CN114875180B - A DNA walker for SARS-CoV-2 detection and preparation method thereof - Google Patents
A DNA walker for SARS-CoV-2 detection and preparation method thereof Download PDFInfo
- Publication number
- CN114875180B CN114875180B CN202210617332.9A CN202210617332A CN114875180B CN 114875180 B CN114875180 B CN 114875180B CN 202210617332 A CN202210617332 A CN 202210617332A CN 114875180 B CN114875180 B CN 114875180B
- Authority
- CN
- China
- Prior art keywords
- chain
- cov
- sars
- walking
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241001678559 COVID-19 virus Species 0.000 title claims abstract description 73
- 238000001514 detection method Methods 0.000 title claims abstract description 48
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 17
- 229910052737 gold Inorganic materials 0.000 claims abstract description 11
- 239000010931 gold Substances 0.000 claims abstract description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 22
- 239000000243 solution Substances 0.000 claims description 22
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 239000002773 nucleotide Substances 0.000 claims description 13
- 125000003729 nucleotide group Chemical group 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 239000011780 sodium chloride Substances 0.000 claims description 11
- 239000002105 nanoparticle Substances 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000000872 buffer Substances 0.000 claims description 8
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 6
- 238000009835 boiling Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000011534 incubation Methods 0.000 claims description 6
- 239000001509 sodium citrate Substances 0.000 claims description 6
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 4
- 238000005119 centrifugation Methods 0.000 claims description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 2
- 239000007853 buffer solution Substances 0.000 claims description 2
- 239000001110 calcium chloride Substances 0.000 claims description 2
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 2
- 235000011148 calcium chloride Nutrition 0.000 claims description 2
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 claims 2
- 108090000790 Enzymes Proteins 0.000 abstract description 6
- 102000004190 Enzymes Human genes 0.000 abstract description 6
- 238000010839 reverse transcription Methods 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 238000012986 modification Methods 0.000 abstract description 3
- 230000004048 modification Effects 0.000 abstract description 3
- 230000000007 visual effect Effects 0.000 abstract description 3
- 230000008901 benefit Effects 0.000 abstract description 2
- 108020004414 DNA Proteins 0.000 description 63
- 239000012634 fragment Substances 0.000 description 30
- 108090000623 proteins and genes Proteins 0.000 description 28
- 230000008859 change Effects 0.000 description 11
- 108091027757 Deoxyribozyme Proteins 0.000 description 8
- 238000000862 absorption spectrum Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- PBVAJRFEEOIAGW-UHFFFAOYSA-N 3-[bis(2-carboxyethyl)phosphanyl]propanoic acid;hydrochloride Chemical compound Cl.OC(=O)CCP(CCC(O)=O)CCC(O)=O PBVAJRFEEOIAGW-UHFFFAOYSA-N 0.000 description 5
- 150000007523 nucleic acids Chemical group 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000004627 transmission electron microscopy Methods 0.000 description 4
- PIEPQKCYPFFYMG-UHFFFAOYSA-N tris acetate Chemical compound CC(O)=O.OCC(N)(CO)CO PIEPQKCYPFFYMG-UHFFFAOYSA-N 0.000 description 4
- 241001272996 Polyphylla fullo Species 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011088 calibration curve Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 239000012295 chemical reaction liquid Substances 0.000 description 3
- 238000002296 dynamic light scattering Methods 0.000 description 3
- 238000002189 fluorescence spectrum Methods 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 239000007984 Tris EDTA buffer Substances 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229940071106 ethylenediaminetetraacetate Drugs 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 238000011901 isothermal amplification Methods 0.000 description 2
- 238000001426 native polyacrylamide gel electrophoresis Methods 0.000 description 2
- 108091027963 non-coding RNA Proteins 0.000 description 2
- 102000042567 non-coding RNA Human genes 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 208000025721 COVID-19 Diseases 0.000 description 1
- 108091079001 CRISPR RNA Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000711573 Coronaviridae Species 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- -1 Gold nucleic acid Chemical class 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000007397 LAMP assay Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 239000007793 ph indicator Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical group 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- XYYVDQWGDNRQDA-UHFFFAOYSA-K trichlorogold;trihydrate;hydrochloride Chemical compound O.O.O.Cl.Cl[Au](Cl)Cl XYYVDQWGDNRQDA-UHFFFAOYSA-K 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/70—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
- C12Q1/701—Specific hybridization probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Virology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种用于SARS-CoV-2检测的DNA步行器及其制备方法,属于生物检测技术领域。The present invention relates to a DNA walker for detecting SARS-CoV-2 and a preparation method thereof, belonging to the technical field of biological detection.
背景技术Background technique
新型冠状病毒肺炎(COVID-19)自首次出现以来,在全球范围内迅速传播并成为全球大流行病,对公众健康构成严重威胁。它是由严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)引起的,SARS-CoV-2是属于冠状病毒科的单链RNA病毒。该病主要通过呼吸道飞沫和接触传播,具有很高的传染性。快速可靠地检测SARS-CoV-2对防止疫情扩散和及早治疗感染病例至关重要。目前,SARS-CoV-2常规检测方法为逆转录定量聚合酶链反应(RT-qPCR)。但这种方法需要专门的设备来循环调节反应温度和实时监测荧光,操作人员需要受过专业培训。并且由于qPCR检测设备的限制,对检测的及时性和巨大的检测量提出了挑战,特别是在常规或大规模检测中。同时,RT-qPCR检测的周转时间较慢,病毒RNA 应在PCR之前逆转录为互补DNA。RT-qPCR的可靠性也可能受到环境污染物非特异性扩增的假阳性结果或扩增抑制剂存在的假阴性结果的影响。Since its first appearance, COVID-19 has spread rapidly around the world and become a global pandemic, posing a serious threat to public health. It is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded RNA virus belonging to the Coronaviridae family. The disease is mainly transmitted through respiratory droplets and contact and is highly contagious. Rapid and reliable detection of SARS-CoV-2 is essential to prevent the spread of the epidemic and treat infected cases early. At present, the conventional detection method for SARS-CoV-2 is reverse transcription quantitative polymerase chain reaction (RT-qPCR). However, this method requires specialized equipment to cyclically adjust the reaction temperature and monitor fluorescence in real time, and the operator needs to be professionally trained. And due to the limitations of qPCR detection equipment, the timeliness of detection and the huge detection volume are challenged, especially in routine or large-scale detection. At the same time, the turnaround time of RT-qPCR detection is slow, and the viral RNA should be reverse transcribed into complementary DNA before PCR. The reliability of RT-qPCR may also be affected by false positive results from nonspecific amplification of environmental pollutants or false negative results from the presence of amplification inhibitors.
鉴于RT-qPCR的缺点,最近出现了无需复杂热循环仪的等温扩增方法用于SARS-CoV-2 检测。使用DNA聚合酶和几种用于识别病毒基因组不同区域的引物的逆转录环介导等温扩增法(RT-LAMP)已经被开发出来。此外,基于在CRISPR RNA指导下靶序列结合时Cas蛋白的非特异性侧链ssDNAse活性,CRISPR-Cas系统也已适用于SARS-CoV-2序列的检测。尽管扩增可以在单一温度下进行,但通常以荧光的形式输出信号,这意味着至少需要激发光源。为了使信号更容易测量,甚至能够使结果可视化,最近还出现了比色方法用于检测。基于RT-LAMP的SARS-CoV-2检测通过对来自扩增DNA分子的酸性溶液作出反应的pH指示剂,或通过捕获与RT-LAMP扩增相关的蛋白质标记DNA使条带着色,将信号转导为颜色变化。此外,基于CRISPR-Cas的SARS-CoV-2检测,输出信号被转导为金纳米粒子聚集引起的颜色变化。然而,在这些方法中,等温扩增需要蛋白质酶,这增加了成本,需要严格的储存条件而且存在蛋白质失活的风险。并且由于酶对DNA底物独有的活性,RNA仍然需要进行逆转录。同时,因为扩增由单序列结合诱导,一次只能检测一个靶核酸片段,确认阳性病例的效率低下。In view of the shortcomings of RT-qPCR, isothermal amplification methods that do not require complex thermal cyclers have recently emerged for SARS-CoV-2 detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has been developed using DNA polymerase and several primers for identifying different regions of the viral genome. In addition, the CRISPR-Cas system has also been adapted for the detection of SARS-CoV-2 sequences based on the nonspecific side chain ssDNAse activity of Cas proteins when target sequences are bound under the guidance of CRISPR RNA. Although amplification can be performed at a single temperature, the output signal is usually in the form of fluorescence, which means that at least an excitation light source is required. In order to make the signal easier to measure and even visualize the results, colorimetric methods have recently emerged for detection. RT-LAMP-based SARS-CoV-2 detection transduces the signal into a color change through a pH indicator that reacts to the acidic solution from the amplified DNA molecules, or by capturing protein-labeled DNA associated with RT-LAMP amplification to color the strips. In addition, for CRISPR-Cas-based SARS-CoV-2 detection, the output signal is transduced as a color change caused by the aggregation of gold nanoparticles. However, in these methods, isothermal amplification requires protein enzymes, which increases costs, requires strict storage conditions and has the risk of protein inactivation. And due to the unique activity of the enzyme on the DNA substrate, RNA still needs to be reverse transcribed. At the same time, because amplification is induced by single sequence binding, only one target nucleic acid fragment can be detected at a time, and the efficiency of confirming positive cases is low.
最近,DNA分子机器以其生物相容性、灵活性和整体性而在生物标志物检测中显示出前景。其中DNA步行器是一种受到刺激时可以进行逐步行走的DNA分子机器。此类自发行走被认为是一种固有的信号放大方式,因为一次的识别将导致重复的行走,这有助于信号积累。 DNA步行器可以在一维线性轨道、二维平面轨道和三维球形轨道上移动。对于三维DNA步行器,它不仅将组件集成到一个纳米粒子或微粒中,而且由于颗粒周围的局部盐浓度的增加,也赋予固载的寡核苷酸抗核酸酶的能力。另一方面,DNA逻辑门可以分析多个输入并通过布尔逻辑运算对输出做出响应,为处理目标的不同情况提供了便利。可根据检测需要灵活设计各种逻辑系统,例如“AND”逻辑门仅输出逻辑真值或在两个输入都存在的情况下获得信号。Recently, DNA molecular machines have shown promise in biomarker detection due to their biocompatibility, flexibility, and integrity. Among them, DNA walkers are DNA molecular machines that can perform step-by-step walks when stimulated. Such spontaneous walks are considered to be an inherent signal amplification method because a single recognition will lead to repeated walks, which helps signal accumulation. DNA walkers can move on one-dimensional linear tracks, two-dimensional planar tracks, and three-dimensional spherical tracks. For three-dimensional DNA walkers, it not only integrates the components into one nanoparticle or microparticle, but also gives the immobilized oligonucleotides the ability to resist nucleases due to the increase in local salt concentration around the particles. On the other hand, DNA logic gates can analyze multiple inputs and respond to outputs through Boolean logic operations, which provides convenience for processing different situations of the target. Various logic systems can be flexibly designed according to detection needs, such as the "AND" logic gate only outputs logical true values or obtains signals when both inputs are present.
因此急需研发一种方便、经济、快速的SARS-CoV-2检测方法。Therefore, it is urgent to develop a convenient, economical and rapid SARS-CoV-2 detection method.
发明内容Summary of the invention
针对现有技术的不足,本发明提供了一种用于SARS-CoV-2检测的DNA步行器及其制备方法。In view of the deficiencies in the prior art, the present invention provides a DNA walker for SARS-CoV-2 detection and a preparation method thereof.
一种用于SARS-CoV-2检测的DNA步行器,包括行走链W、锁定链L1、锁定链L2、轨道链Tr、靶标链T1、靶标链T2和纳米金粒子;A DNA walker for SARS-CoV-2 detection, comprising a walking chain W, a locking chain L1, a locking chain L2, a track chain Tr, a target chain T1, a target chain T2 and gold nanoparticles;
所述行走链W的核苷酸序列为:5'- HS-(T)42TGGTTCAATCTGTCAATCTCTTCTCCGAGCCGGTCGAAATAGTCCATAACCTTTC CACA-3';The nucleotide sequence of the walking strand W is: 5'-HS-(T) 42 TGGTTCAATCTGTCAATCTCTTCTCCGAGCCGGTCGAAATAGTCCATAACCTTTC CACA-3';
所述锁定链L1的核苷酸序列为:5'-TGCGGTATGTGGAAAGGTTATGGACTA-3';The nucleotide sequence of the locked strand L1 is: 5'-TGCGGTATGTGGAAAGGTTATGGACTA-3';
所述锁定链L2的核苷酸序列为:5'-AAGAGATTGACAGATTGAACCAGCTTGAG-3';The nucleotide sequence of the locked strand L2 is: 5'-AAGAGATTGACAGATTGAACCAGCTTGAG-3';
所述轨道链Tr的核苷酸序列为;5'-HS-(T)6GGCTGTGGACTAT/rA/GGAAGAGATTCAGCCCGCGTTTTTTTCGCG-6-Carboxyfluorescein (FAM)-3';The nucleotide sequence of the track chain Tr is: 5'-HS-(T) 6 GGCTGTGGACTAT/rA/GGAAGAGATTCAGCCCGCGTTTTTTTCGCG-6-Carboxyfluorescein (FAM)-3';
所述靶标链T1的核苷酸序列为:5'-CCATAACCTTTCCACATACCGCA-3';The nucleotide sequence of the target strand T1 is: 5'-CCATAACCTTTCCACATACCGCA-3';
所述靶标链T2的核苷酸序列为:5'-CTCAAGCTGGTTCAATCTGTCAA-3'。The nucleotide sequence of the target chain T2 is: 5'-CTCAAGCTGGTTCAATCTGTCAA-3'.
根据本发明优选的,所述纳米金粒子的制备方法如下:Preferably, according to the present invention, the preparation method of the nano-gold particles is as follows:
配制浓度为38.8mM的柠檬酸钠水溶液,配制浓度为1mM的HAuCl4水溶液;将HAuCl4水溶液加热至沸腾,然后一边搅拌一边将柠檬酸钠水溶液加入至HAuCl4水溶液中,在加热沸腾状态下反应10min,反应完成后再搅拌15min,冷却至25℃,过滤,得到纳米金粒子(AuNPs)。A sodium citrate aqueous solution with a concentration of 38.8 mM and a HAuCl 4 aqueous solution with a concentration of 1 mM were prepared; the HAuCl 4 aqueous solution was heated to boiling, and then the sodium citrate aqueous solution was added to the HAuCl 4 aqueous solution while stirring, and the mixture was reacted for 10 minutes under the heating boiling state. After the reaction was completed, the mixture was stirred for another 15 minutes, cooled to 25° C., and filtered to obtain gold nanoparticles (AuNPs).
一种SARS-CoV-2检测试剂盒,所述试剂盒包括上述DNA步行器和MgCl2溶液。A SARS-CoV-2 detection kit, comprising the above-mentioned DNA walker and MgCl2 solution.
根据本发明优选的,所述试剂盒中DNA步行器的工作浓度为3nM,MgCl2溶液的工作浓度为180mM。Preferably according to the present invention, the working concentration of the DNA walker in the kit is 3 nM, and the working concentration of the MgCl 2 solution is 180 mM.
上述用于SARS-CoV-2检测的DNA步行器的制备方法,包括步骤如下:The preparation method of the above-mentioned DNA walker for SARS-CoV-2 detection comprises the following steps:
(1)将行走链W、锁定链L1和锁定链L2在退火缓冲液中混合均匀,然后在95℃加热10min,冷却至20~30℃,得到完全封闭的行走链;再将完全封闭的行走链和TCEP孵育2h,得到巯基化完全封闭的行走链;(1) The walking chain W, the locking chain L1 and the locking chain L2 are mixed evenly in an annealing buffer, then heated at 95°C for 10 min, and cooled to 20-30°C to obtain a completely closed walking chain; the completely closed walking chain is then incubated with TCEP for 2 h to obtain a thiol-completely closed walking chain;
(2)将轨道链Tr在95℃加热10min,得到退火后的轨道链Tr;(2) heating the track chain Tr at 95°C for 10 min to obtain an annealed track chain Tr;
(3)将AuNPs、巯基化完全封闭的行走链和退火后的轨道链Tr混合均匀,然后在4℃避光下孵育16h,接着按照40min的时间间隔继续添加NaCl溶液至使NaCl终浓度为0.2M,再于4℃避光下孵育24h,经离心洗涤后得到用于SARS-CoV-2检测的DNA步行器。(3) AuNPs, thiol-completely closed walking chains, and annealed track chains Tr were mixed evenly, and then incubated at 4°C in the dark for 16 h. Then, NaCl solution was added at intervals of 40 min until the final NaCl concentration was 0.2 M. The mixture was then incubated at 4°C in the dark for 24 h. After centrifugation and washing, a DNA walker for SARS-CoV-2 detection was obtained.
根据本发明优选的,步骤(1)中,所述行走链W、锁定链L1和锁定链L2的摩尔比为1:3:3。Preferably according to the present invention, in step (1), the molar ratio of the walking chain W, the locking chain L1 and the locking chain L2 is 1:3:3.
根据本发明优选的,步骤(1)中,所述完全封闭的行走链和TCEP的摩尔比为1:50。Preferably according to the present invention, in step (1), the molar ratio of the completely closed walking chain to TCEP is 1:50.
根据本发明优选的,步骤(3)中,所述AuNPs、巯基化完全封闭的行走链和退火后的轨道链Tr的摩尔比为1:20:200。Preferably according to the present invention, in step (3), the molar ratio of the AuNPs, the thiol-fully closed walking chain and the annealed track chain Tr is 1:20:200.
利用上述DNA步行器检测SARS-CoV-2的方法,包括步骤如下:The method for detecting SARS-CoV-2 using the above-mentioned DNA walker comprises the following steps:
将待检测样本加入到DNA步行器终浓度为3nM的缓冲液中,在20~30℃下反应2.5~3.5h 后添加CaCl2,当孵育液显示紫色,则待测样本中包含SARS-CoV-2。The sample to be tested is added to a buffer solution with a final concentration of 3 nM of DNA Walker, reacted at 20-30°C for 2.5-3.5 hours, and then CaCl 2 is added. When the incubation solution turns purple, the sample to be tested contains SARS-CoV-2.
根据本发明优选的,所述CaCl2在缓冲液中的终浓度为180mM。Preferably according to the present invention, the final concentration of CaCl2 in the buffer is 180mM.
本发明DNA步行器检测SARS-CoV-2的技术原理如下:The technical principle of the DNA walker of the present invention for detecting SARS-CoV-2 is as follows:
本申请发明人从SARS-CoV-2病毒基因组开放阅读框和核衣壳选择两个RNA基因片段 ORF1ab和N作为靶标链T1和T2。根据靶标链T1和T2设计了行走链W、锁定链L1、锁定链L2和轨道链Tr,然后结合AuNPs合成了DNA步行器。The inventors of this application selected two RNA gene fragments ORF1ab and N from the open reading frame and nucleocapsid of the SARS-CoV-2 viral genome as target chains T1 and T2. According to the target chains T1 and T2, the walking chain W, the locking chain L1, the locking chain L2 and the track chain Tr were designed, and then the DNA walker was synthesized in combination with AuNPs.
如图1所示,所述DNA步行器是一个DNA修饰的AuNPs的整体,DNA通过末端标记的巯基基团与AuNPs连接,AuNP表面负载有少量的行走链W与大量的轨道链Tr。所述行走链W包含一个长摆臂区域和一个Mg2+特异性脱氧核酶(8-17型)催化域。所述锁定链L1、 L2分别与靶标链T1、T2不完全互补,使得锁定链L1、L2各有部分单链悬垂在外,以便识别结合靶标链T1、T2,实现锁定链的置换。而行走链W的催化核心两侧被锁定链锁定链L1、 L2封闭。靶标链T1、T2任何一个的缺失都会导致行走链W无法与轨道链Tr结合。只有当靶标链T1、T2都存在时,行走链W才能完全解除封闭并暴露整个脱氧核酶催化区域,进一步与AuNPs上的轨道链Tr杂交。As shown in Figure 1, the DNA walker is a whole of DNA-modified AuNPs, the DNA is connected to the AuNPs through the end-labeled thiol group, and the AuNP surface is loaded with a small amount of walking chain W and a large amount of track chain Tr. The walking chain W contains a long swing arm region and a Mg 2+ -specific deoxyribozyme (8-17 type) catalytic domain. The locking chains L1 and L2 are not completely complementary to the target chains T1 and T2, respectively, so that the locking chains L1 and L2 each have a part of the single chain hanging outside, so as to identify and bind the target chains T1 and T2, and realize the replacement of the locking chain. The catalytic core of the walking chain W is closed on both sides by the locking chains L1 and L2. The absence of any one of the target chains T1 and T2 will cause the walking chain W to be unable to bind to the track chain Tr. Only when both target chains T1 and T2 are present, the walking chain W can completely unblock and expose the entire deoxyribozyme catalytic region, and further hybridize with the track chain Tr on the AuNPs.
所述轨道链Tr设计为包含底物序列的双茎环结构,腺嘌呤核糖核苷酸(rA)位于较大环的中间附近。这种DNA二级结构可以通过静电作用(DNA分子中的负电性磷酸骨架)和空间排斥作用使AuNPs可以在高盐浓度下保持其稳定性并维持分散态,溶液颜色为红色。行走链W与轨道链Tr杂交后,脱氧核酶将发挥其催化能力,以Mg2+作为辅因子,通过水解核糖腺苷和鸟嘌呤之间的磷酸二酯键来切割轨道链Tr。此后,较小的环和部分较大的环与剩余轨道链Tr分离,仅在AuNPs上留下截短的单链。行走链W进而杂交下一条轨道链Tr,进行“杂交-水解”的循环,由此大部分轨道链Tr将被切割,并且由于带负电荷的主链减少和空间排斥的衰减,AuNPs变得不稳定。此时,在相同的盐浓度下AuNPs倾向于聚集,导致颜色从红色变为紫色,实现了SARS-CoV-2靶标核酸序列T1和T2的检测,从而可以根据溶液颜色来判断待测样本中是否包含SARS-CoV-2。The track chain Tr is designed as a double stem-loop structure containing a substrate sequence, and an adenine ribonucleotide (rA) is located near the middle of the larger ring. This DNA secondary structure can enable AuNPs to maintain its stability and dispersed state at high salt concentrations through electrostatic effects (negatively charged phosphate backbones in DNA molecules) and steric repulsion, and the solution color is red. After the walking chain W hybridizes with the track chain Tr, the DNA enzyme will exert its catalytic ability, using Mg 2+ as a cofactor to cut the track chain Tr by hydrolyzing the phosphodiester bond between riboadenosine and guanine. Thereafter, the smaller ring and part of the larger ring are separated from the remaining track chain Tr, leaving only truncated single chains on the AuNPs. The walking chain W then hybridizes the next track chain Tr, and a "hybridization-hydrolysis" cycle is carried out, whereby most of the track chain Tr will be cut, and the AuNPs become unstable due to the reduction of the negatively charged main chain and the attenuation of steric repulsion. At this time, at the same salt concentration, AuNPs tend to aggregate, causing the color to change from red to purple, realizing the detection of SARS-CoV-2 target nucleic acid sequences T1 and T2, so that it is possible to judge whether SARS-CoV-2 is contained in the sample to be tested based on the color of the solution.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
1、本发明提供了一种用于SARS-CoV-2检测的DNA步行器,实现了可视化的SARS-CoV-2检测,并且本发明的DNA步行器具有干扰因素少、价格便宜和稳定性好的优点,同时灵敏度能够达到1nM。1. The present invention provides a DNA walker for SARS-CoV-2 detection, which realizes visualized SARS-CoV-2 detection. The DNA walker of the present invention has the advantages of few interference factors, low price and good stability, and the sensitivity can reach 1nM.
2、本发明提供的检测方法选择性良好,灵敏度高,在缺少任何一个序列的情况下,DNA 步行器反应液颜色都不会改变,能以单核苷酸特异性区分目标序列。利用本发明的DNA步行器或试剂盒进行检测时,不需要逆转录步骤,避免了酶、标记或修饰的使用,结果可视化,减少了对复杂设备的需求,为SARS-CoV-2病毒检测提供一种方便、经济、快速、可靠的方法。2. The detection method provided by the present invention has good selectivity and high sensitivity. In the absence of any sequence, the color of the DNA walker reaction solution will not change, and the target sequence can be distinguished by single nucleotide specificity. When the DNA walker or kit of the present invention is used for detection, no reverse transcription step is required, the use of enzymes, labels or modifications is avoided, the results are visualized, and the need for complex equipment is reduced, providing a convenient, economical, fast and reliable method for SARS-CoV-2 virus detection.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明DNA步行器比色检测核酸片段的示意图。FIG1 is a schematic diagram of the colorimetric detection of nucleic acid fragments by the DNA walker of the present invention.
图2为不同锁定链L1(A)和L2(B)的天然聚丙烯酰胺凝胶电泳图。FIG2 is a native polyacrylamide gel electrophoresis image of different locked chains L1 (A) and L2 (B).
图A中:泳道M:20bp DNA标志物;泳道1-6分别为行走链W、轨道链Tr、锁定链 3bp-L1、4bp-L1、5bp-L1和靶标链T1;泳道7:行走链W+轨道链Tr;泳道8:行走链W+ 锁定链3bp-L1;泳道9:行走链W+锁定链4bp-L1;泳道10:行走链W+锁定链5bp-L1;泳道11:行走链W/锁定链3bp-L1双链+轨道链Tr;泳道12:行走链W/锁定链4bp-L1双链+ 轨道链Tr;泳道13:行走链W/锁定链5bp-L1双链+轨道链Tr;泳道14:行走链W/锁定链 3bp-L1双链+靶标链T1+轨道链Tr;泳道15:行走链W/锁定链4bp-L1双链+靶标链T1+轨道链Tr;泳道16:行走链W/锁定链5bp-L1双链+靶标链T1+轨道链Tr。In Figure A: Lane M: 20bp DNA marker; Lanes 1-6 are walking chain W, track chain Tr, locked chain 3bp-L1, 4bp-L1, 5bp-L1 and target chain T1 respectively; Lane 7: walking chain W + track chain Tr; Lane 8: walking chain W + locked chain 3bp-L1; Lane 9: walking chain W + locked chain 4bp-L1; Lane 10: walking chain W + locked chain 5bp-L1; Lane 11: walking chain W/locked chain 3bp-L1 double chain + track chain Tr; Lane 12: walking chain W/locked chain 4bp-L1 double chain + track chain Tr; Lane 13: walking chain W/locked chain 5bp-L1 double chain + track chain Tr; Lane 14: walking chain W/locked chain 3bp-L1 double strand + target chain T1 + track chain Tr; Lane 15: walking chain W/locking chain 4bp-L1 double strand + target chain T1 + track chain Tr; Lane 16: walking chain W/locking chain 5bp-L1 double strand + target chain T1 + track chain Tr.
图B中:泳道M:20bpDNA标志物;泳道1-6分别为行走链W、轨道链Tr、锁定链5bp-L2、6bp-L2、7bp-L2、和靶标链T2;泳道7:行走链W+轨道链Tr(1:2);泳道8:行走链W+ 锁定链5bp-L2;泳道9:行走链W+锁定链6bp-L2;泳道10:行走链W+锁定链7bp-L2;泳道11:行走链W/锁定链5bp-L2双链+轨道链Tr;泳道12:行走链W/锁定链6bp-L2双链+ 轨道链Tr;泳道13:行走链W/锁定链7bp-L2双链+轨道链Tr;泳道14:行走链W/锁定链 5bp-L2双链+靶标链T2+轨道链Tr;泳道15:行走链W/锁定链6bp-L2双链+靶标链T2+轨道链Tr;泳道16:行走链W/锁定链7bp-L2双链+靶标链T2+轨道链Tr。In Figure B: Lane M: 20bp DNA marker; Lanes 1-6 are walking chain W, track chain Tr, locked chain 5bp-L2, 6bp-L2, 7bp-L2, and target chain T2 respectively; Lane 7: walking chain W + track chain Tr (1:2); Lane 8: walking chain W + locked chain 5bp-L2; Lane 9: walking chain W + locked chain 6bp-L2; Lane 10: walking chain W + locked chain 7bp-L2; Lane 11: walking chain W/locked chain 5bp-L2 double chain + track chain Tr; Lane 12: walking chain W/locked chain 6bp-L2 double chain + track chain Tr; Lane 13: walking chain W/locked chain 7bp-L2 double chain + track chain Tr; Lane 14: walking chain W/locked chain 5bp-L2 double strand + target chain T2 + track chain Tr; Lane 15: walking chain W/locking chain 6bp-L2 double strand + target chain T2 + track chain Tr; Lane 16: walking chain W/locking chain 7bp-L2 double strand + target chain T2 + track chain Tr.
图3为说明锁定链4bp-L1和6bp-L2逻辑响应的天然聚丙烯酰胺凝胶电泳图。FIG. 3 is a native polyacrylamide gel electrophoresis image illustrating the logical response of locked strands 4 bp-L1 and 6 bp-L2.
图中:泳道M:20bp DNA标志物;泳道1-6分别为行走链W、轨道链Tr、锁定链4bp-L1、6bp-L2、靶标链T1、T2;泳道7:行走链W+轨道链Tr;泳道8:行走链W+锁定链L1+锁定链L2;泳道9:行走链W/锁定链L1/锁定链L2复合体+轨道链Tr;泳道10:行走链W/锁定链L1/锁定链L2复合体+靶标链T1;泳道11:行走链W/锁定链L1/锁定链L2复合体+靶标链T2;泳道12:行走链W/锁定链L1/锁定链L2复合体+靶标链T1+轨道链Tr;泳道13:行走链W/锁定链L1/锁定链L2复合体+靶标链T2+轨道链Tr;泳道14:行走链W/锁定链L1/ 锁定链L2复合体+靶标链T1+靶标链T2+轨道链Tr。In the figure: Lane M: 20bp DNA marker; Lanes 1-6 are walking chain W, track chain Tr, locked chain 4bp-L1, 6bp-L2, target chain T1, T2 respectively; Lane 7: walking chain W + track chain Tr; Lane 8: walking chain W + locked chain L1 + locked chain L2; Lane 9: walking chain W/locked chain L1/locked chain L2 complex + track chain Tr; Lane 10: walking chain W/locked chain L1/locked chain L2 complex + target chain T1; Lane 11: walking chain W/locked chain L1/locked chain L2 complex + target chain T2; Lane 12: walking chain W/locked chain L1/locked chain L2 complex + target chain T1 + track chain Tr; Lane 13: walking chain W/locked chain L1/locked chain L2 complex + target chain T2 + track chain Tr; Lane 14: walking chain W/locked chain L1/ Locking chain L2 complex + target chain T1 + target chain T2 + track chain Tr.
图4为AuNPs的紫外-可见吸收光谱(A)、透射电子显微镜图像(B)和AuNP溶液的照片(C)。FIG4 shows the UV-visible absorption spectrum of AuNPs (A), a transmission electron microscopy image (B), and a photograph of the AuNP solution (C).
图5为本发明的DNA步行器的荧光光谱图(A)和DNA步行器上轨道链Tr浓度与520nm处荧光的校准曲线(B)。FIG5 is a fluorescence spectrum diagram of the DNA walker of the present invention (A) and a calibration curve of the track chain Tr concentration on the DNA walker and the fluorescence at 520 nm (B).
图6为本发明的DNA步行器在靶标链T1和靶标链T2浓度均为0nM和20nM下反应后的紫外可见吸收光谱图(A)、动态光散射表征图(B)、荧光光谱图(C)和荧光强度随时间变化图(D)和DNA步行器反应液颜色变化图(E)。Figure 6 shows the UV-visible absorption spectrum (A), dynamic light scattering characterization (B), fluorescence spectrum (C), fluorescence intensity change over time (D), and color change of the DNA walker reaction liquid (E) of the DNA walker of the present invention after the reaction when the concentrations of target chain T1 and target chain T2 are both 0 nM and 20 nM.
图7为本发明的DNA步行器在检测梯度浓度为0、2、4、8、12、20nM的SARS-CoV-2 病毒的可视化溶液颜色变化图(A)、紫外吸收比与SARS-CoV-2浓度的关系图(B)和标准曲线的校准曲线(C)FIG7 is a diagram showing the color change of a visualized solution of the DNA walker of the present invention when detecting SARS-CoV-2 viruses at gradient concentrations of 0, 2, 4, 8, 12, and 20 nM (A), a diagram showing the relationship between the ultraviolet absorption ratio and the SARS-CoV-2 concentration (B), and a calibration curve of the standard curve (C)
图8为本发明的DNA步行器在检测无SARS-CoV-2病毒基因片段、单靶标链T1或靶标链T2的SARS-CoV-2病毒基因片段、SARS-CoV-2病毒基因片段的可视化观察结果图。Figure 8 is a visualization diagram of the results of the DNA walker of the present invention in detecting SARS-CoV-2 virus gene fragments without SARS-CoV-2 virus gene fragments, SARS-CoV-2 virus gene fragments with a single target chain T1 or target chain T2, and SARS-CoV-2 virus gene fragments.
图中,0为不含有靶标链T1和T2,1为含有靶标链T1或T2。In the figure, 0 means that the target chains T1 and T2 are not contained, and 1 means that the target chains T1 or T2 are contained.
图9为本发明的DNA步行器在检测无SARS-CoV-2病毒基因片段、单靶标链T1或靶标链T2的SARS-CoV-2病毒基因片段、SARS-CoV-2病毒基因片段的紫外可见吸收光谱。Figure 9 is the UV-visible absorption spectrum of the DNA walker of the present invention when detecting SARS-CoV-2 virus gene fragments without SARS-CoV-2 virus gene fragments, SARS-CoV-2 virus gene fragments with a single target chain T1 or target chain T2, and SARS-CoV-2 virus gene fragments.
图10为本发明的DNA步行器在检测靶标链T1或靶标链T2发生碱基错配的SARS-CoV-2 病毒基因片段的可视化观察结果图(B)。FIG10 is a diagram (B) showing the visualization observation results of the DNA walker of the present invention when detecting a SARS-CoV-2 viral gene fragment with base mismatch in the target strand T1 or the target strand T2.
图中,0为不含有靶标链T1或靶标链T2,1为含有靶标链T1或靶标链T2。In the figure, 0 means that the target chain T1 or target chain T2 is not contained, and 1 means that the target chain T1 or target chain T2 is contained.
具体实施方式Detailed ways
下面结合具体的实施例对本发明做进一步说明,但本发明的保护范围并不仅限于此。The present invention is further described below in conjunction with specific embodiments, but the protection scope of the present invention is not limited thereto.
凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the claims of the present invention.
试剂和原料:Reagents and materials:
DNA序列(表S1)由生工生物工程股份有限公司(上海,中国)合成和纯化。DNA sequences (Table S1) were synthesized and purified by Sangon Biotechnology Co., Ltd. (Shanghai, China).
40%丙烯酰胺/双丙烯酰胺(19:1)溶液,过硫酸铵(APS),N,N,N',N'-四甲基乙二胺(TEMED),Tris,乙二胺四乙酸四钠(EDTA),购自生工生物工程股份有限公司(上海,中国)。40% acrylamide/bisacrylamide (19:1) solution, ammonium persulfate (APS), N,N,N′,N′-tetramethylethylenediamine (TEMED), Tris, and tetrasodium ethylenediaminetetraacetate (EDTA) were purchased from Sangon Biotechnology Co., Ltd. (Shanghai, China).
SYBR Gold核酸凝胶染料购自赛默飞世尔科技公司。SYBR Gold nucleic acid gel stain was purchased from Thermo Fisher Scientific.
四氯金酸氢(Ⅲ)三水合物(HAuCl4·3H2O)和三(2-羧乙基)膦盐酸盐(TCEP)购自Sigma-Aldrich公司(密苏里州,美国)。Hydrogen tetrachloroaurate (III) trihydrate (HAuCl 4 ·3H 2 O) and tris(2-carboxyethyl)phosphine hydrochloride (TCEP) were purchased from Sigma-Aldrich (Missouri, USA).
所有其他试剂均为分析纯,按原样使用。在整个实验过程中,使用了从UP水净化系统获得的超纯水(18.25MΩ·cm)。All other reagents were of analytical grade and used as received. Ultrapure water (18.25 MΩ·cm) obtained from a UP water purification system was used throughout the experiments.
20bp DNA ladder购自宝日生物医学技术有限公司(北京)。The 20 bp DNA ladder was purchased from Bio-Ray Biomedical Technology Co., Ltd. (Beijing).
TU-1901光谱仪(普析,中国)记录紫外可见吸收光谱。荧光发射光谱用F-320分光荧光计(天津港东科技发展有限公司,中国)测量。染色的聚丙烯酰胺凝胶在GelDocTM XR+成像系统(Bio-RAD Laboratories Inc.,美国)上成像。在纳米粒度电位仪(Malvern,英国)上进行了动态光散射(DLS)测量。透射电子显微镜(TEM)测量在加速电压为200kV的 JSM-6700F透射电子显微镜上进行(JEOL,日本)。其它如无特殊说明,均可从商业途径获得。UV-visible absorption spectra were recorded using a TU-1901 spectrometer (Puxi, China). Fluorescence emission spectra were measured using a F-320 spectrofluorometer (Tianjin Gangdong Technology Development Co., Ltd., China). Stained polyacrylamide gels were imaged on a GelDocTM XR + imaging system (Bio-RAD Laboratories Inc., USA). Dynamic light scattering (DLS) measurements were performed on a nanoparticle size potentiometer (Malvern, UK). Transmission electron microscopy (TEM) measurements were performed on a JSM-6700F transmission electron microscope (JEOL, Japan) with an accelerating voltage of 200 kV. All other products were commercially available unless otherwise specified.
表1.实施例中使用的寡核苷酸序列Table 1. Oligonucleotide sequences used in the examples
表1中,加粗字母表示催化核心两侧的结合臂和相应的互补碱基;斜体字母表示催化核心;带下划线的字母表示错配的碱基;nbp-L的数字表示锁定链结合臂碱基的数量。根据260 nm处的紫外吸收率和序列的消光系数测定寡核苷酸的浓度。锁定链由一个目标识别域和一个具有不同长度的封闭域组成。In Table 1, bold letters represent the binding arms on both sides of the catalytic core and the corresponding complementary bases; italic letters represent the catalytic core; underlined letters represent mismatched bases; and the number of nbp-L represents the number of bases in the locking chain binding arm. The concentration of the oligonucleotide was determined based on the UV absorbance at 260 nm and the extinction coefficient of the sequence. The locking chain consists of a target recognition domain and a blocking domain with different lengths.
实施例1Example 1
本发明根据NCBI数据库已经公开的SARS-CoV-2病毒基因组信息(NCBI参考序列:NC_045512.2),从开放阅读框和核衣壳选择两个RNA基因片段ORF1ab和N作为靶标链T1 和靶标链T2,然后根据靶标链T1、T2设计了行走链W、3bp-锁定链L1、4bp-锁定链L1、 5bp-锁定链L1、5bp-锁定链L2、6bp-锁定链L2、7bp-锁定链L2、轨道链Tr,具体序列如表 1所示。然后由生工生物工程股份有限公司(上海,中国)合成和纯化。According to the SARS-CoV-2 viral genome information (NCBI reference sequence: NC_045512.2) disclosed in the NCBI database, the present invention selects two RNA gene fragments ORF1ab and N as target strands T1 and T2 from the open reading frame and nucleocapsid, and then designs walking strand W, 3bp-locking strand L1, 4bp-locking strand L1, 5bp-locking strand L1, 5bp-locking strand L2, 6bp-locking strand L2, 7bp-locking strand L2, and track strand Tr according to the target strands T1 and T2, and the specific sequences are shown in Table 1. Then it was synthesized and purified by Sangon Biotech Co., Ltd. (Shanghai, China).
锁定链由一个目标识别域和一个具有不同长度的封闭域组成。The locking strands consist of a target recognition domain and a closing domain of varying lengths.
实施例2Example 2
1、DNA与RNA溶液的制备与储存1. Preparation and storage of DNA and RNA solutions
在TE缓冲液(10mM Tris-HCl,1mM EDTA,pH 8.0)中制备表1中所述序列的浓缩DNA原液,用HEPES缓冲液(10mM HEPES,300mM NaCl,pH 7.0)稀释至工作液浓度。Concentrated DNA stock solutions of the sequences described in Table 1 were prepared in TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and diluted to working concentrations with HEPES buffer (10 mM HEPES, 300 mM NaCl, pH 7.0).
浓缩方法:将核酸序列溶于管上所标识微升数的TE缓冲溶液中,用紫外吸收光谱法测定浓缩液浓度。Concentration method: Dissolve the nucleic acid sequence in the TE buffer solution in the microliters indicated on the tube, and determine the concentration of the concentrate by ultraviolet absorption spectroscopy.
2、锁定链L1和锁定链L2的选择2. Selection of locking chain L1 and locking chain L2
将1.44μL浓度为10mM行走链W和1.50μL浓度为10mM锁定链(nbp-L1,nbp-L2) 分别在退火缓冲液(25mM Tris-乙酸盐,200mM NaCl,pH为8.0)混合均匀,总体积为26.12 μL,将混合物加热至95℃保温2min,再冷却至25℃,得到退火混合物。1.44 μL of 10 mM walking chain W and 1.50 μL of 10 mM locking chain (nbp-L1, nbp-L2) were mixed in annealing buffer (25 mM Tris-acetate, 200 mM NaCl, pH 8.0) to a total volume of 26.12 μL. The mixture was heated to 95°C for 2 min and then cooled to 25°C to obtain an annealing mixture.
将2.88μL浓度为10mM轨道链Tr和1μL浓度为600mM的MgCl2加入退火混合物中,在25℃下孵育10min,将孵育产物进行聚丙烯酰胺凝胶电泳。为了检验目标序列对锁定链的置换,将1.38μL DEPC-H2O、26.12μL退火混合物分别和1.5μL浓度为10mM的靶标链T1、 T2混合均匀,在25℃下孵育30min,将孵育产物和本反应中的其它产物进行聚丙烯酰胺凝胶电泳,结果如图2所示。2.88 μL of 10 mM track chain Tr and 1 μL of 600 mM MgCl 2 were added to the annealing mixture, incubated at 25°C for 10 min, and the incubation product was subjected to polyacrylamide gel electrophoresis. In order to verify the displacement of the target sequence to the locked chain, 1.38 μL of DEPC-H 2 O, 26.12 μL of the annealing mixture and 1.5 μL of 10 mM target chains T1 and T2 were mixed evenly, incubated at 25°C for 30 min, and the incubation product and other products in this reaction were subjected to polyacrylamide gel electrophoresis. The results are shown in Figure 2.
由图2可知,锁定链的长度对于无靶标时脱氧核酶的失活和有靶标时的激活至关重要。As shown in Figure 2, the length of the locked strand is crucial for the inactivation of the DNAzyme in the absence of a target and its activation in the presence of a target.
泳道8-10说明,与泳道1到泳道6的行走链W、轨道链Tr、锁定链3bp-L1、4bp-L1、5bp-L1、靶标链T1片段相比,行走链W与锁定链的孵育后,三种锁定链都能与行走链W发生杂交,然而轨道链Tr的加入可以和锁定链产生对行走链W的竞争杂交。Lanes 8-10 show that compared with the walking chain W, track chain Tr, locked chain 3bp-L1, 4bp-L1, 5bp-L1, and target chain T1 fragments in lanes 1 to 6, after incubation of the walking chain W and the locked chain, the three locked chains can hybridize with the walking chain W, but the addition of the track chain Tr can produce competitive hybridization with the locked chain for the walking chain W.
泳道11-13说明,与锁定链4bp-L1和5bp-L1相比,锁定链3bp-L1不能很好地封闭行走链W,仍有一些轨道链Tr可以与行走链W竞争杂交并被切割,泳道11的轨道链Tr条带强度降低,并且下方出现与泳道7中切割产物相同迁移率的微弱条带。行走链W封闭不充分将导致DNA步行器在靶标链T1不存在时也产生非特异性响应,触发放大后会导致高背景甚至假阳性信号,因此只有4bp-L1和5bp-L1符合要求。Lanes 11-13 show that compared with the locked chains 4bp-L1 and 5bp-L1, the locked chain 3bp-L1 cannot block the walking chain W well, and some track chains Tr can still compete with the walking chain W for hybridization and be cut. The intensity of the track chain Tr band in lane 11 is reduced, and a faint band with the same mobility as the cut product in lane 7 appears below. Insufficient blocking of the walking chain W will cause the DNA walker to produce nonspecific responses even when the target chain T1 is absent, which will lead to high background or even false positive signals after triggering amplification, so only 4bp-L1 and 5bp-L1 meet the requirements.
泳道14-16说明,靶标链T1的存在应该置换锁定链并留下脱氧核酶单链。通过对3bp-L1、 4bp-L1和5bp-L1的测试,表明W-L1复合物对应的条带逐渐出现,而行走链W对应的条带强度逐渐降低。由于行走链W和锁定链5bp-L1之间的碱基配对更多,形成的双链体更加稳定,导致靶标链T1的置换效率有限,而这种低解封效率会降低步行器的灵敏度。由此可以意识到,碱基对的细微变化会对DNA链之间的相互作用产生巨大的影响。在靶标链T1不存在时的低背景高特异性和靶标链T1存在时的高解封效率间为评判标准,确定锁定链为4bp-L1。同理,6bp-L2在轨道链Tr存在下仍能有效封闭行走链,加入目标靶标链T2核酸片段后也能有效置换,确定锁定链为6bp-L2。Lanes 14-16 show that the presence of target chain T1 should displace the locked chain and leave the DNA enzyme single chain. The tests of 3bp-L1, 4bp-L1 and 5bp-L1 show that the band corresponding to the W-L1 complex gradually appears, while the intensity of the band corresponding to the walking chain W gradually decreases. Since there are more base pairings between the walking chain W and the locked chain 5bp-L1, the duplex formed is more stable, resulting in limited displacement efficiency of the target chain T1, and this low unblocking efficiency will reduce the sensitivity of the walker. It can be realized that slight changes in base pairs will have a huge impact on the interaction between DNA chains. The low background and high specificity when the target chain T1 is absent and the high unblocking efficiency when the target chain T1 is present are the criteria for judgment, and the locked chain is determined to be 4bp-L1. Similarly, 6bp-L2 can still effectively block the walking chain in the presence of the track chain Tr, and can also effectively displace it after adding the target target chain T2 nucleic acid fragment, and the locked chain is determined to be 6bp-L2.
3、锁定链4bp-L1和6bp-L2的逻辑响应3. Logical response of locked strands 4bp-L1 and 6bp-L2
将1.44μL浓度为10mM行走链W,1.50μL浓度为10mM锁定链4bp-L1和1.50μL 10 mM锁定链6bp-L2混合在23.12μL的退火缓冲液中进行退火,得到行走链W/锁定链L1/锁定链L2复合体。然后将3μL浓度为5mM靶标链T1,3μL浓度为5mM靶标链T2或3μL 浓度为5mM靶标链T1和T2分别添加到2.88μL浓度为10mM轨道链Tr和23.12μL行走链W/锁定链L1/锁定链L2复合体中在25℃下孵育30min,再加入1μL浓度为600mM的 MgCl2,孵育10min,将孵育产物和本反应中的其它产物进行聚丙烯酰胺凝胶电泳,结果如图 3所示。1.44 μL of 10 mM walking chain W, 1.50 μL of 10 mM locking chain 4 bp-L1 and 1.50 μL of 10 mM locking chain 6 bp-L2 were mixed in 23.12 μL of annealing buffer for annealing to obtain a walking chain W/locking chain L1/locking chain L2 complex. Then 3 μL of 5 mM target chain T1, 3 μL of 5 mM target chain T2 or 3 μL of 5 mM target chains T1 and T2 were added to 2.88 μL of 10 mM track chain Tr and 23.12 μL of walking chain W/locking chain L1/locking chain L2 complex, respectively, and incubated at 25°C for 30 minutes, and then 1 μL of 600 mM MgCl 2 was added and incubated for 10 minutes. The incubation product and other products in this reaction were subjected to polyacrylamide gel electrophoresis, and the results are shown in Figure 3.
由图3可知,泳道7说明,当行走链W和轨道链Tr与Mg2+一起孵育时,由于脱氧核酶对底物序列的水解,轨道链Tr被切割成两个迁移速度较快的短寡核苷酸(Tr1和Tr2)。As can be seen from Figure 3, lane 7 shows that when the walking chain W and the track chain Tr are incubated with Mg 2+ , the track chain Tr is cut into two short oligonucleotides (Tr1 and Tr2) with faster migration speed due to the hydrolysis of the substrate sequence by the DNAzyme.
泳道8-9说明,行走链W已经完全被锁定链4bp-L1和6bp-L2封闭住,因为即使引入了 Mg2+,轨道链Tr也不会被切割。Lanes 8-9 show that the walking strand W has been completely blocked by the locking strands 4bp-L1 and 6bp-L2, because the track strand Tr will not be cut even if Mg 2+ is introduced.
泳道10说明,靶标链T1从行走链W/锁定链L1/锁定链L2复合体中特异性置换锁定链 L1,形成行走链W-锁定链L2双链和锁定链L1-靶标链T1双链。Lane 10 shows that the target strand T1 specifically displaces the locked strand L1 from the walking strand W/locked strand L1/locked strand L2 complex, forming a walking strand W-locked strand L2 double strand and a locked strand L1-target strand T1 double strand.
泳道11说明,靶标链T2从行走链W/锁定链L1/锁定链L2复合体中特异性置换锁定链 L2,形成行走链W-锁定链L1双链和锁定链L2-靶标链T2双链。Lane 11 shows that the target strand T2 specifically displaces the locked strand L2 from the walking strand W/locked strand L1/locked strand L2 complex to form a walking strand W-locked strand L1 double strand and a locked strand L2-target strand T2 double strand.
泳道12-13说明,无论是锁定链L1被靶标链T1单独解封,或锁定链L2被靶标链T2单独解封,轨道链Tr都不会被行走链W切割,在这些情况下,由于行走链W另一杂交臂被封闭,脱氧核酶仍处于失活状态。只有当靶标链L1和L2都存在时,行走链W才能被完全解封。然后脱氧核酶恢复活性,将轨道链Tr切割成两个较短的Tr1和Tr2片段。因此,双重封闭的行走链W只能在靶标链L1和L2均存在的情况下才能与轨道链Tr结合,随后通过脱氧核酶水解底物,实现了一个“AND”逻辑门。Lanes 12-13 show that no matter whether the locked chain L1 is unblocked by the target chain T1 alone, or the locked chain L2 is unblocked by the target chain T2 alone, the track chain Tr will not be cut by the walking chain W. In these cases, since the other hybridization arm of the walking chain W is blocked, the deoxyribozyme is still in an inactive state. Only when both the target chains L1 and L2 are present can the walking chain W be completely unblocked. Then the deoxyribozyme regains its activity and cuts the track chain Tr into two shorter fragments, Tr1 and Tr2. Therefore, the doubly blocked walking chain W can only bind to the track chain Tr in the presence of both the target chains L1 and L2, and then the deoxyribozyme hydrolyzes the substrate to realize an "AND" logic gate.
综上所述,本发明设计的走链W、锁定链L1、锁定链L2和轨道链Tr确保了脱氧核酶在只有靶标链T1或T2其中一个存在时仍然是无活性的,只有同时含有靶标链T1、T2的SARS-CoV-2存在时才能被解封,以催化底物的水解。In summary, the walking chain W, locking chain L1, locking chain L2 and track chain Tr designed in the present invention ensure that the deoxyribozyme remains inactive when only one of the target chains T1 or T2 is present, and can only be unblocked in the presence of SARS-CoV-2 containing both target chains T1 and T2 to catalyze the hydrolysis of the substrate.
实施例3Example 3
1、纳米金粒子的制备方法如下:1. The preparation method of gold nanoparticles is as follows:
配制10mL浓度为38.8mM的柠檬酸钠水溶液,配制100mL浓度为1mM的HAuCl4水溶液;将HAuCl4水溶液加热至沸腾,然后一边剧烈搅拌一边将柠檬酸钠水溶液快速加入至HAuCl4水溶液中,在加热沸腾状态下反应10min,反应完成后再搅拌15min,冷却至25℃,通过0.22μm过滤器过滤,得到纳米金粒子(AuNPs)。Prepare 10 mL of a 38.8 mM sodium citrate aqueous solution and 100 mL of a 1 mM HAuCl 4 aqueous solution; heat the HAuCl 4 aqueous solution to boiling, then quickly add the sodium citrate aqueous solution to the HAuCl 4 aqueous solution while vigorously stirring, react for 10 minutes under heating and boiling, stir for 15 minutes after the reaction is completed, cool to 25°C, and filter through a 0.22 μm filter to obtain gold nanoparticles (AuNPs).
在碳包覆铜栅上加入一滴纳米金粒子溶液,室温干燥,制备用于TEM表征的样品。在加速电压为200kV的JSM-6700F透射电子显微镜上进行表征。A drop of gold nanoparticle solution was added to the carbon-coated copper grid and dried at room temperature to prepare the sample for TEM characterization. Characterization was performed on a JSM-6700F transmission electron microscope with an accelerating voltage of 200 kV.
本实施例AuNPs的紫外-可见吸收光谱如图4A所示,透射电子显微镜(TEM)图像如图 4B所示,AuNP溶液的照片如图4C所示。The UV-visible absorption spectrum of the AuNPs in this example is shown in FIG4A , the transmission electron microscope (TEM) image is shown in FIG4B , and the photograph of the AuNP solution is shown in FIG4C .
由图4A~C可知,AuNPs合成成功,在520nm处显示出最大吸光度,呈红色,并且具有均匀的尺寸分布,平均尺寸为13nm。As shown in Figures 4A-C, AuNPs were successfully synthesized, showing a maximum absorbance at 520 nm, appearing red, and having a uniform size distribution with an average size of 13 nm.
2、一种用于SARS-CoV-2检测的DNA步行器的制备方法,包括步骤如下:2. A method for preparing a DNA walker for SARS-CoV-2 detection, comprising the following steps:
(1)将行走链W、锁定链4bp-L1和锁定链6bp-L2在退火缓冲液(25mM Tris-乙酸,200mM NaCl,pH为8.0)中以1:3:3的摩尔比混合均匀,然后在95℃加热10min,冷却至25℃,得到完全封闭的行走链;再将完全封闭的行走链和TCEP以1:50的摩尔比混合后孵育2h,得到巯基化完全封闭的行走链;(1) The walking strand W, the locking strand 4bp-L1 and the locking strand 6bp-L2 were mixed in an annealing buffer (25 mM Tris-acetic acid, 200 mM NaCl, pH 8.0) at a molar ratio of 1:3:3, and then heated at 95°C for 10 min and cooled to 25°C to obtain a completely closed walking strand; the completely closed walking strand and TCEP were then mixed at a molar ratio of 1:50 and incubated for 2 h to obtain a thiol-completely closed walking strand;
(2)将轨道链Tr在95℃加热2min,得到退火后的轨道链Tr;(2) heating the track chain Tr at 95°C for 2 min to obtain an annealed track chain Tr;
(3)将AuNPs、巯基化完全封闭的行走链和退火后的轨道链Tr以1:20:200的摩尔比混合均匀,然后在4℃避光下孵育16h,接着按照40min的时间间隔继续添加NaCl溶液至使NaCl 终浓度为0.2M,再于4℃避光下孵育24h,在4℃,14000rpm下离心30min取沉淀,通过洗涤液(25mM Tris-乙酸盐,pH为8.0)洗涤3次,得到用于SARS-CoV-2检测的DNA步行器(W/Tr/AuNP DNA步行器),最后将DNA步行器以60~80nM的浓度在储存液(25mM Tris- 乙酸盐,100mM NaCl,pH为8.0)中置于4℃下避光保存。(3) AuNPs, thiol-completely closed walking chains and annealed track chains Tr were mixed evenly in a molar ratio of 1:20:200, and then incubated at 4°C in the dark for 16 h. Then, NaCl solution was added at intervals of 40 min to make the final NaCl concentration 0.2 M. The mixture was incubated at 4°C in the dark for 24 h. The precipitate was obtained by centrifugation at 4°C, 14000 rpm for 30 min. The precipitate was washed three times with washing solution (25 mM Tris-acetate, pH 8.0) to obtain a DNA walker (W/Tr/AuNP DNA walker) for SARS-CoV-2 detection. Finally, the DNA walker was stored at a concentration of 60-80 nM in storage solution (25 mM Tris-acetate, 100 mM NaCl, pH 8.0) at 4°C in the dark.
通过DTT置换法确定W/Tr/AuNP DNA步行器上轨道链Tr的数量和浓度,再根据荧光团标记的轨道链Tr的浓度绘制标准校准曲线,结果如图5所示。The number and concentration of track chain Tr on the W/Tr/AuNP DNA walker were determined by the DTT displacement method, and then a standard calibration curve was drawn according to the concentration of the track chain Tr labeled with the fluorophore. The results are shown in Figure 5.
由图5可知,W/Tr/AuNP DNA步行器的AuNP上共轭有23个发夹轨道链。As shown in Figure 5 , there are 23 hairpin track chains conjugated on the AuNP of the W/Tr/AuNP DNA walker.
实施例4Example 4
将实施例3制备的DNA步行器和靶标链T1+T2在反应缓冲液(25mM Tris-乙酸盐、225 mM NaCl,20mM MgCl2,pH为8.0)25℃下反应3h,然后添加CaCl2,CaCl2在缓冲液中的终浓度为180mM,进行目视观察。此反应分为2组,1组中DNA步行器的浓度为3nM,靶标链T1和靶标链T2的浓度均为0nM;2组中DNA步行器的浓度为3nM,靶标链T1和靶标链T2的浓度均为20nM,结果如图6所示The DNA walker prepared in Example 3 and the target strands T1+T2 were reacted in a reaction buffer (25 mM Tris-acetate, 225 mM NaCl, 20 mM MgCl 2 , pH 8.0) at 25°C for 3 h, and then CaCl 2 was added, with the final concentration of CaCl 2 in the buffer being 180 mM, and visual observation was performed. The reaction was divided into two groups. In group 1, the concentration of the DNA walker was 3 nM, and the concentrations of the target strands T1 and T2 were both 0 nM; in group 2, the concentration of the DNA walker was 3 nM, and the concentrations of the target strands T1 and T2 were both 20 nM. The results are shown in FIG6
由图6E可知,当W/Tr/AuNP DNA步行器检测靶标链T1和靶标链T2时,可以直观地观察到溶液的颜色从红色变为紫色。由图6A可知,与靶标链T1和靶标链T2的情况相比,最大吸光度出现红移,出现了620nm附近的新吸收带,光谱变化解释了颜色变化,并表明三维 DNA步行器的聚集。由图6B可知,在靶标链T1和靶标链T2均存在的情况下,DNA步行器整体的平均水合直径从68nm增加到342nm。由图6C可知,在靶标链T1和靶标链T2均存在下,荧光显著增加,这是行走链W被靶标链T1和靶标链T2解封并在AuNP表面的轨道链行走和切割的结果。由图6D可知,行走链W切割发夹轨道链Tr的速率高于其在直轨道链上的切割。As shown in Figure 6E, when the W/Tr/AuNP DNA walker detects the target chain T1 and the target chain T2, the color of the solution can be visually observed to change from red to purple. As shown in Figure 6A, compared with the case of target chain T1 and target chain T2, the maximum absorbance is red-shifted, and a new absorption band near 620nm appears. The spectral change explains the color change and indicates the aggregation of the three-dimensional DNA walker. As shown in Figure 6B, in the presence of both target chain T1 and target chain T2, the average hydration diameter of the DNA walker as a whole increases from 68nm to 342nm. As shown in Figure 6C, in the presence of both target chain T1 and target chain T2, the fluorescence increases significantly, which is the result of the walking chain W being unblocked by the target chain T1 and target chain T2 and walking and cutting the track chain on the AuNP surface. As shown in Figure 6D, the rate at which the walking chain W cuts the hairpin track chain Tr is higher than its cutting on the straight track chain.
实施例5Example 5
1、分别以梯度浓度为0、2、4、8、12、20nM的SARS-CoV-2病毒基因片段作为待测样本,按照实施例4所述方法进行检测和紫外吸收光谱测定,结果如图7所示。1. SARS-CoV-2 virus gene fragments with gradient concentrations of 0, 2, 4, 8, 12, and 20 nM were used as test samples, and detection and UV absorption spectrum measurement were performed according to the method described in Example 4. The results are shown in Figure 7.
由图7可知,随着SARS-CoV-2病毒基因片段浓度的增加,本发明W/Tr/AuNP DNA步行器反应液颜色逐渐由红色变为紫色,再变为紫灰色,实现了SARS-CoV-2的可视化检测。随着SARS-CoV-2病毒基因片段浓度从0增加到10nM,吸收度比逐渐增长,然后达到饱和,直到20nM;在0到10nM的浓度范围内,A620/A520的值与SARS-CoV-2病毒基因片段浓度呈良好的线性关系,通过本发明W/Tr/AuNP DNA步行器的检测限为1nM。As shown in Figure 7, as the concentration of SARS-CoV-2 virus gene fragments increases, the color of the W/Tr/AuNP DNA walker reaction liquid of the present invention gradually changes from red to purple, and then to purple-gray, realizing the visual detection of SARS-CoV-2. As the concentration of SARS-CoV-2 virus gene fragments increases from 0 to 10nM, the absorbance ratio gradually increases, and then reaches saturation until 20nM; within the concentration range of 0 to 10nM, the value of A620/A520 has a good linear relationship with the concentration of SARS-CoV-2 virus gene fragments, and the detection limit of the W/Tr/AuNP DNA walker of the present invention is 1nM.
2、分别以无SARS-CoV-2病毒基因片段(SARS-CoV-2病毒浓度为0nM)、仅含靶标链T1的SARS-CoV-2病毒基因片段(浓度为20nM)、仅含靶标链T2的SARS-CoV-2病毒基因片段(浓度为20nM)和SARS-CoV-2病毒基因片段(浓度为20nM)作为待测样本,按照实施例5所述方法进行检测和紫外吸收光谱测定,结果如图8和图9所示。2. Using a SARS-CoV-2 virus gene fragment without SARS-CoV-2 (SARS-CoV-2 virus concentration of 0 nM), a SARS-CoV-2 virus gene fragment containing only the target chain T1 (concentration of 20 nM), a SARS-CoV-2 virus gene fragment containing only the target chain T2 (concentration of 20 nM) and a SARS-CoV-2 virus gene fragment (concentration of 20 nM) as samples to be tested, detection and ultraviolet absorption spectrum measurement were performed according to the method described in Example 5, and the results are shown in Figures 8 and 9.
由图8和图9可知,本发明的W/Tr/AuNP DNA步行器对含有靶标链T1+T2的 SARS-CoV-2病毒基因片段具有特异性,只有靶标链T1+T2时,反应液显示紫色,无靶标链 T1和T2、仅含有靶标链T1或T2,均显示红色。As can be seen from Figures 8 and 9, the W/Tr/AuNP DNA walker of the present invention is specific to the SARS-CoV-2 virus gene fragment containing target chains T1+T2. When there are only target chains T1+T2, the reaction liquid shows purple, and when there are no target chains T1 and T2, or only target chains T1 or T2, they all show red.
3、分别以靶标链T1发生1bp碱基错配的SARS-CoV-2病毒基因片段(1bp-Mismatch-T1,表1,浓度为20nM)、靶标链T1发生2bp碱基错配的SARS-CoV-2病毒基因片段 (2bp-Mismatch-T1,表1,浓度为20nM)、靶标链T1发生3bp碱基错配的SARS-CoV-2病毒基因片段(3bp-Mismatch-T1,表1,浓度为20nM)、靶标链T2发生1bp碱基错配的 SARS-CoV-2病毒基因片段(1bp-Mismatch-T2,表1,浓度为20nM)、靶标链T2发生2bp碱基错配的SARS-CoV-2病毒基因片段(2bp-Mismatch-T2,表1,浓度为20nM)、靶标链T2 发生3bp碱基错配的SARS-CoV-2病毒基因片段(3bp-Mismatch-T1,表1,浓度为20nM)、和SARS-CoV-2病毒基因片段(浓度为20nM)作为待测样本,按照实施例5所述方法进行检测,结果如图10所示。3. The SARS-CoV-2 virus gene fragment with a 1bp base mismatch in the target chain T1 (1bp-Mismatch-T1, Table 1, concentration of 20nM), the SARS-CoV-2 virus gene fragment with a 2bp base mismatch in the target chain T1 (2bp-Mismatch-T1, Table 1, concentration of 20nM), the SARS-CoV-2 virus gene fragment with a 3bp base mismatch in the target chain T1 (3bp-Mismatch-T1, Table 1, concentration of 20nM), the SARS-CoV-2 virus gene fragment with a 1bp base mismatch in the target chain T2 (1bp-Mismatch-T2, Table 1, concentration of 20nM), the SARS-CoV-2 virus gene fragment with a 2bp base mismatch in the target chain T2 (2bp-Mismatch-T2, Table 1, concentration of 20nM), the target chain T2 The SARS-CoV-2 virus gene fragment with a 3bp base mismatch (3bp-Mismatch-T1, Table 1, concentration of 20 nM) and the SARS-CoV-2 virus gene fragment (concentration of 20 nM) were used as test samples and detected according to the method described in Example 5. The results are shown in Figure 10.
由图10可知,靶标链T1或T2的序列发生碱基错配的SARS-CoV-2病毒基因片段也显示红色,说明了单个靶标链T1或T2发生碱基错配后也不能引起W/Tr/AuNP DNA步行器变色,增加了检测准确率,保证了W/Tr/AuNP DNA步行器的检测可靠性。As shown in Figure 10, the SARS-CoV-2 virus gene fragments with base mismatches in the sequences of the target chains T1 or T2 also appear red, indicating that base mismatches in a single target chain T1 or T2 will not cause the W/Tr/AuNP DNA walker to change color, thereby increasing the detection accuracy and ensuring the detection reliability of the W/Tr/AuNP DNA walker.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210617332.9A CN114875180B (en) | 2022-06-01 | 2022-06-01 | A DNA walker for SARS-CoV-2 detection and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210617332.9A CN114875180B (en) | 2022-06-01 | 2022-06-01 | A DNA walker for SARS-CoV-2 detection and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114875180A CN114875180A (en) | 2022-08-09 |
CN114875180B true CN114875180B (en) | 2024-07-02 |
Family
ID=82679363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210617332.9A Active CN114875180B (en) | 2022-06-01 | 2022-06-01 | A DNA walker for SARS-CoV-2 detection and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114875180B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114214461B (en) * | 2021-12-26 | 2024-03-26 | 南京大学 | Isothermal HIV nucleic acid detection kit and detection method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113512579A (en) * | 2021-07-29 | 2021-10-19 | 山东大学 | Fluorescent biosensor for detecting uracil DNA glycosylase and detection method and application thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10934162B2 (en) * | 2016-11-15 | 2021-03-02 | The Governors Of The University Of Alberta | MicroRNA initiated DNAzyme motor operating in living cells |
-
2022
- 2022-06-01 CN CN202210617332.9A patent/CN114875180B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113512579A (en) * | 2021-07-29 | 2021-10-19 | 山东大学 | Fluorescent biosensor for detecting uracil DNA glycosylase and detection method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
CN114875180A (en) | 2022-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Single-step, salt-aging-free, and thiol-free freezing construction of AuNP-based bioprobes for advancing CRISPR-based diagnostics | |
EP2188394B1 (en) | Identification of nucleic acid sequences | |
Hu et al. | Double-strand DNA-templated formation of copper nanoparticles as fluorescent probe for label free nuclease enzymedetection | |
US11299771B2 (en) | Enhanced DNA sensing via catalytic aggregation of gold nanoparticles by DNA hybridization chain reaction | |
Karami et al. | Conventional PCR assisted single-component assembly of spherical nucleic acids for simple colorimetric detection of SARS-CoV-2 | |
L. Neo et al. | G-quadruplex based probes for visual detection and sensing | |
EP3286329B1 (en) | Method for the simultaneous detection of multiple nucleic acid sequences in a sample | |
Zhao et al. | A machine vision-assisted Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures | |
Hang et al. | Rapid and sensitive detection of Ebola RNA in an unamplified sample based on CRISPR-Cas13a and DNA roller machine | |
WO2022042568A1 (en) | Method for multiplex nucleic acid detection based on crispr technology | |
Liu et al. | Development of DNAzyme-based PCR signal cascade amplification for visual detection of Listeria monocytogenes in food | |
Yang et al. | A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid | |
Liu et al. | Sensitive detection of uracil-DNA glycosylase (UDG) activity based on terminal deoxynucleotidyl transferase-assisted formation of fluorescent copper nanoclusters (CuNCs) | |
CN114875178B (en) | A SARS-CoV-2 detection system and detection method based on hybridization chain reaction | |
CN114875180B (en) | A DNA walker for SARS-CoV-2 detection and preparation method thereof | |
Zhu et al. | Sequence specific recognition of HIV-1 dsDNA in the large amount of normal dsDNA based upon nicking enzyme signal amplification and triplex DNA | |
Ge et al. | Colorimetric detection of viral RNA fragments based on an integrated logic-operated three-dimensional DNA walker | |
Zhao et al. | Combining competitive sequestration with nonlinear hybridization chain reaction amplification: an ultra-specific and highly sensitive sensing strategy for single-nucleotide variants | |
US9512470B2 (en) | Method for the simultaneous detection of multiple nucleic acid sequences in a sample | |
CN103305605B (en) | Based on the non-enzymatic ion detection method of DNA self-assembly | |
Zeng et al. | A novel magneto-DNA duplex probe for bacterial DNA detection based on exonuclease III-aided cycling amplification | |
CN116042927B (en) | CRISPR-Cas13 system for detecting novel coronaviruses, kit and method thereof | |
US20250163498A1 (en) | Methods and compositions related to nucleic acid-based fluorescent nanocluster probes | |
Liu et al. | Visual assay of Escherichia coli O157: H7 based on an isothermal strand displacement and hybrid chain reaction amplification strategy | |
Liu et al. | A programmable CRISPR/Cas12a-mediated hyperbranched hybridization chain reaction for ultrasensitive sensing of Mycobacterium bovis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |