network in which the pulse feature set is used as an input vector to train a convergent state, and is used to cluster all pulses in the pulse feature set according to their respective pulse feature information. In this embodiment, after obtaining the effective pulse feature set and the scanning point index set of the material to be detected, the pulse feature data recorded in the effective pulse feature set of the material to be detected is input as an input vector into the preset first self- In the organizational mapping network, the first self-organizing mapping network is used to perform feature information clustering processing on each effective pulse feature in the effective pulse feature set, and a first cluster type set is generated, and the first cluster type set records There are a number of cluster types obtained by clustering, and the number of cluster types is determined according to the clustering result of the first self-organizing mapping network.
S13:根据所述第一聚类类型集合,采用预设的第二自组织映射网络对所述扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成第二聚类类型集合。S13: According to the first cluster type set, use a preset second self-organizing mapping network to perform pulse type clustering processing on each scan point in the scan point index set to generate a second cluster type set.
本实施例中,预设的第二自组织映射网络是以编码矩阵为输入向量训练至收敛状态的网络,用于将扫描点索引集合中的每个扫描点按照脉冲类型进行聚类,实现对扫描点进行分类。在本实施例中,请一并参阅图5,图5为编码矩阵的一种结构示意图。如图5所示,第一自组织映射网络生成第一聚类类型集合后,假设第一聚类类型集合为C1(i)(i=1,2,...,m),即集合中包含有m个聚类类型。假设扫描点索引集合为NP(i)(i=1,2,...,n),即集合中包含有n个扫描点,此时,根据第一聚类类型集合和扫描点索引集合,通过对每个扫描点的太赫兹波形信息进行编码,可以构建获得一个m*n的编码矩阵。获得编码矩阵后,将该编码矩阵作为输入向量输入至第二自组织映射网络中,以采用该第二自组织映射网络扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成一个第二聚类类型集合,该第二聚类类型集合中记载有聚类获得的每个扫描点对应的脉冲类型。可以理解的是,在本实施例中,m=SX1·SY1,n=Nx·Ny。其中,SX1和SY1为第一自组织映射网络中竞争层的两个尺寸参数,Nx和Ny为二维扫描时两个扫描方向的扫描步数。In this embodiment, the preset second self-organizing mapping network is a network that is trained to a convergent state by using the encoding matrix as an input vector, and is used to cluster each scan point in the scan point index set according to the pulse type, so as to realize the Scan points for classification. In this embodiment, please refer to FIG. 5 , which is a schematic structural diagram of an encoding matrix. As shown in FIG. 5 , after the first self-organizing mapping network generates the first cluster type set, it is assumed that the first cluster type set is C 1 (i) (i=1, 2, . . . , m), that is, the set contains m cluster types. Assuming that the set of scan point indices is N P (i) (i=1, 2,...,n), that is, the set contains n scan points, at this time, according to the first cluster type set and the set of scan point indices , by encoding the terahertz waveform information of each scan point, an m*n encoding matrix can be constructed and obtained. After the encoding matrix is obtained, the encoding matrix is input into the second self-organizing mapping network as an input vector, so as to use each scan point in the second self-organizing mapping network scan point index set to perform pulse type clustering processing to generate a The second cluster type set, where the pulse type corresponding to each scan point obtained by clustering is recorded in the second cluster type set. It can be understood that, in this embodiment, m=S X1 ·S Y1 , and n=N x ·N y . Among them, S X1 and S Y1 are two size parameters of the competition layer in the first self-organizing mapping network, and N x and N y are the scanning steps in two scanning directions during two-dimensional scanning.
示例性的,构建编码矩时,若扫描点k的反射波形中包含有第一自组织映射网络中类型为j的有效脉冲,则编码矩阵中对应的元素赋值为1,否则,赋值为0。具体数学表达式如下:Exemplarily, when constructing the encoding moment, if the reflected waveform of the scanning point k contains a valid pulse of type j in the first self-organizing mapping network, the corresponding element in the encoding matrix is assigned a value of 1, otherwise, the value is assigned a value of 0. The specific mathematical expression is as follows:
在本实施例中,获得编码矩阵后,编码矩阵可以表示为集合D2(i)=[P(1,i),P(2,i),...,P(m,i)]T(i=1,2,...,n),该集合中包括了所有扫描点包含的有效脉冲类型。In this embodiment, after the coding matrix is obtained, the coding matrix can be expressed as a set D 2 (i)=[P(1,i), P(2,i),...,P(m,i)] T (i=1, 2, . . . , n), the set includes valid pulse types contained in all scan points.
S14:根据所述第二聚类类型集合,对所述待检测材料进行成像处理,生成所述待检测材料的成像结果图。S14: Perform imaging processing on the to-be-detected material according to the second cluster type set to generate an imaging result map of the to-be-detected material.
本实施例中,获取得到第二聚类类型集合后,第二聚类类型集合中记载有每个扫描点对应的脉冲类型。在本实施例中,可以通过将每个扫描点对应脉冲类型转换为图像矩阵的图像像素值,在对待检测材料进行成像处理时,通过对待检测材料的图像矩阵按照扫描点进行对应的像素填充,将每个扫描点对应的图像像素值填充至该待检测材料的图像矩阵中对应的扫描点位置处,即可生成待检测材料的成像结果图。In this embodiment, after the second cluster type set is obtained, the pulse type corresponding to each scan point is recorded in the second cluster type set. In this embodiment, by converting the pulse type corresponding to each scanning point into the image pixel value of the image matrix, when performing imaging processing on the material to be detected, the image matrix of the material to be detected can be filled with corresponding pixels according to the scanning points, The image pixel value corresponding to each scan point is filled to the corresponding scan point position in the image matrix of the material to be detected, and then an imaging result map of the material to be detected can be generated.
可以理解的是,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。It can be understood that the size of the sequence number of each step in the above-mentioned embodiment does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not constitute any implementation process of the embodiments of the present application. limited.
本申请的一些实施例中,请参阅图6,图6为本申请实施例提供的一种材料检测装置的基础结构框图。本实施例中该装置包括的各单元用于执行上述方法实施例中的各步骤。具体请参阅上述方法实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。如图6所示,材料检测装置包括:提取模块61、第一聚类模块62、第二聚类模块63以及成像模块64。其中:所述提取模块61用于获取待检测材料的太赫兹反射波形数据,从所述太赫兹反射波形数据中提取出有效脉冲特征并获取所述有效脉冲特征所对应的扫描点索引,生成所述待检测材料的有效脉冲特征集合和扫描点索引集合。所述第一聚类模块62用于采用预设的第一自组织映射网络对所述有效脉冲特征集合中的每个有效脉冲特征进行特征信息聚类处理,生成第一聚类类型集合。所述第二聚类模块63用于根据所述第一聚类类型集合,采用预设的第二自组织映射网络对所述扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成第二聚类类型集合。所述成像模块64用于根据所述第二聚类类型集合,对所述待检测材料进行成像处理,生成所述待检测材料的成像结果图。In some embodiments of the present application, please refer to FIG. 6 , which is a block diagram of the basic structure of a material detection apparatus provided by an embodiment of the present application. In this embodiment, each unit included in the apparatus is used to execute each step in the foregoing method embodiment. For details, please refer to the relevant descriptions in the foregoing method embodiments. For convenience of explanation, only the parts related to this embodiment are shown. As shown in FIG. 6 , the material detection device includes: an
本申请的一些实施例中,请参阅图7,图7为本申请实施例提供的材料检测装置的第一种细化结构框图。如图7所示,材料检测装置还包括扫描子模块71和反卷积子模块72。其中,所述扫描子模块71用于采用太赫兹成像设备对所述待检测材料进行太赫兹波扫描,生成所述待检测材料的双极性脉冲数据。所述反卷积子模块72用于对所述双极性脉冲数据进行反卷积处理,生成对应的单极性脉冲数据,将所述单极性脉冲数据获取为所述待检测材料的太赫兹反射波形数据。In some embodiments of the present application, please refer to FIG. 7 , which is a block diagram of a first refined structure of the material detection apparatus provided by the embodiments of the present application. As shown in FIG. 7 , the material detection device further includes a
本申请的一些实施例中,请参阅图8,图8为本申请实施例提供的材料检测装置的第二种细化结构框图。如图8所示,材料检测装置还包括比较子模块81和提取子模块82。其中,所述比较子模块81用于从所述太赫兹反射波形数据中提取每个扫描点对应的脉冲峰值,分别将所述每个扫描点对应的脉冲峰值与预设的峰值阈值进行比较,若所述脉冲峰值大于预设的峰值阈值,则将所述脉冲峰值确定为有效脉冲特征。所述提取子模块82用于将所有被确定为有效脉冲特征的脉冲峰值进行集合,生成有效脉冲峰值集合,并根据所述有效脉冲峰值集合,从所述太赫兹反射波形数据中提取出与所述有效脉冲峰值集合中的每个脉冲峰值对应的峰值时间,将所述每个脉冲峰值对应的峰值时间进行集合,生成有效脉冲峰值时间集合。In some embodiments of the present application, please refer to FIG. 8 . FIG. 8 is a second detailed structural block diagram of the material detection apparatus provided by the embodiments of the present application. As shown in FIG. 8 , the material detection device further includes a
应当理解的是,上述材料检测装置,与上述的材料检测方法一一对应,此处不再赘述。It should be understood that the above-mentioned material detection device corresponds to the above-mentioned material detection method one by one, and details are not repeated here.
本申请的一些实施例中,请参阅图9,图9为本申请实施例提供的一种电子设备的基本结构框图。如图9所示,该实施例的电子设备9包括:处理器91、存储器92以及存储在所述存储器92中并可在所述处理器91上运行的计算机程序93,例如材料检测方法的程序。处理器91执行所述计算机程序93时实现上述各个材料检测方法各实施例中的步骤。或者,所述处理器91执行所述计算机程序93时实现上述材料检测装置对应的实施例中各模块的功能。具体请参阅实施例中的相关描述,此处不赘述。In some embodiments of the present application, please refer to FIG. 9 , which is a basic structural block diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 9 , the electronic device 9 of this embodiment includes: a
示例性的,所述计算机程序93可以被分割成一个或多个模块(单元),所述一个或者多个模块被存储在所述存储器92中,并由所述处理器91执行,以完成本申请。所述一个或多个模块可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序93在所述电子设备9中的执行过程。例如,所述计算机程序93可以被分割成:Exemplarily, the
提取模块,用于获取待检测材料的太赫兹反射波形数据,从所述太赫兹反射波形数据中提取出有效脉冲特征并获取所述有效脉冲特征所对应的扫描点索引,生成所述待检测材料的有效脉冲特征集合和扫描点索引集合;The extraction module is used to obtain the terahertz reflection waveform data of the material to be detected, extract the effective pulse feature from the terahertz reflection waveform data, obtain the scanning point index corresponding to the effective pulse feature, and generate the material to be detected The effective pulse feature set and scan point index set of ;
第一聚类模块,用于采用预设的第一自组织映射网络对所述有效脉冲特征集合中的每个有效脉冲特征进行特征信息聚类处理,生成第一聚类类型集合;a first clustering module, configured to use a preset first self-organizing mapping network to perform feature information clustering processing on each valid pulse feature in the valid pulse feature set to generate a first cluster type set;
第二聚类模块,用于根据所述第一聚类类型集合,采用预设的第二自组织映射网络对所述扫描点索引集合中的每个扫描点进行脉冲类型聚类处理,生成第二聚类类型集合;The second clustering module is configured to, according to the first clustering type set, use a preset second self-organizing mapping network to perform pulse type clustering processing on each scan point in the scan point index set, and generate a second clustering module. Binary cluster type set;
成像模块,用于根据所述第二聚类类型集合,对所述待检测材料进行成像处理,生成所述待检测材料的成像结果图。An imaging module, configured to perform imaging processing on the to-be-detected material according to the second cluster type set to generate an imaging result map of the to-be-detected material.
所述电子设备可包括,但不仅限于,处理器91、存储器92。本领域技术人员可以理解,图9仅仅是电子设备9的示例,并不构成对电子设备9的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述电子设备还可以包括输入输出设备、网络接入设备、总线等。The electronic device may include, but is not limited to, a
所述处理器91可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The
所述存储器92可以是所述电子设备9的内部存储单元,例如电子设备9的硬盘或内存。所述存储器92也可以是所述电子设备9的外部存储设备,例如所述电子设备9上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器92还可以既包括所述电子设备9的内部存储单元也包括外部存储设备。所述存储器92用于存储所述计算机程序以及所述电子设备所需的其他程序和数据。所述存储器92还可以用于暂时地存储已经输出或者将要输出的数据。The
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。It should be noted that the information exchange, execution process and other contents between the above-mentioned devices/units are based on the same concept as the method embodiments of the present application. For specific functions and technical effects, please refer to the method embodiments section. It is not repeated here.
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。在本实施例中,所述计算机可读存储介质可以是非易失性,也可以是易失性。Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the steps in the foregoing method embodiments can be implemented. In this embodiment, the computer-readable storage medium may be non-volatile or volatile.
本申请实施例提供了一种计算机程序产品,当计算机程序产品在移动终端上运行时,使得移动终端执行时实现可实现上述各个方法实施例中的步骤。The embodiments of the present application provide a computer program product, when the computer program product runs on a mobile terminal, the steps in the foregoing method embodiments can be implemented when the mobile terminal executes the computer program product.
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and simplicity of description, only the division of the above-mentioned functional units and modules is used as an example. Module completion, that is, dividing the internal structure of the device into different functional units or modules to complete all or part of the functions described above. Each functional unit and module in the embodiment may be integrated in one processing unit, or each unit may exist physically alone, or two or more units may be integrated in one unit, and the above-mentioned integrated units may adopt hardware. It can also be realized in the form of software functional units. In addition, the specific names of the functional units and modules are only for the convenience of distinguishing from each other, and are not used to limit the protection scope of the present application. For the specific working processes of the units and modules in the above-mentioned system, reference may be made to the corresponding processes in the foregoing method embodiments, which will not be repeated here.
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。The integrated modules/units, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium. Based on this understanding, the present application can implement all or part of the processes in the methods of the above embodiments, and can also be completed by instructing the relevant hardware through a computer program. The computer program can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps of the foregoing method embodiments can be implemented. Wherein, the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form, and the like. The computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a U disk, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electric carrier signal, telecommunication signal and software distribution medium, etc. It should be noted that the content contained in the computer-readable media may be appropriately increased or decreased according to the requirements of legislation and patent practice in the jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, the computer-readable media Excluded are electrical carrier signals and telecommunication signals.
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。In the foregoing embodiments, the description of each embodiment has its own emphasis. For parts that are not described or described in detail in a certain embodiment, reference may be made to the relevant descriptions of other embodiments.
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。The above-mentioned embodiments are only used to illustrate the technical solutions of the present application, but not to limit them; although the present application has been described in detail with reference to the above-mentioned embodiments, those of ordinary skill in the art should understand that: it can still be used for the above-mentioned implementations. The technical solutions described in the examples are modified, or some technical features thereof are equivalently replaced; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the spirit and scope of the technical solutions in the embodiments of the application, and should be included in the within the scope of protection of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210481917.2A CN114897015B (en) | 2022-05-05 | 2022-05-05 | Material testing method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210481917.2A CN114897015B (en) | 2022-05-05 | 2022-05-05 | Material testing method, device, equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114897015A true CN114897015A (en) | 2022-08-12 |
CN114897015B CN114897015B (en) | 2025-01-21 |
Family
ID=82718987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210481917.2A Active CN114897015B (en) | 2022-05-05 | 2022-05-05 | Material testing method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114897015B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112548A (en) * | 2009-11-27 | 2011-06-09 | Sony Corp | Biosample analysis method, biosample analyzer, and biosample analysis program |
US20190078873A1 (en) * | 2016-04-04 | 2019-03-14 | Tetechs Inc. | Methods and systems for thickness measurement of multi-layer structures |
CN110579483A (en) * | 2019-09-24 | 2019-12-17 | 清华大学深圳国际研究生院 | Terahertz wave-based internal defect imaging device and method and readable storage medium |
US20200049620A1 (en) * | 2018-03-12 | 2020-02-13 | Tsinghua University | Terahertz antenna based on muti-frequency transmission switching and spectral detection device thereof |
CN114397267A (en) * | 2022-01-18 | 2022-04-26 | 清华大学深圳国际研究生院 | Terahertz imaging optimization method, computer device and storage medium |
-
2022
- 2022-05-05 CN CN202210481917.2A patent/CN114897015B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011112548A (en) * | 2009-11-27 | 2011-06-09 | Sony Corp | Biosample analysis method, biosample analyzer, and biosample analysis program |
US20190078873A1 (en) * | 2016-04-04 | 2019-03-14 | Tetechs Inc. | Methods and systems for thickness measurement of multi-layer structures |
US20200049620A1 (en) * | 2018-03-12 | 2020-02-13 | Tsinghua University | Terahertz antenna based on muti-frequency transmission switching and spectral detection device thereof |
CN110579483A (en) * | 2019-09-24 | 2019-12-17 | 清华大学深圳国际研究生院 | Terahertz wave-based internal defect imaging device and method and readable storage medium |
CN114397267A (en) * | 2022-01-18 | 2022-04-26 | 清华大学深圳国际研究生院 | Terahertz imaging optimization method, computer device and storage medium |
Non-Patent Citations (1)
Title |
---|
陈韬;孟坤;朱礼国;李泽仁;刘乔;: "基于太赫兹光谱成像技术的智能处理方法分析", 太赫兹科学与电子信息学报, no. 01, 25 February 2016 (2016-02-25) * |
Also Published As
Publication number | Publication date |
---|---|
CN114897015B (en) | 2025-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110163813B (en) | Image rain removing method and device, readable storage medium and terminal equipment | |
Rosin | Image processing using 3-state cellular automata | |
Dev et al. | Categorization of cloud image patches using an improved texton-based approach | |
CN110674835A (en) | A terahertz imaging method and system and a non-destructive testing method and system | |
KR20080021592A (en) | Image comparison by metric embedding | |
CN112116568B (en) | Image quality evaluation method, device and storage medium | |
CN111563577B (en) | Unet-based intrinsic image decomposition method for skip layer frequency division and multi-scale identification | |
CN110070115A (en) | A kind of single pixel attack sample generating method, device, equipment and storage medium | |
CN106650765A (en) | Hyperspectral data classification method through converting hyperspectral data to gray image based on convolutional neural network | |
CN117237256B (en) | Shallow sea coral reef monitoring data acquisition method, device and equipment | |
Li et al. | Infrared and visible image fusion using a shallow CNN and structural similarity constraint | |
CN110807428B (en) | Coal sample identification method, device, server and storage medium | |
Ren et al. | Similarity modulated block estimation for image interpolation | |
Zheng et al. | Image interpolation with adaptive k‐nearest neighbours search and random non‐linear regression | |
CN118691958B (en) | Aquatic product region monitoring analysis method and related device based on machine vision | |
CN114897015A (en) | Material detection method, device, equipment and storage medium | |
Hoang Khoa et al. | Detect Android malware by using deep learning: Experiment and Evaluation | |
CN117274687A (en) | Deep learning-based mildewed wheat THz image detection method, readable storage medium and electronic equipment | |
CN115082755B (en) | A convolutional neural network forward-looking sonar image recognition method based on data increment | |
Wang | Optimizing support vector machine (SVM) by social spider optimization (SSO) for edge detection in colored images | |
Tian et al. | Recognition method of corn and rice crop growth state based on computer image processing technology | |
Song et al. | A comprehensively improved local binary pattern framework for texture classification | |
Hu et al. | Terahertz super-resolution nondestructive detection algorithm based on edge feature convolution network | |
Zhang et al. | DomAda-FruitDet: Domain-Adaptive Anchor-Free Fruit Detection Model for Auto Labeling | |
CN112287136B (en) | Image feature index library establishment method and similar image determination method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |