[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN114818407B - Virtual heat test method for structural strength analysis - Google Patents

Virtual heat test method for structural strength analysis Download PDF

Info

Publication number
CN114818407B
CN114818407B CN202210235075.2A CN202210235075A CN114818407B CN 114818407 B CN114818407 B CN 114818407B CN 202210235075 A CN202210235075 A CN 202210235075A CN 114818407 B CN114818407 B CN 114818407B
Authority
CN
China
Prior art keywords
comsol
simulink
module
thermal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210235075.2A
Other languages
Chinese (zh)
Other versions
CN114818407A (en
Inventor
王德成
周星光
张卓宇
赵翔
谢利理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Shanghai Space Precision Machinery Research Institute
Original Assignee
Northwestern Polytechnical University
Shanghai Space Precision Machinery Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, Shanghai Space Precision Machinery Research Institute filed Critical Northwestern Polytechnical University
Priority to CN202210235075.2A priority Critical patent/CN114818407B/en
Publication of CN114818407A publication Critical patent/CN114818407A/en
Application granted granted Critical
Publication of CN114818407B publication Critical patent/CN114818407B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种用于结构强度分析的虚拟热试验方法,首先构建Simulink闭环控制系统模型,包括载荷谱给定模块、控制模块、电源变换模块和Simulink与Comsol接口;然后构建Comsol电场‑热场耦合模型,将从Simulink与Comsol接口输入的电信号转换成被试件的热流信息和温度信息;Comsol电场‑热场耦合模型通过Simulink与Comsol接口向控制模块提供被试件的热流信息和温度信息;控制模块根据虚拟热试验过程中给定载荷谱的性质,选择热流信息或温度信息为反馈信号,在控制模块中实现控制律。本发明采用软件方式,实现了热试验的完全虚拟化。

The invention discloses a virtual thermal test method for structural strength analysis. First, a Simulink closed-loop control system model is constructed, including a load spectrum given module, a control module, a power conversion module and a Simulink and Comsol interface; and then a Comsol electric field-thermal test method is constructed. The field coupling model converts the electrical signals input from the Simulink and Comsol interfaces into the heat flow information and temperature information of the test piece; the Comsol electric field-thermal field coupling model provides the heat flow information and temperature of the test piece to the control module through the Simulink and Comsol interfaces. Information; the control module selects heat flow information or temperature information as the feedback signal according to the nature of the given load spectrum during the virtual thermal test, and implements the control law in the control module. The present invention adopts software method to realize complete virtualization of thermal test.

Description

一种用于结构强度分析的虚拟热试验方法A virtual thermal test method for structural strength analysis

技术领域Technical field

本发明属于结构强度热试验技术领域,具体涉及一种虚拟热试验方法。The invention belongs to the technical field of structural strength thermal testing, and specifically relates to a virtual thermal testing method.

背景技术Background technique

飞行器飞行过程中,高速气流与其表面产生强烈摩擦,边界层内气流损失的动能转化为热能,使边界层内气流温度上升,产生气动加热。气动加热会使飞行器结构强度减弱,并产生热应力、热应变和材料烧蚀等现象,引起内部温度升高,使舱内电子设备的工作环境恶化,降低电子设备使用效能。气动加热是飞行器结构强度设计中必须考虑的问题。热试验通过在地面模拟气动载荷,考核气动加热状态下飞行器的性能,是抑制气动加热问题的有效方法,成为结构设计、强度及可靠性分析、产品性能检验的重要手段。虽然能够模拟气动加热的方式有多种,但是考虑到石英灯加热源在热试验实施过程中具有较好效能,目前国内航空航天领域主要采用石英灯辐射式加热器,进行热环境模拟。During the flight of the aircraft, strong friction occurs between the high-speed airflow and its surface, and the kinetic energy lost by the airflow in the boundary layer is converted into heat energy, causing the temperature of the airflow in the boundary layer to rise, resulting in aerodynamic heating. Aerodynamic heating will weaken the structural strength of the aircraft and produce phenomena such as thermal stress, thermal strain and material ablation, causing internal temperature to rise, worsening the working environment of electronic equipment in the cabin and reducing the performance of electronic equipment. Aerodynamic heating is an issue that must be considered in the design of aircraft structural strength. Thermal testing simulates aerodynamic loads on the ground to assess the performance of the aircraft under aerodynamic heating. It is an effective method to suppress aerodynamic heating problems and has become an important means of structural design, strength and reliability analysis, and product performance inspection. Although there are many ways to simulate aerodynamic heating, considering that the quartz lamp heating source has better efficiency during the implementation of thermal tests, currently the domestic aerospace field mainly uses quartz lamp radiant heaters for thermal environment simulation.

热试验是一项规模大、涉及面广、能耗多、测控技术要求高的地面模拟试验。基于软件仿真技术的虚拟热试验,可以使热环境地面模拟技术水平,有较大的提高,对实际热试验具有预示和指导作用,对加快型号研制进度、提高型号产品质量、降低型号研制成本,有重要意义。热试验过程中,牵涉到控制以及电场和热场。如何有效将控制信号,引入到电场和热场,阻碍了虚拟热试验技术发展。Thermal test is a ground simulation test with large scale, wide coverage, high energy consumption and high requirements on measurement and control technology. Virtual thermal testing based on software simulation technology can greatly improve the technical level of thermal environment ground simulation, and has a predictive and guiding role in actual thermal testing. It can speed up model development progress, improve model product quality, and reduce model development costs. There's important meaning. During thermal testing, control and electric and thermal fields are involved. How to effectively introduce control signals into the electric field and thermal field has hindered the development of virtual thermal test technology.

文献《结构热强度虚拟试验平台技术研究》从热试验系统构成角度,分析了如何开展模块化虚拟热试验,但是没有具体实现方法。文献《航天器虚拟热试验平台的软件架构及其应用》实现了被试产品和加热器的模型建立。文献《石英灯照射虚拟热试验程序的设计与实现》给出了一种基于MSC.Nastran/Patran的石英灯虚拟热试验方法,利用有限元分析技术实现热试验虚拟化。专利《一种基于CFD和FEM技术的虚拟热试验方法》利用计算流体力学方法建立电弧风洞虚拟模型,利用有限元方法建立试验件模型,通过流固耦合技术实现两种模型组合模拟。专利《基于热网络法的航天器虚拟热试验系统及热试验方法》利用数值传热学和计算辐射学的相关数值方法,分析热量传输过程。纵观国内虚拟热试验开展情况,公开文献中主要集中在加热器及被试产品的虚拟化。热试验系统除了加热器、被试产品之外,包括加热电源、控制系统。公开文献中,没有查询到相关资料,实现整个热试验系统虚拟化的虚拟热试验方法。The document "Technical Research on Structural Thermal Strength Virtual Test Platform" analyzes how to carry out modular virtual thermal tests from the perspective of thermal test system composition, but there is no specific implementation method. The document "Software Architecture and Application of Spacecraft Virtual Thermal Test Platform" realizes the model establishment of the tested product and heater. The document "Design and Implementation of Virtual Thermal Test Program for Quartz Lamp Irradiation" provides a quartz lamp virtual thermal test method based on MSC.Nastran/Patran, which uses finite element analysis technology to realize thermal test virtualization. The patent "A Virtual Thermal Test Method Based on CFD and FEM Technology" uses the computational fluid dynamics method to establish a virtual model of the arc wind tunnel, uses the finite element method to establish the test piece model, and realizes the combined simulation of the two models through fluid-structure coupling technology. The patent "Spacecraft Virtual Thermal Test System and Thermal Test Method Based on Thermal Network Method" uses related numerical methods of numerical heat transfer and computational radiology to analyze the heat transfer process. Looking at the development of virtual thermal tests in China, the public literature mainly focuses on the virtualization of heaters and tested products. In addition to the heater and the product under test, the thermal test system includes a heating power supply and a control system. In the public literature, no relevant information can be found to realize the virtual thermal test method of virtualizing the entire thermal test system.

发明内容Contents of the invention

为了克服现有技术的不足,本发明提供了一种用于结构强度分析的虚拟热试验方法,首先构建Simulink闭环控制系统模型,包括载荷谱给定模块、控制模块、电源变换模块和Simulink与Comsol接口;然后构建Comsol电场-热场耦合模型,将从Simulink与Comsol接口输入的电信号转换成被试件的热流信息和温度信息;Comsol电场-热场耦合模型通过Simulink与Comsol接口向控制模块提供被试件的热流信息和温度信息;控制模块根据虚拟热试验过程中给定载荷谱的性质,选择热流信息或温度信息为反馈信号,在控制模块中实现控制律。本发明采用软件方式,实现了热试验的完全虚拟化。In order to overcome the shortcomings of the existing technology, the present invention provides a virtual thermal test method for structural strength analysis. First, a Simulink closed-loop control system model is constructed, including a load spectrum given module, a control module, a power conversion module, and Simulink and Comsol interface; then build a Comsol electric field-thermal field coupling model to convert the electrical signal input from the Simulink and Comsol interface into the heat flow information and temperature information of the test piece; the Comsol electric field-thermal field coupling model is provided to the control module through the Simulink and Comsol interface Heat flow information and temperature information of the test piece; the control module selects heat flow information or temperature information as the feedback signal according to the nature of the given load spectrum during the virtual thermal test, and implements the control law in the control module. The present invention adopts software method to realize complete virtualization of thermal test.

本发明解决其技术问题所采用的技术方案包括如下步骤:The technical solution adopted by the present invention to solve the technical problems includes the following steps:

步骤1:构建Simulink闭环控制系统模型;Step 1: Build a Simulink closed-loop control system model;

所述Simulink闭环控制系统模型包括载荷谱给定模块、控制模块、电源变换模块和Simulink与Comsol接口;The Simulink closed-loop control system model includes a load spectrum given module, a control module, a power conversion module and Simulink and Comsol interfaces;

所述载荷谱给定模块通过Simulink中的signal builder模块实现;所述signalbuilder模块以时间-数值的给定方式,设置虚拟热试验的载荷谱;The load spectrum given module is implemented through the signal builder module in Simulink; the signalbuilder module sets the load spectrum of the virtual thermal test in a time-numeric given manner;

所述控制模块依据反馈和给定信息,产生控制量,实现闭环控制;控制模块的输入信号为载荷谱给定模块设置的载荷谱给定信号;控制模块的输出为控制电源变换模块的导通角;The control module generates control quantities based on feedback and given information to achieve closed-loop control; the input signal of the control module is the load spectrum given signal set by the load spectrum given module; the output of the control module is to control the conduction of the power conversion module horn;

所述电源变换模块为交流/交流变换器或者交流/直流变换器,以交流电源提供原始能源,根据控制模块输出的导通角,电源变换模块输出与导通角大小相对应的有效值的交流电或者直流电;The power conversion module is an AC/AC converter or an AC/DC converter, which uses AC power to provide original energy. According to the conduction angle output by the control module, the power conversion module outputs an effective value of AC power corresponding to the conduction angle. or direct current;

所述Simulink与Comsol接口向Comsol模型提供电源变换模块的输出信息;The Simulink and Comsol interface provides the output information of the power conversion module to the Comsol model;

步骤2:构建Comsol电场-热场耦合模型;Step 2: Construct the Comsol electric field-thermal field coupling model;

所述Comsol电场-热场耦合模型,实现功能为将从Simulink与Comsol接口输入的电信号转换成被试件的热流信息和温度信息;The Comsol electric field-thermal field coupling model functions to convert electrical signals input from the Simulink and Comsol interfaces into heat flow information and temperature information of the test piece;

步骤3:所述Comsol电场-热场耦合模型通过Simulink与Comsol接口向控制模块提供被试件的热流信息和温度信息;控制模块根据虚拟热试验过程中给定载荷谱的性质,选择热流信息或温度信息为反馈信号,在控制模块中实现控制律。Step 3: The Comsol electric field-thermal field coupling model provides the heat flow information and temperature information of the test piece to the control module through the Simulink and Comsol interface; the control module selects heat flow information or temperature information according to the nature of the given load spectrum during the virtual thermal test process. The temperature information is a feedback signal, and the control law is implemented in the control module.

优选地,所述载荷谱为热流或温度。Preferably, the load spectrum is heat flow or temperature.

优选地,所述控制律为PID控制或者模糊控制。Preferably, the control law is PID control or fuzzy control.

优选地,所述电源变换模块中的交流电源为三相交流电或单相交流电。Preferably, the AC power in the power conversion module is three-phase AC or single-phase AC.

优选地,所述Comsol电场-热场耦合模型借助于钨丝,将输入的电能,通过辐射方式,传递到被试件。Preferably, the Comsol electric field-thermal field coupling model uses tungsten wire to transfer the input electric energy to the test piece through radiation.

优选地,所述Comsol电场-热场耦合模型要进行模型网格划分,具体设置为:网格为自由四边形网格,大小为超细化。Preferably, the Comsol electric field-thermal field coupling model needs to be meshed, and the specific settings are as follows: the mesh is a free quadrilateral mesh, and the size is ultra-fine.

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

1)本发明采用软件方式,实现了热试验的完全虚拟化;1) This invention uses software to achieve complete virtualization of thermal tests;

2)本发明利用联合仿真技术,实现控制系统、电场、热场综合仿真分析;2) This invention uses joint simulation technology to realize comprehensive simulation analysis of the control system, electric field, and thermal field;

3)本发明热试验载荷谱可以任意设置,同时可以一次性直接观测各个观测点数据状态,包括功放输出状态信息、加热器输出状态信息、被试件热状态信息。3) The thermal test load spectrum of the present invention can be set arbitrarily, and at the same time, the data status of each observation point can be directly observed at one time, including the power amplifier output status information, the heater output status information, and the thermal status information of the test piece.

附图说明Description of the drawings

图1为基于Simulink和Comsol多场耦合的虚拟热试验方法的整体结构框图。Figure 1 is the overall structural block diagram of the virtual thermal test method based on Simulink and Comsol multi-field coupling.

图2为基于Simulink的模型结构框图。Figure 2 is a block diagram of the model structure based on Simulink.

具体实施方式Detailed ways

下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and examples.

为了实现整个热试验系统的虚拟化,本发明提供一种基于Simulink和Comsol多场耦合的虚拟热试验方法,利用Simulink实现控制系统虚拟化;利用Comsol实现热场和电场虚拟化;通过Simulink和Comsol联合仿真技术,实现控制系统和电场、热场之间的数据交互。In order to realize the virtualization of the entire thermal test system, the present invention provides a virtual thermal test method based on Simulink and Comsol multi-field coupling, using Simulink to realize control system virtualization; using Comsol to realize thermal field and electric field virtualization; using Simulink and Comsol Joint simulation technology realizes data interaction between the control system and the electric field and thermal field.

步骤1:构建Simulink闭环控制系统模型;Step 1: Build a Simulink closed-loop control system model;

所述Simulink闭环控制系统模型包括载荷谱给定模块、控制模块、电源变换模块和Simulink与Comsol接口;The Simulink closed-loop control system model includes a load spectrum given module, a control module, a power conversion module and Simulink and Comsol interfaces;

所述载荷谱给定模块通过Simulink中的signal builder模块实现;所述signalbuilder模块以时间-数值的给定方式,设置虚拟热试验的载荷谱;The load spectrum given module is implemented through the signal builder module in Simulink; the signalbuilder module sets the load spectrum of the virtual thermal test in a time-numeric given manner;

所述控制模块依据反馈和给定信息,产生控制量,实现闭环控制;控制模块的输入信号为载荷谱给定模块设置的载荷谱给定信号;控制模块的输出为控制电源变换模块的导通角;The control module generates control quantities based on feedback and given information to achieve closed-loop control; the input signal of the control module is the load spectrum given signal set by the load spectrum given module; the output of the control module is to control the conduction of the power conversion module horn;

所述电源变换模块为交流/交流变换器或者交流/直流变换器,以交流电源提供原始能源,根据控制模块输出的导通角,电源变换模块输出与导通角大小相对应的有效值的交流电或者直流电;The power conversion module is an AC/AC converter or an AC/DC converter, which uses AC power to provide original energy. According to the conduction angle output by the control module, the power conversion module outputs an effective value of AC power corresponding to the conduction angle. or direct current;

所述Simulink与Comsol接口向Comsol模型提供电源变换模块的输出信息;The Simulink and Comsol interface provides the output information of the power conversion module to the Comsol model;

步骤2:构建Comsol电场-热场耦合模型;Step 2: Construct the Comsol electric field-thermal field coupling model;

所述Comsol电场-热场耦合模型,实现功能为将从Simulink与Comsol接口输入的电信号转换成被试件的热流信息和温度信息;The Comsol electric field-thermal field coupling model functions to convert electrical signals input from the Simulink and Comsol interfaces into heat flow information and temperature information of the test piece;

步骤3:所述Comsol电场-热场耦合模型通过Simulink与Comsol接口向控制模块提供被试件的热流信息和温度信息;控制模块根据虚拟热试验过程中给定载荷谱的性质,选择热流信息或温度信息为反馈信号,在控制模块中实现控制律。Step 3: The Comsol electric field-thermal field coupling model provides the heat flow information and temperature information of the test piece to the control module through the Simulink and Comsol interface; the control module selects heat flow information or temperature information according to the nature of the given load spectrum during the virtual thermal test process. The temperature information is a feedback signal, and the control law is implemented in the control module.

优选地,所述载荷谱为热流或温度。Preferably, the load spectrum is heat flow or temperature.

优选地,所述控制律为PID控制或者模糊控制。Preferably, the control law is PID control or fuzzy control.

优选地,所述电源变换模块中的交流电源为三相交流电或单相交流电。Preferably, the AC power in the power conversion module is three-phase AC or single-phase AC.

优选地,所述Comsol电场-热场耦合模型借助于钨丝,将输入的电能,通过辐射方式,传递到被试件。Preferably, the Comsol electric field-thermal field coupling model uses tungsten wire to transfer the input electric energy to the test piece through radiation.

优选地,所述Comsol电场-热场耦合模型要进行模型网格划分,具体设置为:网格为自由四边形网格,大小为超细化。Preferably, the Comsol electric field-thermal field coupling model needs to be meshed, and the specific settings are as follows: the mesh is a free quadrilateral mesh, and the size is ultra-fine.

具体实施例:Specific examples:

图1是本发明的整体结构图,由基于Simlink的控制模型、Simulink与Comsol接口、基于Comsol的电场-热场模型组成。Figure 1 is an overall structural diagram of the present invention, which consists of a Simlink-based control model, a Simulink and Comsol interface, and a Comsol-based electric field-thermal field model.

图2是本发明的基于Simulink的模型结构框图。由载荷谱给定模块、控制模块、电源变换模块、Simulink与Comsol接口组成。Figure 2 is a block diagram of the Simulink-based model structure of the present invention. It consists of load spectrum given module, control module, power conversion module, Simulink and Comsol interface.

基于Simulink的模型中,载荷谱给定通过signal builder模块实现。模块以时间-数值的给定方式,设置虚拟热试验过程中所需要的载荷谱。In the Simulink-based model, the load spectrum is given through the signal builder module. The module sets the load spectrum required during the virtual thermal test in a time-value given manner.

基于Simulink的模型中,控制模块基于Simulink自带的PID模块,进行设计。模块输入信号为载荷谱给定信号;模块输出为电源变换装置对应的导通角。控制过程中,所需要的比例、积分、微分等控制参数,在虚拟热试验实施前,进行自由设置。In the model based on Simulink, the control module is designed based on the PID module that comes with Simulink. The module input signal is the load spectrum given signal; the module output is the conduction angle corresponding to the power conversion device. During the control process, the required control parameters such as proportion, integral, and differential can be set freely before the implementation of the virtual thermal test.

基于Simulink的模型中,电源变换模块以交流电源提供原始能源。交流电源可以选择单相交流电源和三相交流电源。交流电源的相电压应设置为220V、50Hz。电源变换部分为通过可控硅、IGBT、MOSFET等电力电子器件,构建的交流/交流变换器或者交流/直流变换器。电力电子器件的导通控制,由控制模块输出进行控制。In the Simulink-based model, the power conversion module provides raw energy with AC power. The AC power supply can choose between single-phase AC power supply and three-phase AC power supply. The phase voltage of the AC power supply should be set to 220V, 50Hz. The power conversion part is an AC/AC converter or AC/DC converter constructed through power electronic devices such as thyristors, IGBTs, and MOSFETs. The conduction control of power electronic devices is controlled by the output of the control module.

基于Simulink的模型中,Simulink与Comsol接口向Comsol模型提供电源变换模块的输出信息,以有效值为基础。Simulink与Comsol接口向Simulink提供热场反馈的温度、热流信息。根据虚拟热试验过程中给定载荷谱的性质,选择反馈所用的信号是热流信息,或温度信息。In the Simulink-based model, the Simulink and Comsol interface provides the output information of the power conversion module to the Comsol model, based on the effective value. The Simulink and Comsol interfaces provide Simulink with temperature and heat flow information of thermal field feedback. Depending on the nature of the given load spectrum during the virtual thermal test, the signal used for feedback is selected as heat flow information, or temperature information.

基于Comsol的电场、热场模型中,通过钨丝实现电场向热场能量传递。结合工程热试验所用石英灯特性,进行钨丝特性参数设置。在Comsol中建立二维几何图形,从上至下分别为钨丝热源、空气层、接收平面。对于钨丝热源和接收平面,需要设置恒压热容、导热系数、表面辐射度等参数。空气的各项参数,使用Comsol内置材料库中空气的数据。In the electric field and thermal field model based on Comsol, the energy transfer from the electric field to the thermal field is realized through tungsten wire. Combined with the characteristics of the quartz lamp used in engineering thermal testing, the tungsten filament characteristic parameters are set. Create a two-dimensional geometric figure in Comsol. From top to bottom, they are the tungsten filament heat source, air layer, and receiving plane. For the tungsten filament heat source and receiving plane, parameters such as constant pressure heat capacity, thermal conductivity, and surface radiance need to be set. For various parameters of air, use the air data in Comsol’s built-in material library.

基于Comsol的电场、热场模型中,需要设置物理场,包括钨丝热源和接收平面之间的表面对表面辐射,钨丝热源、接收平面与空气之间固体和流体传热,以及空气的层流。在添加设置好这三个物理场的基础上,就可以对它们进行多物理场的耦合特性分析。In the Comsol-based electric field and thermal field model, physical fields need to be set, including surface-to-surface radiation between the tungsten filament heat source and the receiving plane, solid and fluid heat transfer between the tungsten filament heat source, the receiving plane and the air, and the layer of air flow. After adding and setting these three physical fields, they can perform multi-physics coupling characteristic analysis on them.

基于Comsol的电场、热场模型中,需要进行模型网格划分。具体设置为:网格为自由四边形网格,大小为超细化,最大单元的大小为4mm,最小单元大小为0.015mm。In the Comsol-based electric field and thermal field model, model meshing is required. The specific settings are: the grid is a free quadrilateral grid, the size is ultra-fine, the maximum unit size is 4mm, and the minimum unit size is 0.015mm.

Simulink与Comsol接口设置过程中需要使用软件为:MATLAB 2020版本和Comsol5.6版本。安装时必须先装MATLAB,然后将Comsol安装在MATLAB安装路径下,成功安装会出现Comsol with Simulink图标。通过点击Comsol with Simulink图标,进行相关服务器基本信息设置。在Comsol软件环境下,通过Comsol Multiphysics Server菜单里面的连接到服务器功能,进行相关服务器信息设置。The software required to set up the interface between Simulink and Comsol is: MATLAB version 2020 and Comsol version 5.6. During installation, you must first install MATLAB, and then install Comsol in the MATLAB installation path. If the installation is successful, the Comsol with Simulink icon will appear. By clicking the Comsol with Simulink icon, set the basic information of the relevant server. In the Comsol software environment, set related server information through the Connect to Server function in the Comsol Multiphysics Server menu.

在Comsol模型中,使用Comsol外部接口功能,将模型打包,需要进行输入端口、输出端口、名称、保存路径等设置。在已经建立服务器连接的MATLAB中打开Simulink。在Simulink库中找到Comsol模块,将该模块设置里面的路径改为Comsol模块导出时的路径。In the Comsol model, using the Comsol external interface function to package the model requires settings such as input port, output port, name, and save path. Open Simulink in MATLAB with a server connection established. Find the Comsol module in the Simulink library and change the path in the module settings to the path when the Comsol module is exported.

联合仿真过程中,运行基于Simlink的控制模型时,基于Comsol的电场、热场模型会在后台自动运行。在Simulink任意观测点,通过添加示波器观测模块,可以观测虚拟热试验过程中各个观测点信号变化。During the joint simulation process, when running the Simlink-based control model, the Comsol-based electric field and thermal field models will automatically run in the background. At any Simulink observation point, by adding an oscilloscope observation module, you can observe the signal changes at each observation point during the virtual thermal test.

Claims (6)

1.一种用于结构强度分析的虚拟热试验方法,其特征在于,包括如下步骤:1. A virtual thermal test method for structural strength analysis, characterized in that it includes the following steps: 步骤1:构建Simulink闭环控制系统模型;Step 1: Build a Simulink closed-loop control system model; 所述Simulink闭环控制系统模型包括载荷谱给定模块、控制模块、电源变换模块和Simulink与Comsol接口;The Simulink closed-loop control system model includes a load spectrum given module, a control module, a power conversion module and Simulink and Comsol interfaces; 所述载荷谱给定模块通过Simulink中的signalbuilder模块实现;所述signalbuilder模块以时间-数值的给定方式,设置虚拟热试验的载荷谱;The load spectrum given module is implemented through the signalbuilder module in Simulink; the signalbuilder module sets the load spectrum of the virtual thermal test in a time-numeric given manner; 所述控制模块依据反馈和给定信息,产生控制量,实现闭环控制;控制模块的输入信号为载荷谱给定模块设置的载荷谱给定信号;控制模块的输出为控制电源变换模块的导通角;The control module generates control quantities based on feedback and given information to achieve closed-loop control; the input signal of the control module is the load spectrum given signal set by the load spectrum given module; the output of the control module is to control the conduction of the power conversion module horn; 所述电源变换模块为交流/交流变换器或者交流/直流变换器,以交流电源提供原始能源,根据控制模块输出的导通角,电源变换模块输出与导通角大小相对应的有效值的交流电或者直流电;The power conversion module is an AC/AC converter or an AC/DC converter, which uses AC power to provide original energy. According to the conduction angle output by the control module, the power conversion module outputs an effective value of AC power corresponding to the conduction angle. or direct current; 所述Simulink与Comsol接口向Comsol模型提供电源变换模块的输出信息;The Simulink and Comsol interface provides the output information of the power conversion module to the Comsol model; 步骤2:构建Comsol电场-热场耦合模型;Step 2: Construct the Comsol electric field-thermal field coupling model; 所述Comsol电场-热场耦合模型,实现功能为将从Simulink与Comsol接口输入的电信号转换成被试件的热流信息和温度信息;The Comsol electric field-thermal field coupling model functions to convert electrical signals input from the Simulink and Comsol interfaces into heat flow information and temperature information of the test piece; 步骤3:所述Comsol电场-热场耦合模型通过Simulink与Comsol接口向控制模块提供被试件的热流信息和温度信息;控制模块根据虚拟热试验过程中给定载荷谱的性质,选择热流信息或温度信息为反馈信号,在控制模块中实现控制律。Step 3: The Comsol electric field-thermal field coupling model provides the heat flow information and temperature information of the test piece to the control module through the Simulink and Comsol interface; the control module selects heat flow information or temperature information according to the nature of the given load spectrum during the virtual thermal test process. The temperature information is a feedback signal, and the control law is implemented in the control module. 2.根据权利要求1所述的一种用于结构强度分析的虚拟热试验方法,其特征在于,所述载荷谱为热流或温度。2. A virtual thermal test method for structural strength analysis according to claim 1, characterized in that the load spectrum is heat flow or temperature. 3.根据权利要求1所述的一种用于结构强度分析的虚拟热试验方法,其特征在于,所述控制律为PID控制或者模糊控制。3. A virtual thermal test method for structural strength analysis according to claim 1, characterized in that the control law is PID control or fuzzy control. 4.根据权利要求1所述的一种用于结构强度分析的虚拟热试验方法,其特征在于,所述电源变换模块中的交流电源为三相交流电或单相交流电。4. A virtual thermal test method for structural strength analysis according to claim 1, characterized in that the AC power supply in the power conversion module is three-phase alternating current or single-phase alternating current. 5.根据权利要求1所述的一种用于结构强度分析的虚拟热试验方法,其特征在于,所述Comsol电场-热场耦合模型借助于钨丝,将输入的电能,通过辐射方式,传递到被试件。5. A virtual thermal test method for structural strength analysis according to claim 1, characterized in that the Comsol electric field-thermal field coupling model uses tungsten wire to transfer the input electric energy through radiation. to the test piece. 6.根据权利要求1所述的一种用于结构强度分析的虚拟热试验方法,其特征在于,所述Comsol电场-热场耦合模型要进行模型网格划分,具体设置为:网格为自由四边形网格,大小为超细化。6. A virtual thermal test method for structural strength analysis according to claim 1, characterized in that the Comsol electric field-thermal field coupling model needs to be model meshed, and the specific setting is: the mesh is free Quadrilateral mesh, size ultrafine.
CN202210235075.2A 2022-03-11 2022-03-11 Virtual heat test method for structural strength analysis Active CN114818407B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210235075.2A CN114818407B (en) 2022-03-11 2022-03-11 Virtual heat test method for structural strength analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210235075.2A CN114818407B (en) 2022-03-11 2022-03-11 Virtual heat test method for structural strength analysis

Publications (2)

Publication Number Publication Date
CN114818407A CN114818407A (en) 2022-07-29
CN114818407B true CN114818407B (en) 2024-03-12

Family

ID=82529422

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210235075.2A Active CN114818407B (en) 2022-03-11 2022-03-11 Virtual heat test method for structural strength analysis

Country Status (1)

Country Link
CN (1) CN114818407B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100035336A (en) * 2008-09-26 2010-04-05 한국전력공사 Temperature heating device, temperature heating test device and method using the same
CN109883660A (en) * 2017-12-01 2019-06-14 中国飞机强度研究所 A kind of thermal modeling test control method
CN114139420A (en) * 2021-12-02 2022-03-04 北京机电工程研究所 Quartz lamp radiation heating virtual test method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100035336A (en) * 2008-09-26 2010-04-05 한국전력공사 Temperature heating device, temperature heating test device and method using the same
CN109883660A (en) * 2017-12-01 2019-06-14 中国飞机强度研究所 A kind of thermal modeling test control method
CN114139420A (en) * 2021-12-02 2022-03-04 北京机电工程研究所 Quartz lamp radiation heating virtual test method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种基于MTS FlexTest 200型控制器的热试验控制方法;苏力德;贾二院;杨志斌;;工程与试验;20180331(第01期);第16-19,70页 *

Also Published As

Publication number Publication date
CN114818407A (en) 2022-07-29

Similar Documents

Publication Publication Date Title
CN104834781B (en) A kind of Analysis of Transient Thermal Field emulation mode during commutation failure multiple based on smoothing reactor
CN109344434B (en) Arc simulation method, device, equipment and medium based on harmonic conditions
CN105844993B (en) A kind of energy feedback type aircraft electric load analogy method
CN202102089U (en) Motor efficiency detection system device
CN106649927A (en) Real-time simulation combined modeling method for power electronic elements based on FPGA
CN206021635U (en) A kind of energy feedback type aircraft electric load analog
CN109556759A (en) A kind of experimental method for probing into switchgear the Temperature Rising Law
Chen et al. System modeling and validation of a thermoelectric fluidic power source: proton exchange membrane fuel cell and thermoelectric generator (PEMFC-TEG)
CN103942091A (en) MATLAB user-defined model and PSASP joint simulation excitation system simulation method and system
CN114818407B (en) Virtual heat test method for structural strength analysis
CN106094931B (en) A kind of fast temperature control system towards gauze reactor
Sharma et al. Experimental and numerical investigation of thermal conductivity of marble dust filled needle punched nonwoven jute-epoxy hybrid composite
Peng Research of thermal analysis collaboratively using ANSYS Workbench and SolidWorks Simulation
CN108205595A (en) A kind of PSCAD double-fed fan motor unit simulation model systems suitable for frequency analysis
CN203535185U (en) Solar photovoltaic array power supply simulation device
Cheng et al. A novel method for fast computation of the temperature rise and optimal design of GIL based on thermal network model
CN103532167B (en) Grid-connected photovoltaic system small signal stability based on FPGA judges system and method
CN204143248U (en) Hardware-in-loop simulation device
ZOU Large-size airplane parts digital assembly technology
CN205507400U (en) Fan var control semi -physical simulation tests platform based on UREF and DSP
Zhu et al. Design and implementation of real-time simulation module for non-isolated bidirectional half-bridge DC–DC converter
CN102999040B (en) A kind of parametric controller and using method thereof of power electronic equipment power cell Operation at full power being carried out to Thermal test
Chen et al. The Software Design of the Simulation Flight Thermal Environment System of the Hypersonic Aircraft
Zhang et al. The establishment of real time simulation platform of AC/DC system based on power electronic transformer
Cao et al. Multi-domain modeling simulation and application based on MapleSim

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant