[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN114883505A - 显示面板 - Google Patents

显示面板 Download PDF

Info

Publication number
CN114883505A
CN114883505A CN202210474317.3A CN202210474317A CN114883505A CN 114883505 A CN114883505 A CN 114883505A CN 202210474317 A CN202210474317 A CN 202210474317A CN 114883505 A CN114883505 A CN 114883505A
Authority
CN
China
Prior art keywords
sublayer
light
display panel
film
emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210474317.3A
Other languages
English (en)
Inventor
夏国奇
金武谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Original Assignee
Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd filed Critical Wuhan China Star Optoelectronics Semiconductor Display Technology Co Ltd
Priority to CN202210474317.3A priority Critical patent/CN114883505A/zh
Priority to US17/781,055 priority patent/US20240206204A1/en
Priority to PCT/CN2022/094905 priority patent/WO2023206676A1/zh
Publication of CN114883505A publication Critical patent/CN114883505A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种显示面板,显示面板包括衬底、第一电极、发光层和第二电极。其中,第一电极设置在衬底上。发光层设置在第一电极远离衬底的一面。发光层包括依次层叠设置在第一电极上的空穴注入子层、空穴传输子层、发光子层、电子传输子层以及电子注入子层。其中,发光子层的薄膜致密性参数大于或等于第一阈值,薄膜致密性参数由单位受力条件下薄膜产生的形变量决定。本申请的发明人发现,当发光子层的薄膜致密性参数大于或等于第一阈值时,薄膜致密性参数和显示面板的寿命正相关,薄膜致密性参数越大,薄膜致密度越高,显示面板的使用寿命越长。

Description

显示面板
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板。
背景技术
有机发光二极管(Organic Light Emitting Diodes,OLED)显示面板具有自发光、快响应、广视角等特点,应用前景非常广阔。
在现有的OLED显示面板的结构设计策略中,更多考虑的是各个功能层的分子轨道能级排列形式,但是,优化能级排列形式更多的是优化OLED器件的效率,然而,效率并不是限制蓝色磷光OLED器件大规模商用的主要原因,是因为现有的蓝色磷光OLED器件的寿命普遍较短,才导致蓝色磷光OLED发光器件得不到广泛应用。
发明内容
本申请实施例提供一种显示面板,用于提高显示面板的使用寿命。
本申请实施例提供一种显示面板,包括:
衬底,
第一电极,设置在所述衬底上;
发光层,设置在所述第一电极远离所述衬底的一面,所述发光层包括依次层叠设置的空穴注入子层、空穴传输子层、发光子层、电子传输子层、以及电子注入子层;
第二电极,设置在所述发光层远离所述衬底的一面;
其中,所述发光子层的薄膜致密性参数大于或等于第一阈值,所述薄膜致密性参数由单位受力条件下薄膜产生的形变量决定。
可选的,在本申请提供的一些实施例中,所述薄膜致密性参数由所述薄膜的厚度方向上,所述单位受力条件下,所述薄膜的受力部分产生的厚度形变量决定。
可选的,在本申请提供的一些实施例中,所述薄膜致密性参数可以由如下公式计算得到:
X=ΔF/ΔH,
其中,ΔF为薄膜的厚度方向上的不同作用力的差值;ΔH为薄膜的受力部分在不同作用力下的厚度差值。
可选的,在本申请提供的一些实施例中,所述第一阈值为-1.7,所述发光子层的所述薄膜致密性参数小于0。
可选的,在本申请提供的一些实施例中,所述发光子层在所述显示面板通电工作状态下,其尺寸形变幅度与所述发光子层原有形状尺寸之间的比值小于或等于5%。
可选的,在本申请提供的一些实施例中,所述发光子层在所述显示面板通电工作状态下,其厚度膨胀幅度与所述发光子层原有厚度之间的比值小于或等于5%。
可选的,在本申请提供的一些实施例中,所述发光子层在加热状态下,其尺寸形变幅度与所述发光子层原有形状尺寸之间的比值小于或等于10%。
可选的,在本申请提供的一些实施例中,所述发光子层在加热状态下,其厚度膨胀幅度与所述发光子层原有厚度之间的比值小于或等于10%。
可选的,在本申请提供的一些实施例中,所述空穴传输子层和所述发光子层的最高占据轨道的能级差小于或等于0.2eV,所述电子传输子层和所述发光子层的最低空轨道的能级差小于等于0.2eV。
可选的,在本申请提供的一些实施例中,所述发光子层包括蓝色磷光发光材料或蓝色荧光发光材料。
本申请实施例提供一种显示面板,显示面板包括衬底、第一电极、发光层和第二电极。其中,第一电极设置在衬底上。发光层设置在第一电极远离衬底的一面。发光层包括依次层叠设置在第一电极上的空穴注入子层、空穴传输子层、发光子层、电子传输子层以及电子注入子层。其中,发光子层的薄膜致密性参数大于或等于第一阈值,薄膜致密性参数由单位受力条件下薄膜产生的形变量决定。本申请的发明人发现,当发光子层的薄膜致密性参数大于或等于第一阈值时,薄膜致密性参数和显示面板的寿命正相关,薄膜致密性参数越大,薄膜致密度越高,显示面板的寿命越长。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示面板的一种结构示意图;
图2为本实施例利用原子力显微镜对发光子层的薄膜致密性参数进行表征的示意图;
图3为本申请实施例提供的以mCP为发光子层的主体材料拟合的线性关系;
图4为本申请实施例提供的有机发光材料的化学结构式;
图5为本申请实施例提供的显示面板的一种能级排布方式图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,请参照附图中的图式,其中相同的组件符号代表相同的组件,以下的说明是基于所示的本申请具体实施例,其不应被视为限制本申请未在此详述的其他具体实施例。本说明书所使用的词语“实施例”意指实例、示例或例证。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请实施例提供一种显示面板。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
下面通过具体实施例对本申请提供的显示面板进行详细的阐述。
请参考图1,图1为本申请实施例提供显示面板的一种结构示意图。本申请实施例提供一种显示面板,显示面板100包括衬底101、第一电极102、发光层103和第二电极104。其中,第一电极102设置在衬底101上。发光层103设置在第一电极102远离衬底101的一面。发光层103包括依次层叠设置在第一电极102上的空穴注入子层1031、空穴传输子层1032、发光子层1033、电子传输子层1034以及电子注入子层1035。其中,发光子层1033的薄膜致密性参数大于或等于第一阈值,薄膜致密性参数由单位受力条件下薄膜产生的形变量决定。
本申请的发明人发现,当发光子层1033的薄膜致密性参数大于或等于第一阈值时,薄膜致密性参数和显示面板100的寿命正相关,薄膜致密性参数越大,薄膜致密度越高,显示面板100的寿命越长。
应该理解的是,在本申请实施例中,薄膜致密性参数和薄膜致密度有关,薄膜致密度越高,则薄膜致密性参数越大,显示面板100的寿命越长。
需要说明的是,在本申请实施例中,单位受力包括但不限于对发光子层1033施加的作用力,这里的单位受力是指对发光子层1033施加计量用的最小单元的作用力,例如1N、2N、5N、10N等。
需要说明的是,在本申请实施例中,薄膜产生的形变量包括但不限于薄膜的厚度的形变量。
在一些实施例中,薄膜致密性参数由薄膜的厚度方向上,单位受力条件下,薄膜的受力部分产生的厚度形变量决定。具体的,薄膜致密性参数可以由如下公式计算得到:X=ΔF/ΔH,其中,X为薄膜致密性参数,ΔF为薄膜的厚度方向上的不同作用力的差值;ΔH为薄膜的受力部分在不同作用力下的厚度差值,0>X≥-1.7N/cm。
也就是说,第一阈值为-1.7,当薄膜致密性参数大于等于-1.7,且小于0时,薄膜致密性参数越大,则薄膜的致密度越高,显示面板100的寿命越长。
其中,ΔF可以为对同一受力部分施加两个不同的作用力的差值,ΔH为对应于两个不同作用力所对应的厚度的差值。或者,ΔF为对两个不同的受力部分施加的作用力的差值,ΔH为对应于两个不同作用力所对应的厚度的差值。
需要说明的是,在本申请实施例中,薄膜的单位受力越大,则对应的薄膜的厚度越小。
在本申请中,可以利用原子力显微镜对发光子层1033的薄膜致密性参数进行表征。在原子力显微镜的表征下,发光子层1033的厚度与发光子层1033受到的原子力显微镜的探针的作用力之间呈线性关系,线性关系的斜率即为薄膜致密性参数。
具体的,利用原子力显微镜对发光子层1033进行表征,然后,建立发光子层1033的厚度与发光子层1033受到的原子力显微镜的探针的作用力之间的线性关系,线性关系的斜率越大,则发光子层1033的薄膜的致密度越大,则显示面板100的寿命越长。
请参考图2,图2为本实施例利用原子力显微镜对发光子层的薄膜致密性参数进行表征的示意图。对发光子层1033的薄膜致密性参数进行评价具体包括利用原子力显微镜表征的发光子层1033。
原子力显微镜表征发光子层1033的过程可以包括在基底S上设置发光子层1033,然后,利用探针P对发光子层1033的相对厚度进行检测。其中,在基底S上设置发光子层1033包括在基底S上设置聚酰亚胺层PI,聚酰亚胺层PI覆盖基底S的一部分。随后,在基底S上蒸镀发光子层1033,发光子层1033覆盖聚酰亚胺层PI和基底S,然后再将聚酰亚胺层PI撕除,以此在基底S上制得发光子层1033。在本申请实施例中,发光子层1033仅覆盖基底S的一部分,以此形成高度差,用于测量发光子层1033的相对厚度。利用探针P对发光子层1033的相对厚度进行检测的步骤包括:首先,随机选取发光子层1033上的任意一点,探针P对其施加第一作用力,然后利用第一作用力探针P施加至基底S上,测得发光子层1033的第一相对厚度。随后,随机选取发光子层1033上的另一点,探针P对其施加第二作用力,然后利用第二作用力探针P施加至基底S上,测得发光子层1033的第二相对厚度。以此反复,利用第三作用力测得发光子层1033的第三相对厚度,利用第四作用力测得发光层的第四相对厚度。利用第N作用力测得发光子层1033的第N相对厚度。最后,以发光子层1033受到的探针的作用力为横坐标,以发光子层1033的厚度为纵坐标,所拟合的线性关系的斜率作为发光子层1033的薄膜的致密性参数。斜率越大则发光子层1033的薄膜致密度越大,则显示面板100的寿命越长。
在本申请实施例中,发光子层1033的厚度随着发光子层1033受到的探针P的作用力的增大而减小。发光子层1033受到的探针P的作用力越大,则对应的发光子层1033的厚度越小,本申请实施例以发光子层1033受到的探针P的作用力为横坐标,以发光子层1033的厚度为纵坐标,拟合得到对应的线性关系。
请参考图3,图3为本申请实施例提供的以mCP(N,N-二咔唑基-3,5-苯)为发光子层的发光主体材料拟合的线性关系。在本申请实施例中,以发光子层1033受到的探针的作用力(F)为横坐标,以发光子层1033的厚度(T)为纵坐标,所拟合的线性关系的斜率作为发光子层1033的薄膜致密性参数,其中,斜率为-1.69。
具体的,本申请实施例利用10种不同的有机发光材料作为发光子层1033的主体材料,以此评价发光子层1033的成膜致密度以及发光性能。请参考图4,图4为本申请实施例提供的有机发光材料的化学结构式。有机发光材料包括DCB、CBP、CDBP、CBPE、mCP、BCzph、CzC、4CzPBP、TPBi、BCzTPM、BCPPA、NPB、TAPC和Firpic。
请参阅表一,表一为10种不同的有机发光材料作为发光子层的主体材料的薄膜致密性参数及显示面板的性能测试结果。
表一:
Figure BDA0003624643250000061
Figure BDA0003624643250000071
由表一可知,在相同的条件下利用不同的有机发光材料作为主体材料制得的发光子层1033及显示面板100,在原子力显微镜的表征下,斜率越大,则发光子层1033的薄膜致密度越大。随着发光子层1033的薄膜致密度的升高,对电压和电致发光峰位(EL Peak)的影响较小,外量子效率(EQE)有微弱的提升,寿命提升幅度非常显著。证明发光子层1033的薄膜致密度越高,对蓝色磷光材料的发光性能越有益。
需要说明的是,斜率为利用上述的原子力显微镜作用于发光子层1033的薄膜所测得的。
当斜率大于等于-1.7时,显示面板100的寿命提升幅度非常显著,当然,第一阈值也可以选择-1.65、-1.6、-1.55、-1.5、-1.45、-1.4、-1.35、-1.3、-1.25、-1.2、-1.15等。
相较于红色磷光与绿色磷光材料,蓝色磷光材料的寿命特别短,导致显示面板100整体寿命与可靠性降低。在本申请实施例中,以蓝色磷光材料为例,通过提高蓝色磷光材料的成膜的致密度,从而提高蓝色磷光材料的显示面板100的寿命及可靠性,从而提高市场竞争力。
在一些实施例中,发光子层1033包括但不限于蓝色磷光发光材料或蓝色荧光发光材料。发光子层1033还可以是红色磷光发光材料和绿色磷光发光材料,红色荧光发光材料和绿色荧光发光材料。
在本申请实施例中,利用原子力显微镜对发光子层1033进行表征,建立发光子层1033的厚度与发光子层1033受到的原子力显微镜的探针的作用力之间的线性关系,线性关系的斜率越大,线性关系的斜率为发光子层1033的薄膜的致密性参数,薄膜的致密性参数越大,则发光子层1033的致密度越大,则显示面板100的寿命越长。在本申请实施例中,当发光子层1033的薄膜致密性参数大于等于第一阈值时,显示面板100的寿命大幅度提高。
在本申请的一些实施例中,还可以通过对显示面板100的尺寸形变幅度评价发光子层1033的成膜质量。
为了进一步评价发光子层1033的成膜质量,发光子层1033在显示面板100通电工作状态下,发光子层1033的尺寸变化幅度与原有的形状尺寸之间的比值小于或等于5%。
需要说明的是,发光子层1033的尺寸变化幅度包括但不限于发光子层1033的厚度膨胀幅度。
在一些实施例中,发光子层1033在显示面板100通电工作状态下,其厚度膨胀幅度与发光子层1033原有厚度之间的比值小于或等于5%。
例如,发光子层1033通电工作前具有第一厚度a,显示面板100在预设亮度下点亮预设工作时间后,发光子层1033具有第二厚度b。第二厚度b和第一厚度a的厚度膨胀幅度ω1小于等于5%,其中,ω1=[(b-a)/a]*100%。
在一些实施例中,预设亮度可以是100nit(尼特),预设时间可以是1小时。具体的,显示面板100在100nit的亮度下工作1小时后,利用干涉仪对发亮前后的厚度进行测量。
在一些实施例中,还可以通过加热显示面板100的方式对显示面板100受热前后的厚度进行评价。
其中,发光子层1033在加热状态下,其尺寸形变幅度与发光子层1033原有形状尺寸之间的比值小于或等于10%。
在一些实施例中,发光子层1033在加热状态下,其厚度膨胀幅度与发光子层1033原有厚度之间的比值小于或等于10%。
具体的,加热前的发光子层1033具有第一厚度a,显示面板100在预设温度下加热预设工作时间后,发光子层具有第二厚度c;其中,第二厚度c和第一厚度a的厚度膨胀幅度ω2小于等于10%。其中,ω2=[(c-a)/a]*100%。
预设温度可以是100摄氏度,预设工作时间可以是1小时。具体的,将显示面板100加热至100摄氏度,在100摄氏度下保持1小时,利用干涉仪对加热后的显示面板100的厚度进行测量。
请参考表二,表二为显示面板100通电状态下和加热状态下发光子层的厚度膨胀幅度。
表二:
有机发光材料 ω1 ω2
DCB 7.4% 14.5%
CBP 7.0% 13.7%
CDBP 6.5% 12.4%
CBPE 5.7% 11.5%
mCP 5.1% 10.4%
BCzPh 4.6% 10.1%
CzC 4.1% 9.2%
4CzPBP 3.9% 8.7%
BCzTPM 3.6% 7.9%
BCPPA 3.2% 7.2%
由表二可知,通过干涉仪显示面板100受热前后的厚度进行测量,求得受热前后的厚度膨胀幅度,厚度膨胀幅度越小,说明发光子层1033的成膜质量越好,发光子层1033的薄膜致密度越高,显示面板100的性能越好的器件,受热后的厚度膨胀幅度越小。需要说明的是,在实际应用中,ω1的最大值可以选取为5%、4.5%、4%、3.5%、3%等;ω2的最大值可以选取为10%、9.5%、9%、8.5%、8%、7.5%、7%等。
结合表一和表二可知,发光子层的薄膜致密性参数越高,薄膜致密度越高,发光性能越好的器件,受热后的厚度膨胀幅度越小,显示面板100的寿命越长。
在本申请实施例中,从两个维度对显示面板100的发光层的成膜质量进行评价。包括对发光子层1033的密度进行评价,以及将显示面板100作为整体,对显示面板100受热前后的厚度进行评价。通过两个维度对显示面板100的成膜质量进行评价,表明在原子力显微镜的表征下,斜率越大,发光子层1033的薄膜致密性参数越大,则发光子层1033的密度越大。随着发光子层1033密度的升高,对电压和电致发光峰位(EL Peak)的影响较小,外量子效率(EQE)有微弱的提升,寿命提升幅度非常显著。证明发光子层1033密度越高,对蓝色磷光材料的发光性能越有益。通过干涉仪对完整的显示面板受热前后的厚度进行测量,求得受热前后的厚度膨胀幅度,厚度膨胀幅度越小,说明发光子层1033的成膜质量越好,发光层密度越高,发光性能越好的器件,受热后的厚度膨胀幅度越小。
请参考图5,图5为本申请实施例提供的显示面板的一种能级排布方式图。在一些实施例中,空穴传输子层1032、发光子层1033和电子传输子层1034的最低空轨道能级和最高占据轨道能级依次减小。
在本申请实施例中,由于空穴传输子层1032、发光子层1033和电子传输子层1034的最低空轨道能级和最高占据轨道能级依次减小,即各个相邻有机膜层材料的最高占据轨道(The Highest Occupied Molecular Orbitals)能级和最低空轨道(The LowestUnoccupied Molecular Orbitals)能级呈阶梯式排列,这样的排列方式有利于载流子的平衡注入和传输,降低能级势垒,从而提高显示面板100的发光效率,进而获得最优的器件性能。
需要说明的是,最高占据轨道指的是在电子占有的分子轨道中,能量最高的分子轨道叫做最高占据轨道,也叫最高占有分子轨道。在未被电子占据的分子轨道中,能量最低的分子轨道称为最低空轨道。
在一些实施例中,电子、空穴能够以1:1的比例平衡注入,实现电子空穴的高效利用。
其中,为了降低从第一电极102注入空穴的势垒,使空穴能从第一电极102有效地注入到显示面板100中。空穴的传输速率一般是大于电子的传输速率,为了让从电极注入的电子和空穴的复合发生在发光子层1033中,空穴传输子层1032及发光子层1033能级结构匹配,且匹配空穴迁移速度。为了降低从第二电极104注入电子的势垒,使电子能从第二电极104有效地注入到显示面板100中。因此,在选择电子注入子层1035材料的时候,为了使电子能从第二电极104有效地注入到显示面板100中。降低从阳极注入空穴的势垒,使空穴能从阳极有效地注入到OLED器件中。因此,在选择电子注入层材料的时候,需要考虑材料能级和第二电极104材料的匹配。
在一些实施例中,空穴注入子层1031、所述空穴传输子层1032、发光子层1033、电子传输子层1034和电子注入子层1035的最低空轨道能级和最高占据轨道能级依次减小。这样的排列方式有利于载流子的平衡注入和传输,降低能级势垒,从而进一步提高显示面板100的发光效率,进而获得最优的器件性能。
在一些实施例中,空穴传输子层1032和发光子层1033的最高占据轨道的能级差小于或等于0.2eV,电子传输子层1034和发光子层1033的最低空轨道的能级差小于等于0.2eV。从而减小相邻的有机膜层间的势垒,进一步提高显示面板100的发光效率。
具体的,空穴传输子层1032和发光子层1033的最高占据轨道的能级差可以是0.05eV、0.08eV、0.12eV、0.15eV、0.18eV或0.2eV中的任意一者。空穴传输子层1032和发光子层1033的最低空轨道的能级差可以是0.05eV、0.08eV、0.12eV、0.15eV、0.18eV或0.2eV中的任意一者。从而减小相邻的有机膜层间的势垒,进一步提高显示面板100的发光效率。
在一些实施例中,显示面板100还包括薄膜晶体管结构层,薄膜晶体管结构层设置在衬底101上,薄膜晶体管结构层用于驱动显示面板100发光。
在一些实施例中,第一电极102为阳极,第一电极102的材料包括:氧化铟锡材料和银,具体可以为氧化铟锡、银、氧化铟锡三层叠层结构。第二电极104为阴极,第二电极104的材料为镁银合金。
相应的,本申请实施例还提供一种显示面板的制作方法,显示面板100的制作方法包括以下步骤:
步骤B001:提供第一电极,其中,第一电极包括氧化铟锡材料和银。
在步骤B001之后,还包括在第一电极上形成空穴注入子层和空穴传输子层,其中,空穴传输子层的材料可以是NPB(N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺),其厚度介于30纳米至60纳米。在一具体的实施例中,空穴传输子层的厚度可以是45纳米。
随后,在空穴传输子层上形成电子阻挡层,电子阻挡层的材料可以是TAPC(4,4'-环己基二[N,N-二(4-甲基苯基)苯胺])。电子阻挡层的厚度为可以介于2纳米至10纳米。在一具体的实施例中,电子阻挡层的厚度可以是5纳米。
步骤B002:在电子阻挡层上形成发光子层,发光子层为有机发光材料,其掺杂的有机发光材料的浓度小于2%。发光子层的蒸镀速率小于等于1.5埃/秒。在一实施例中,发光子层的蒸镀速率为1.0埃/秒。其中,有机发光材料的主体材料可以是DCB、CBP、CDBP、CBPE、mCP、BCzph、CzC、4CzPBP、TPBi、BCzTPM、BCPPA、NPB、TAPC、和Firpic中的至少一种,其中,有机发光材料的化学结构式如图4所示。发光字层的厚度可以介于10纳米至30纳米。在一具体的实施例中,发光字层的厚度可以是20纳米。
在步骤B002之后,还包括在发光子层远离第一电极的一面依次形成电子传输子层和电子注入子层。其中,电子传输子层的材料可以是TPBi(1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯),电子传输子层的厚度介于20纳米至40纳米。在一具体的实施例中,电子传输子层的厚度可以是35纳米。
步骤B003:在发光子层远离第一电极的一面蒸镀第二电极。其中,第二电极的材料可以包括镁银合金。第二电极的蒸镀速率小于或等于3埃/秒,在一实施例中,第二电极的蒸镀速率可以是2埃/秒。第二电极的厚度介于50纳米至150纳米,例如,第二电极的厚度可以是100纳米。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (10)

1.一种显示面板,其特征在于,包括:
衬底,
第一电极,设置在所述衬底上;
发光层,设置在所述第一电极远离所述衬底的一面,所述发光层包括依次层叠设置的空穴注入子层、空穴传输子层、发光子层、电子传输子层、以及电子注入子层;
第二电极,设置在所述发光层远离所述衬底的一面;
其中,所述发光子层的薄膜致密性参数大于或等于第一阈值,所述薄膜致密性参数由单位受力条件下薄膜产生的形变量决定。
2.根据权利要求1所述的显示面板,其特征在于,所述薄膜致密性参数由所述薄膜的厚度方向上,所述单位受力条件下,所述薄膜的受力部分产生的厚度形变量决定。
3.根据权利要求2所述的显示面板,其特征在于,所述薄膜致密性参数可以由如下公式计算得到:
X=ΔF/ΔH,
其中,ΔF为薄膜的厚度方向上的不同作用力的差值;ΔH为薄膜的受力部分在不同作用力下的厚度差值。
4.根据权利要求3所述的显示面板,其特征在于,所述第一阈值为-1.7,且所述发光子层的所述薄膜致密性参数小于0。
5.根据权利要求1所述的显示面板,其特征在于,所述发光子层在所述显示面板通电工作状态下,其尺寸形变幅度与所述发光子层原有形状尺寸之间的比值小于或等于5%。
6.根据权利要求5所述的显示面板,其特征在于,所述发光子层在所述显示面板通电工作状态下,其厚度膨胀幅度与所述发光子层原有厚度之间的比值小于或等于5%。
7.根据权利要求1所述的显示面板,其特征在于,所述发光子层在加热状态下,其尺寸形变幅度与所述发光子层原有形状尺寸之间的比值小于或等于10%。
8.根据权利要求7所述的显示面板,其特征在于,所述发光子层在加热状态下,其厚度膨胀幅度与所述发光子层原有厚度之间的比值小于或等于10%。
9.根据权利要求1所述的显示面板,其特征在于,所述空穴传输子层和所述发光子层的最高占据轨道的能级差小于或等于0.2eV,所述电子传输子层和所述发光子层的最低空轨道的能级差小于等于0.2eV。
10.根据权利要求1所述的显示面板,其特征在于,所述发光子层包括蓝色磷光发光材料或蓝色荧光发光材料。
CN202210474317.3A 2022-04-29 2022-04-29 显示面板 Pending CN114883505A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210474317.3A CN114883505A (zh) 2022-04-29 2022-04-29 显示面板
US17/781,055 US20240206204A1 (en) 2022-04-29 2022-05-25 Display panel
PCT/CN2022/094905 WO2023206676A1 (zh) 2022-04-29 2022-05-25 显示面板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210474317.3A CN114883505A (zh) 2022-04-29 2022-04-29 显示面板

Publications (1)

Publication Number Publication Date
CN114883505A true CN114883505A (zh) 2022-08-09

Family

ID=82674451

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210474317.3A Pending CN114883505A (zh) 2022-04-29 2022-04-29 显示面板

Country Status (3)

Country Link
US (1) US20240206204A1 (zh)
CN (1) CN114883505A (zh)
WO (1) WO2023206676A1 (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006878A (ja) * 1999-06-22 2001-01-12 Matsushita Electric Ind Co Ltd 薄膜el素子およびその駆動方法
WO2011097259A1 (en) * 2010-02-05 2011-08-11 Nitto Denko Corporation Organic light-emitting diode with enhanced efficiency
CN102024909A (zh) * 2010-09-27 2011-04-20 电子科技大学 一种发光稳定的有机电致发光器件及其制备方法
CN104025332A (zh) * 2011-11-28 2014-09-03 海洋王照明科技股份有限公司 掺杂有机电致发光器件及其制备方法
CN106856225B (zh) * 2016-12-15 2019-10-15 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置
KR102721689B1 (ko) * 2018-11-09 2024-10-28 삼성디스플레이 주식회사 유기 전계 발광 소자
CN113594379A (zh) * 2020-07-27 2021-11-02 广东聚华印刷显示技术有限公司 电致发光器件及其制作方法和发光装置
CN112599687B (zh) * 2020-12-10 2024-05-07 北京维信诺科技有限公司 一种发光器件及显示装置

Also Published As

Publication number Publication date
US20240206204A1 (en) 2024-06-20
WO2023206676A1 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
US7911129B2 (en) Arrangement for an organic pin-type light-emitting diode and method for manufacturing
Anikeeva et al. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots
Watanabe et al. High-efficiency green phosphorescent organic light-emitting devices with chemically doped layers
Karzazi Organic light emitting diodes: Devices and applications
CN111640878B (zh) 有机发光材料、有机电致发光元件及显示装置
CN100505368C (zh) 具有有机层的荧光发射元件
JP2004231958A (ja) エレクトロルミネセンス素子用のナノ構造ドープ混合物
US20140014896A1 (en) Light emitting diode device using charge accumulation and method of manufacturing the same
JP5554922B2 (ja) 異なる有機材料の2つ以下の層を備える有機発光ダイオード
TW201240182A (en) Light-emitting body, light-emitting layer, and light-emitting device
JP2004288619A (ja) 高効率の有機電界発光素子
Jiang et al. Highly efficient, solution processed electrofluorescent small molecule white organic light-emitting diodes with a hybrid electron injection layer
US20070052351A1 (en) Organic light emitting devices comprising hole transporting layer doped stepwise and preparation method thereof
KR20120091119A (ko) 광전 유기 소자 및 그 제조 방법
KR20060136232A (ko) Mg-Ag 단일 박막층을 사용한 음극 전극 형성 단계를 포함하는 유기발광소자의 제조 방법 및 이에 의해 제조된 유기발광소자
US20070048548A1 (en) Organic light emitting device and manufacturing method thereof
CN114883504A (zh) 显示面板
KR20070000262A (ko) Mg-Ag 단일 박막층을 사용한 음극 전극 형성 단계를 포함하는 유기발광소자의 제조 방법 및 이에 의해 제조된 유기발광소자
CN111916574B (zh) 蓝光电致发光器件、显示面板及显示装置
CN110061143A (zh) 一种具有np型复合空穴注入层的磷光有机发光二极管及其制备方法
CN112599687B (zh) 一种发光器件及显示装置
CN114883505A (zh) 显示面板
CN109713151A (zh) 显示面板、发光元件的制备方法以及显示装置
WO2015001691A1 (ja) 有機エレクトロルミネッセント素子
KR101450858B1 (ko) 그래핀 산화물을 이용한 유기전계 발광소자 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination