CN114815872B - A Constellation Intelligent Autonomous Orbit Control Method for Collision Avoidance - Google Patents
A Constellation Intelligent Autonomous Orbit Control Method for Collision Avoidance Download PDFInfo
- Publication number
- CN114815872B CN114815872B CN202210673197.XA CN202210673197A CN114815872B CN 114815872 B CN114815872 B CN 114815872B CN 202210673197 A CN202210673197 A CN 202210673197A CN 114815872 B CN114815872 B CN 114815872B
- Authority
- CN
- China
- Prior art keywords
- spacecraft
- neural network
- state
- optimal
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 238000013528 artificial neural network Methods 0.000 claims abstract description 58
- 230000006870 function Effects 0.000 claims abstract description 39
- 238000003062 neural network model Methods 0.000 claims abstract description 32
- 230000008569 process Effects 0.000 claims abstract description 22
- 238000012546 transfer Methods 0.000 claims abstract description 18
- 238000011217 control strategy Methods 0.000 claims abstract description 14
- 230000004913 activation Effects 0.000 claims abstract description 13
- 238000013135 deep learning Methods 0.000 claims abstract description 4
- 230000001133 acceleration Effects 0.000 claims description 16
- 238000012549 training Methods 0.000 claims description 13
- 239000000446 fuel Substances 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 4
- 210000002569 neuron Anatomy 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims description 2
- 230000014509 gene expression Effects 0.000 claims description 2
- 230000005484 gravity Effects 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 claims description 2
- 230000017105 transposition Effects 0.000 claims description 2
- 230000001537 neural effect Effects 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
- G05D1/0816—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
- G05D1/0833—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability using limited authority control
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
Description
技术领域technical field
本发明属于卫星轨道控制领域,具体涉及针对碰撞规避的星座智能自主轨道控制方法。The invention belongs to the field of satellite orbit control, and in particular relates to a constellation intelligent autonomous orbit control method for collision avoidance.
背景技术Background technique
随着空间任务的日益复杂,星群控制问题逐步成为了航天工程领域内的热点与难点。星群为包括卫星集群、编队、星座在内的以多星协同的方式解决空间问题的载体,其相较于单一独立的卫星系统,可靠性、任务多样性、功能可扩展性等方面都有显著提高,是未来卫星技术发展的重要方向。With the increasing complexity of space missions, the problem of constellation control has gradually become a hot and difficult point in the field of aerospace engineering. Constellation is a carrier that solves space problems in a multi-satellite coordinated manner, including satellite clusters, formations, and constellations. Compared with a single independent satellite system, it has better reliability, mission diversity, and functional scalability. Significant improvement is an important direction for the development of satellite technology in the future.
然而,星群处于的空间环境是复杂的,随着卫星数目的增加,卫星在机动过程中,星间碰撞的可能性也会大幅增加,如何很好的综合机动目标与碰撞规避问题,依旧是目前航天工程领域的一个难点,不过幸运的是,随着人工智能,大数据等理论的发展,利用深度神经网络等方法,可以大幅降低计算负担,并实现星上实时智能自主的生成最优控制率的目的,将为含碰撞规避的星上智能自主控制器提供全新的设计方向。However, the space environment in which the constellation is located is complex. With the increase in the number of satellites, the possibility of inter-satellite collisions will also increase significantly during the maneuvering process of the satellites. How to integrate maneuvering targets and collision avoidance problems is still a problem. At present, it is a difficult point in the field of aerospace engineering, but fortunately, with the development of artificial intelligence, big data and other theories, the use of deep neural networks and other methods can greatly reduce the computational burden, and realize the optimal control of real-time intelligent autonomous generation on the star For the purpose of high efficiency, it will provide a new design direction for the on-board intelligent autonomous controller with collision avoidance.
目前,传统的最优控制问题求解有直接法、间接法与形状法,其中,直接法通过直接对系统的状态变量和控制变量进行离散化处理,但其对于复杂问题计算量较大,而间接法利用最优控制理论,虽然能得到精度较高的解,但其对初值极其敏感,形状法则是通过估计小推力转移的轨道,反推出航天器控制策略的方法,虽然有着较快的计算速度,但结果精度依赖于轨道形状的选取。此外,传统含碰撞规避的机动过程大多需要地面计算控制率再上注行星,这样必然面临计算复杂程度随卫星数目增长而爆炸增长的局限性以及,地面上注信息产生的延迟导致的潜在碰撞危险,因此,有必要完成一种灵活的,可实时生成最优控制信息并能实现自主碰撞规避的智能控制器设计。At present, there are direct method, indirect method and shape method for traditional optimal control problems. Among them, the direct method directly discretizes the state variables and control variables of the system, but it has a large amount of calculation for complex problems, and the indirect method The method uses the optimal control theory, although it can obtain a solution with high precision, it is extremely sensitive to the initial value. speed, but the result accuracy depends on the choice of orbital shape. In addition, most of the traditional maneuvering processes involving collision avoidance require the ground to calculate the control rate and then inject the planets. This will inevitably face the limitation that the computational complexity will explode with the increase in the number of satellites, and the potential collision hazard caused by the delay of the information on the ground. , therefore, it is necessary to complete a flexible intelligent controller design that can generate optimal control information in real time and realize autonomous collision avoidance.
发明内容Contents of the invention
本发明的目的是为了解决现有传统的最优控制问题求解法存在计算量大,对初值极其敏感,或对结果精度依赖于轨道形状的选取等的问题,而提出一种针对碰撞规避的星座智能自主轨道控制方法。The purpose of the present invention is to solve the problems that the existing traditional optimal control problem solving method has a large amount of calculation, is extremely sensitive to the initial value, or the result accuracy depends on the selection of the track shape, etc., and proposes a collision avoidance method Constellation Intelligent Autonomous Orbit Control Method.
一种针对碰撞规避的星座智能自主轨道控制方法具体过程为:A specific process of a constellation intelligent autonomous orbit control method for collision avoidance is as follows:
S1、基于深度学习,构建控制器神经网络模型;具体过程为:S1. Construct the neural network model of the controller based on deep learning; the specific process is:
步骤一:通过间接法求解最优轨道转移问题,构建最优控制数据库;Step 1: Solve the optimal orbit transfer problem by the indirect method, and construct the optimal control database;
步骤二:设计神经网络结构,包括神经网络的层数,每一层的节点数与激活函数;Step 2: Design the neural network structure, including the number of layers of the neural network, the number of nodes in each layer and the activation function;
步骤三:得到航天器最优控制器模型,实现实时根据当前与期望状态信息(xc,mc,xt)生成最优控制策略(u*,α*);Step 3: Obtain the optimal controller model of the spacecraft, and realize the real-time generation of the optimal control strategy (u*,α*) according to the current and expected state information (x c ,m c ,x t );
S2、基于S1训练好的神经网络模型与人工势函数,构建考虑碰撞规避的卫星星座推力智能自主控制器;具体过程为:S2. Based on the neural network model and artificial potential function trained in S1, construct an intelligent autonomous controller for satellite constellation thrust considering collision avoidance; the specific process is:
步骤1:利用势函数构建碰撞规避控制器;Step 1: Construct a collision avoidance controller using the potential function;
步骤2:判断航天器当前状态是否满足状态允许偏差;若否,执行步骤3;若是,执行步骤4;Step 2: Determine whether the current state of the spacecraft meets the state tolerance; if not, perform
步骤3:利用S1训练好的神经网络模型对航天器进行控制,执行步骤4;Step 3: Use the neural network model trained by S1 to control the spacecraft, and perform
步骤4:实时判断航天器当前状态是否存在碰撞风险,若航天器存在碰撞风险,则执行步骤5;若航天器不存在碰撞风险,则执行步骤6;Step 4: Determine in real time whether there is a collision risk in the current state of the spacecraft. If there is a collision risk in the spacecraft, perform
步骤5:利用势函数对航天器进行碰撞规避机动控制,至航天器不在存在碰撞风险,执行步骤6Step 5: Use the potential function to perform collision avoidance maneuver control on the spacecraft until the spacecraft no longer has the risk of collision, go to step 6
步骤6:再次判断航天器当前状态是否满足状态允许偏差,若满足,则控制结束,不满足则需要返回步骤2,重复步骤2至步骤6,直至航天器当前所有状态均满足状态允许偏差且不存在碰撞风险,控制结束。Step 6: Judge again whether the current state of the spacecraft satisfies the state allowable deviation. If it is satisfied, the control ends. There is a risk of collision, control ends.
本发明的有益效果:Beneficial effects of the present invention:
本发明提出了一种基于神经网络的航天器轨道转移最优控制器设计方案。在本发明中,利用地面生成的神经网络数据,训练设计好结构的神经网络,以实现星上实时智能自主的生成最优控制的略的目的,此外,将神经网络控制器与势函数相结合,实现了星座机动过程中的星上自主碰撞规避的目的。本发明不仅可以解决传统控制在出现扰动需要重新规划的问题,也可以避免由于地面站上传指令至卫星需要等待适当窗口的麻烦,同样此控制器也为太阳系内其他深空任务的轨道转移控制器设计问题与星群乃至巨星星座自主规避星间碰撞问题提供了一个有效的设计思路。The invention proposes a neural network-based optimal controller design scheme for spacecraft orbit transfer. In the present invention, the neural network data generated on the ground is used to train the neural network with a well-designed structure, so as to realize the purpose of realizing the real-time intelligence and autonomous generation of the optimal control strategy on the star. In addition, the neural network controller is combined with the potential function , to achieve the purpose of on-board autonomous collision avoidance during constellation maneuvering. The present invention can not only solve the problem of traditional control that needs to be re-planned when disturbances occur, but also avoid the trouble of waiting for an appropriate window due to the ground station uploading instructions to the satellite. Similarly, this controller is also an orbit transfer controller for other deep space missions in the solar system Design problems and constellations and even superstar constellations provide an effective design idea for avoiding interstellar collisions independently.
附图说明Description of drawings
图1为本发明基于神经网络的航天器轨道转移最优控制器设计流程图;Fig. 1 is the optimal controller design flow chart of the spacecraft orbit transfer based on the neural network of the present invention;
图2为本发明基于神经网络的航天器星上自主机动与碰撞规避控制器工作流程图;Fig. 2 is the working flow diagram of the autonomous maneuvering and collision avoidance controller on the spacecraft star based on the neural network of the present invention;
图3a为本发明基于神经网络1的航天器轨道转移最优控制器神经网络结构示意图,其中,L(0)表示神经网络的输入层,L(l)表示后续隐含层,L(l+1)表示输出层;Fig. 3 a is a schematic diagram of the neural network structure of the optimal controller for the spacecraft orbit transfer based on the
图3b为本发明基于神经网络2的航天器轨道转移最优控制器神经网络结构示意图;Figure 3b is a schematic diagram of the neural network structure of the optimal controller for spacecraft orbit transfer based on the
图4a为本发明星群构型运行时间为0s后卫星分布情况图;Fig. 4 a is the satellite distribution figure after the constellation configuration operation time of the present invention is 0s;
图4b为本发明星群构型运行时间为9.68×104s后卫星分布情况图;Fig. 4b is a diagram of the distribution of satellites after the running time of the constellation configuration of the present invention is 9.68×10 4 s;
图4c为本发明星群构型运行时间为1.94×105s后卫星分布情况图;Fig. 4c is a diagram of the distribution of satellites after the running time of the constellation configuration of the present invention is 1.94×10 5 s;
图4d为本发明星群构型运行时间为2.90×105s后卫星分布情况图;Fig. 4d is a diagram of the distribution of satellites after the running time of the constellation configuration of the present invention is 2.90×10 5 s;
图4e为本发明星群构型运行时间为3.87×105s后卫星分布情况图;Fig. 4e is a diagram of the distribution of satellites after the running time of the constellation configuration of the present invention is 3.87×10 5 s;
图4f为本发明星群构型运行时间为4.84×105s后卫星分布情况图;Fig. 4f is a diagram of the distribution of satellites after the running time of the constellation configuration of the present invention is 4.84×10 5 s;
图5为本发明航天器间相对距离图像。Fig. 5 is an image of the relative distance between spacecraft of the present invention.
具体实施方式Detailed ways
具体实施方式一:一种针对碰撞规避的星座智能自主轨道控制方法具体过程为:Specific implementation mode one: a constellation intelligent autonomous orbit control method for collision avoidance The specific process is as follows:
本发明设计了一种基于神经网络的智能控制器设计。该算法克服了现有传统方法计算量大等问题,直接利用航天器当前状态与期望状态作为输入量,通过拟合好的神经网络得到当前的最优控制策略,并与基于势函数的碰撞规避环节相结合,实现含碰撞规避的星上智能自主的控制器设计。The present invention designs an intelligent controller design based on a neural network. This algorithm overcomes the problems of large amount of calculation in the existing traditional methods, directly uses the current state and expected state of the spacecraft as input, and obtains the current optimal control strategy through the fitted neural network, and combines it with the potential function-based collision avoidance Links are combined to realize the intelligent and autonomous controller design on the star with collision avoidance.
本发明的目的在于针对上述现有技术的不足,提供一种基于神经网络的航天器星上自主机动与碰撞规避控制器设计方案,为达到上述目的,本发明采用的技术方案包括以下两个部分:The purpose of the present invention is to address the deficiencies of the above-mentioned prior art, and provide a design scheme of autonomous maneuvering and collision avoidance controller on the spacecraft star based on a neural network. In order to achieve the above-mentioned purpose, the technical scheme adopted by the present invention includes the following two parts :
S1、基于深度学习,构建控制器神经网络模型;具体过程为:S1. Construct the neural network model of the controller based on deep learning; the specific process is:
步骤一:通过间接法求解最优轨道转移问题,构建最优控制数据库;Step 1: Solve the optimal orbit transfer problem by the indirect method, and construct the optimal control database;
步骤二:设计神经网络结构,包括神经网络的层数,每一层的节点数与激活函数;Step 2: Design the neural network structure, including the number of layers of the neural network, the number of nodes in each layer and the activation function;
步骤三:得到航天器最优控制器模型,实现实时根据当前与期望状态信息(xc,mc,xt)生成最优控制策略(u*,α*);Step 3: Obtain the optimal controller model of the spacecraft, and realize the real-time generation of the optimal control strategy (u*,α*) according to the current and expected state information (x c ,m c ,x t );
S2、基于S1训练好的神经网络模型与人工势函数,构建考虑碰撞规避的卫星星座小推力智能自主控制器;具体过程为:S2. Based on the neural network model and artificial potential function trained in S1, construct a satellite constellation low-thrust intelligent autonomous controller considering collision avoidance; the specific process is:
步骤1:利用势函数构建碰撞规避控制器;Step 1: Construct a collision avoidance controller using the potential function;
步骤2:判断航天器当前状态是否满足状态允许偏差;若否,执行步骤3;若是,执行步骤4;Step 2: Determine whether the current state of the spacecraft meets the state tolerance; if not, perform
步骤3:利用S1训练好的神经网络模型对航天器进行控制(此时对于的当前与期望状态信息输入S1训练好的神经网络模型,输出最优控制策略,基于最优控制策略对航天器进行控制),执行步骤4;Step 3: Use the neural network model trained by S1 to control the spacecraft (at this time, input the current and expected state information of the neural network model trained by S1, output the optimal control strategy, and control the spacecraft based on the optimal control strategy control), perform
步骤4:实时判断航天器当前状态是否存在碰撞风险(公式11),若航天器存在碰撞风险,则执行步骤5;若航天器不存在碰撞风险,则执行步骤6;Step 4: judge in real time whether there is a collision risk in the current state of the spacecraft (Formula 11), if there is a collision risk in the spacecraft, then perform
步骤5:利用势函数对航天器进行碰撞规避机动控制(公式12-18)(利用势函数对步骤3基于最优控制策略控制的航天器对于的状态等进行碰撞规避机动控制,得到每次更新的控制率),至航天器不在存在碰撞风险,执行步骤6;Step 5: Use the potential function to perform collision-avoidance maneuver control on the spacecraft (Formula 12-18) (use the potential function to perform collision-avoidance maneuver control on the state of the spacecraft based on the optimal control strategy in
步骤6:再次判断航天器当前状态是否满足状态允许偏差,若满足,则控制结束,不满足则需要返回步骤2,重复步骤2至步骤6,直至航天器当前所有状态均满足状态允许偏差且不存在碰撞风险,控制结束。Step 6: Judge again whether the current state of the spacecraft satisfies the state allowable deviation. If it is satisfied, the control ends. There is a risk of collision, control ends.
具体实施方式二:本实施方式与具体实施方式一不同的是,所述步骤一中通过间接法求解最优轨道转移问题,构建最优控制数据库;Specific embodiment two: the difference between this embodiment and specific embodiment one is that in the first step, the optimal orbit transfer problem is solved by the indirect method, and the optimal control database is constructed;
具体过程为:The specific process is:
步骤一一、航天器的动力学模型选择为二体动力学模型,所采用的二体动力学模型在柱坐标系中可以表达为:Step 11, the dynamic model of the spacecraft is selected as a two-body dynamic model, and the adopted two-body dynamic model can be expressed in the cylindrical coordinate system as:
其中,D、B为中间变量,表达式如下:Among them, D and B are intermediate variables, and the expressions are as follows:
其中,为状态x关于时间的一阶导数;x=[r,θ,z,vr,vθ,vz]T,r、θ和z分别是航天器的径向距离、方位角和高度;vr、vθ和vz分别表示r、θ和z关于时间的一阶导数;R为航天器中心到中心天体之间的距离,Tmax为航天器的最大推力,Isp和g0分别表示推进器的比冲和地球的平均重力加速度;u为发动机的实际推力与最大推力的比值,u∈[0,1];α=[αr,αθ,αz]T是推力方向,αr、αθ、αz分别为推力方向在径向,主法向和次法向上的分量;m为航天器质量;μ是中心天体的引力常量,对于近地卫星μ=398600.4415km3/s2;上角标“T”代表矩阵转置;t为时间;in, is the first derivative of state x with respect to time; x=[r,θ,z,v r ,v θ ,v z ] T , r, θ and z are the radial distance, azimuth and height of the spacecraft respectively; v r , v θ and v z represent the first derivatives of r, θ and z with respect to time respectively; R is the distance from the center of the spacecraft to the central celestial body, T max is the maximum thrust of the spacecraft, I sp and g 0 respectively represent the specific impulse of the propeller and the average acceleration of gravity of the earth; u is the ratio of the actual thrust of the engine to the maximum thrust, u∈[0,1]; α = [α r ,α θ ,α z ] T is the thrust direction, α r , α θ , and α z are the components of the thrust direction in the radial direction, the main normal direction and the subnormal direction respectively; m is the mass of the spacecraft; μ is the center The gravitational constant of the celestial body, for the near-earth satellite μ=398600.4415km 3 /s 2 ; the superscript "T" stands for matrix transposition; t is time;
步骤一二、时间自由的燃料最优控制问题的指标J可以表示为:
其中,tf为任务的转移时间;Among them, t f is the transfer time of the task;
获取标称轨道的初始状态和期望状态分别表示为和 The initial state and desired state to obtain the nominal orbit are expressed as and
步骤一三、基于标称轨道的初始状态和期望状态,利用间接法对时间自由的燃料最优控制问题进行求解,得到协态变量初值和转移时间,表示为最优解Λ*;Step 13. Based on the initial state and expected state of the nominal orbit, use the indirect method to solve the time-free fuel optimal control problem, and obtain the initial value of the co-state variable and the transition time, expressed as the optimal solution Λ * ;
步骤一四、获取一组新的标称轨道的初始状态与期望状态的值:Step 14. Obtain the initial state of a new set of nominal orbits and desired state value of:
其中,均为以六根数形式给出的状态量;δxco,δxto表示足够小的随机小量;in, Both are state quantities given in the form of hexagrams; δx co , δx to represent small enough random quantities;
步骤一五、将最优解Λ*作为求解新状态下最优解的初始值;Step 15. Use the optimal solution Λ * as the optimal solution in the new state initial value;
基于新的标称轨道的初始状态与期望状态的值,利用间接法对时间自由的燃料最优控制问题进行求解,得到新的协态变量初值和转移时间,表示为新状态下最优解 Initial state based on the new nominal orbit and desired state The value of , using the indirect method to solve the time-free fuel optimal control problem, get the initial value of the new costate variable and transition time, expressed as the optimal solution in the new state
步骤一六、重复步骤一四、步骤一五,得到多个最优解,多个最优解对应多条最优轨迹;Step 16. Repeat steps 14 and 15 to obtain multiple optimal solutions, which correspond to multiple optimal trajectories;
当δxco,δxto足够小时,求解间接法的打靶法很快收敛;When δx co and δx to are small enough, the shooting method for solving the indirect method converges quickly;
建立神经网络数据库,将得到的每条最优轨迹在M个时间离散点中进行采样,采样得到当前与期望状态-最优控制动作对(xc,mc,xt,U*);Establish a neural network database, sample each optimal trajectory obtained at M time discrete points, and obtain the current and expected state-optimal control action pair (x c , m c , x t , U*) by sampling;
由多条最优轨迹采样得到多组当前与期望状态-最优控制动作对(xc,mc,xt,U*),组建最优控制数据库;Multiple sets of current and expected state-optimal control action pairs (x c , m c , x t , U*) are obtained by sampling multiple optimal trajectories, and an optimal control database is established;
其中xc,mc为航天器当前状态,xt为期望状态,U*为最优控制。Where x c , m c are the current state of the spacecraft, x t is the desired state, and U* is the optimal control.
其它步骤及参数与具体实施方式一相同。Other steps and parameters are the same as those in
具体实施方式三:本实施方式与具体实施方式一或二不同的是,所述步骤二中设计神经网络结构,包括神经网络的层数,每一层的节点数与激活函数;Specific embodiment three: the difference between this embodiment and specific embodiment one or two is that the neural network structure is designed in the step two, including the number of layers of the neural network, the number of nodes and the activation function of each layer;
具体过程为:The specific process is:
控制器的神经网络模型为前馈全连接神经网络,包括神经网络1模型和神经网络2模型;The neural network model of the controller is a feedforward fully connected neural network, including
控制器的神经网络1、2模型的输入均为航天器当前状态与期望状态[xc;mc;xt],控制器的神经网络1模型的输出为航天器推力幅值u∈[0,1],神经网络2模型的输出为径向推力方向角和次法向推力方向角[θr,θz]T,其中,θr∈[-π,π],θz∈[-π/2,π/2]有:The inputs of the
神经网络1依次包含一个输入层,3层隐含层,一个输出层,每层隐含层包含128个神经元,并选择Sigmoid函数作为输出层激活函数,在隐含层选取ReLU作为激活函数;神经网络2依次包含一个输入层,9层隐含层,一个输出层,每层隐含层包含128个神经元,选择Tanh函数作为输出层激活函数,在隐含层选取ReLU作为激活函数;
神经网络由权重ω与偏置b参数化,采用训练数据与网络预测结果之间的均方误差(MSE)作为损失函数:The neural network is parameterized by weight ω and bias b, using the mean square error (MSE) between the training data and the network prediction results as the loss function:
其中Net表示需要训练的神经网络,N为用于训练的样本总数.Xi为输入数据,为神经网络期望输出,|| ||表示向量的二范数;Among them, Net represents the neural network that needs to be trained, and N is the total number of samples used for training. X i is the input data, is the expected output of the neural network, || || represents the two-norm of the vector;
用Adam优化算法来对神经网络中参数进行训练,设置学习率为0.0001。The Adam optimization algorithm is used to train the parameters in the neural network, and the learning rate is set to 0.0001.
其它步骤及参数与具体实施方式一或二相同。Other steps and parameters are the same as those in
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是,所述步骤三中得到航天器最优控制器模型,实现实时根据当前与期望状态信息(xc,mc,xt)生成最优控制策略(u*,α*);具体过程为:Specific Embodiment 4: The difference between this embodiment and one of
提取数据库中数据作为训练集,将训练集输入构建的控制器神经网络模型1,2,对构建的控制器神经网络模型进行训练,得到训练好的两个神经网络模型,得到航天器最优控制器模型;Extract the data in the database as the training set, input the training set into the constructed controller
将当前与期望状态信息[xc;mc;xt]输入训练好的神经网络模型1、2,训练好的神经网络模型1输出为unet,训练好的神经网络模型2输出为[θr,θz]T,航天器此时受到的推力方向矢量为:Input the current and expected state information [x c ; m c ; x t ] into the trained
式中,分别表示神经网络计算得到的推力方向在径向,主法向和次法向上的分量,因此最优控制策略(u*,α*)为:In the formula, represent the components of the thrust direction calculated by the neural network in the radial direction, the main normal direction and the subnormal direction respectively, so the optimal control strategy (u*,α*) is:
其它步骤及参数与具体实施方式一至三之一相同。Other steps and parameters are the same as those in
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是,所述步骤1中利用势函数构建碰撞规避控制器;具体过程为:Specific embodiment five: the difference between this embodiment and one of specific embodiments one to four is that in the
设置航天器的安全约束表示为:Setting the safety constraints of the spacecraft is expressed as:
||rmin||>L (10)||r min ||>L (10)
其中rmin表示两航天器的最近距离,L表示航天器间允许的最小距离;Where r min represents the shortest distance between the two spacecraft, and L represents the minimum distance allowed between the spacecraft;
航天器所受的距离其最近的航天器的斥力势为:The repulsion potential of the closest spacecraft to the spacecraft is:
其中,Uo(xi,xj)为航天器i所受的距离航天器i最近的航天器j的斥力势,xi,xj为i,j两航天器的状态,d0为斥力场半径,k为斥力增益系数;表示对函数求取梯度,当两航天器之间最近距离大于d0时,认为两航天器间无碰撞的风险,当两航天器之间最近距离小于等于d0时,认为两航天器间有碰撞的风险,Fo(xi,xj)为最终斥力场对航天器产生的斥力幅值;Among them, U o (xi , x j ) is the repulsive force potential of the spacecraft j closest to the spacecraft i suffered by the spacecraft i, x i , x j are the states of the two spacecraft i and j, and d 0 is the repulsive force Field radius, k is the repulsion gain coefficient; means to calculate the gradient of the function, when the shortest distance between the two spacecraft is greater than d 0 , it is considered that there is no risk of collision between the two spacecraft, and when the shortest distance between the two spacecraft is less than or equal to d 0 , it is considered that there is a risk of collision between the two spacecraft The risk of collision, F o ( xi , x j ) is the magnitude of the repulsive force generated by the final repulsive field on the spacecraft;
假设航天器i受到的切向加速度方向为αui,因此,可以表示为:Suppose the direction of tangential acceleration received by spacecraft i is α ui , therefore, it can be expressed as:
其中ai表示第i个航天器的半长轴,aj表示距离第i个航天器最近的航天器的半长轴,da0为防止半长轴差别过小产生的推力方向震荡;Where a i represents the semi-major axis of the i-th spacecraft, a j represents the semi-major axis of the spacecraft closest to the i-th spacecraft, and da 0 is to prevent thrust direction oscillation caused by too small semi-major axis difference;
为将切向加速度方向向量转至柱坐标系中,首先将方向向量转置径向S,横向T与轨道面法向W中,令中间变量A,B表示如下:In order to transfer the tangential acceleration direction vector to the cylindrical coordinate system, the direction vector is first transposed into the radial direction S, the transverse direction T and the normal direction W of the orbital surface, and the intermediate variables A and B are expressed as follows:
有:Have:
S=Aαui S=Aα ui
T=Bαui (15)T = Bα ui (15)
W=0W=0
其中e表示轨道离心率,表示真近点角;where e represents the orbital eccentricity, Indicates the true anomaly angle;
因此,将[S,T,W]T转移至地心惯性坐标系,有:Therefore, to transfer [S,T,W] T to the geocentric inertial coordinate system, there are:
式中,ax、ay、az表示航天器在地心惯性坐标系下的加速度分量;和分别表示绕x,z轴将矢量旋转角的旋转矩阵;Ω表示升交点赤经,i表示轨道倾角,ω表示近地点幅角;分别代表-Ω、-i或 In the formula, a x , a y , a z represent the acceleration components of the spacecraft in the earth-centered inertial coordinate system; and Respectively represent the rotation angle of the vector around the x and z axes The rotation matrix of ; Ω represents the right ascension of the ascending node, i represents the orbital inclination, and ω represents the argument of perigee; represent -Ω, -i or
借由地心惯性坐标系下加速度方向矢量,可得到柱坐标系下加速度方向矢量αo-rθz=[αr,αθ,αz]T如下:By means of the acceleration direction vector in the earth-centered inertial coordinate system, the acceleration direction vector α o-rθz =[α r ,α θ ,α z ] T in the cylindrical coordinate system can be obtained as follows:
αr=ax cosθ+ay sinθα r =a x cosθ+a y sinθ
αθ=-ax sinθ+ay cosθ (17)α θ =-a x sinθ+a y cosθ (17)
αz=az α z =a z
式中,αr、αθ、αz分别为推力方向在径向,主法向和次法向上的分量In the formula, α r , α θ , and α z are the components of the thrust direction in the radial direction, the main normal direction and the subnormal direction respectively
由此法得到的加速度与神经网络控制器得到的加速度做和,可得到需要进行碰撞规避航天器所受到的控制率,即:The acceleration obtained by this method is summed with the acceleration obtained by the neural network controller, and the control rate of the spacecraft that needs to avoid collision can be obtained, namely:
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是,所述步骤2~步骤6中的航天器的状态允许偏差以柱坐标的形式给出,航天器状态偏差具体表示方式如下:Specific Embodiment 6: The difference between this embodiment and one of
式中,|Δr|、|Δθ|、|Δz|、|Δvr|、|Δvθ|与|Δvz|分别表示当前状态与期望状态的偏差量,rem(p,q)表示p除以q所得的余数;In the formula, |Δr|, |Δθ|, |Δz|, |Δv r |, |Δv θ | and |Δv z | represent the current state and desired state The amount of deviation, rem(p,q) represents the remainder obtained by dividing p by q;
若航天器当前状态小于等于允许偏差,仍有可能因为碰撞规避机动偏离航天器期望状态,此时,为避免控制器频繁的切换开关状态,将状态允许偏差以开始极限与停止极限的形式给出;If the current state of the spacecraft is less than or equal to the allowable deviation, it is still possible to deviate from the expected state of the spacecraft due to collision avoidance maneuvers. with stop limit given in the form;
当航天器的所有状态偏差均小于等于停止极限时,认为满足状态允许偏差,当航天器任一状态偏差大于开始极限时,则认为状态允许偏差不再满足;When all the state deviations of the spacecraft are less than or equal to the stop limit, it is considered that the state allowable deviation is satisfied; when any state deviation of the spacecraft is greater than the start limit, it is considered that the state allowable deviation is no longer satisfied;
所述开始极限均大于停止极限。The start limits are all greater than the stop limits.
其它步骤及参数与具体实施方式一至五之一相同。Other steps and parameters are the same as one of the
采用以下实施例验证本发明的有益效果:Adopt the following examples to verify the beneficial effects of the present invention:
实施例一:Embodiment one:
选取大型星座中的一个轨道平面,假设这一轨道面相位均匀分布着100颗卫星。每颗卫星质量为270kg,采用电推进器,比冲Isp=3000s,能提供的最大推力Tmax=100mN,航天器共同的初始半长轴为a=7378km,离心率e=0.1,且共同的轨道倾角i、升交点赤经(RAAN)Ω,近地点幅角ω和真近点角均为0,限制任务的最大时间为4.841×105s,将卫星按照其初始相位由小到大编号为1~100,从中随机选出五颗卫星重新排布相位,选择的卫星编号为[1,23,58,75,88],并通过轨道机动将其重新排布为[58,88,1,23,75]。Select an orbital plane in a large constellation, assuming that 100 satellites are evenly distributed in phase of this orbital plane. Each satellite has a mass of 270kg, uses electric propulsion, specific impulse Isp = 3000s, and can provide the maximum thrust Tmax = 100mN. The common initial semi-major axis of the spacecraft is a = 7378km, the eccentricity e = 0.1, and the common orbital inclination i, right ascension of ascending node (RAAN)Ω, argument of perigee ω and true anomaly are all 0, limit the maximum time of the mission to 4.841×10 5 s, set the satellite according to its initial phase Numbers from small to large are 1 to 100, from which five satellites are randomly selected to rearrange their phases. The selected satellites are numbered [1, 23, 58, 75, 88], and are rearranged as [ 58,88,1,23,75].
表1人工势函数参数及控制极限Table 1 Artificial potential function parameters and control limits
机动过程中卫星位置变化如图4a、4b、4c、4d、4e、4f所示,其中编号12345对应于选择的卫星编号[1,23,58,75,88]:The satellite position changes during maneuvering are shown in Figures 4a, 4b, 4c, 4d, 4e, and 4f, where the number 12345 corresponds to the selected satellite number [1, 23, 58, 75, 88]:
经过4.841×105s卫星实现了构型重构,航天器之间的最小相对距离变化如图5所示:执行控制规避环节后航天器间的最小距离为10.12km,大于给定的10km边界,而未经过势函数碰撞规避控制的情况下,航天器完成上述过程需要的燃料为0.08kg-0.31kg总燃料消耗为1.1863kg且航天器间最小距离为8.28km,小于给定的10km碰撞边界。After 4.841×10 5 s satellites realized the configuration reconstruction, the change of the minimum relative distance between the spacecraft is shown in Figure 5: the minimum distance between the spacecraft is 10.12km after the execution of the control avoidance link, which is greater than the given 10km boundary , without potential function collision avoidance control, the fuel required for the spacecraft to complete the above process is 0.08kg-0.31kg, the total fuel consumption is 1.1863kg and the minimum distance between spacecraft is 8.28km, which is less than the given collision boundary of 10km .
同时含碰撞规避的航天器机动耗费燃料为0.09kg-0.32kg,总燃料消耗为1.2917kg。可以看出基于势函数的人工智能控制器有着合理的能量消耗,同时证明了碰撞规避算法的有效性。At the same time, the fuel consumption of spacecraft maneuvering with collision avoidance is 0.09kg-0.32kg, and the total fuel consumption is 1.2917kg. It can be seen that the artificial intelligence controller based on the potential function has reasonable energy consumption, and at the same time proves the effectiveness of the collision avoidance algorithm.
并且,相比平均时长需要约2000s计算时间的间接法,神经网络计算一次完整的轨迹仅需约100s,平均神经网络控制器每计算一次控制量仅需要0.0095s。其在计算时间上也表现了足够的优势。Moreover, compared with the indirect method, which takes about 2000s to calculate on average, the neural network only needs about 100s to calculate a complete trajectory, and the average neural network controller only needs 0.0095s to calculate the control amount once. It also shows sufficient advantages in computing time.
本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,本领域技术人员当可根据本发明作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。The present invention can also have other various embodiments, without departing from the spirit and essence of the present invention, those skilled in the art can make various corresponding changes and deformations according to the present invention, but these corresponding changes and deformations are all Should belong to the scope of protection of the appended claims of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210673197.XA CN114815872B (en) | 2022-06-14 | 2022-06-14 | A Constellation Intelligent Autonomous Orbit Control Method for Collision Avoidance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210673197.XA CN114815872B (en) | 2022-06-14 | 2022-06-14 | A Constellation Intelligent Autonomous Orbit Control Method for Collision Avoidance |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114815872A CN114815872A (en) | 2022-07-29 |
CN114815872B true CN114815872B (en) | 2022-11-18 |
Family
ID=82521615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210673197.XA Active CN114815872B (en) | 2022-06-14 | 2022-06-14 | A Constellation Intelligent Autonomous Orbit Control Method for Collision Avoidance |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114815872B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115509123B (en) * | 2022-09-16 | 2024-06-21 | 北京理工大学 | Rapid prediction and avoidance trajectory optimization method for satellite constellation collision |
CN116331518B (en) * | 2023-01-13 | 2023-09-26 | 天津大学 | A method for collision avoidance control of constellation intelligent formation based on safety adaptive dynamic programming |
CN116187104B (en) * | 2023-04-27 | 2023-08-01 | 华侨大学 | Safety analysis and development method and device for rail transit interlocking system |
CN116886171B (en) * | 2023-08-14 | 2025-02-11 | 中山大学 | A constellation network collision warning method, device, equipment and storage medium |
CN117022678B (en) * | 2023-08-29 | 2024-01-26 | 北京航天驭星科技有限公司 | Method, system, electronic device and medium for avoiding collision risk |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541070A (en) * | 2012-01-20 | 2012-07-04 | 哈尔滨工业大学 | Collision avoiding method for ground testing system of satellite formation flying |
CN112000132A (en) * | 2020-07-08 | 2020-11-27 | 中国人民解放军军事科学院国防科技创新研究院 | Spacecraft obstacle avoidance control method based on ellipsoid description |
WO2021027568A1 (en) * | 2019-08-12 | 2021-02-18 | 华为技术有限公司 | Obstacle avoidance method and device |
CN113741493A (en) * | 2021-08-11 | 2021-12-03 | 北京空间飞行器总体设计部 | Spacecraft safety approach control method |
-
2022
- 2022-06-14 CN CN202210673197.XA patent/CN114815872B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102541070A (en) * | 2012-01-20 | 2012-07-04 | 哈尔滨工业大学 | Collision avoiding method for ground testing system of satellite formation flying |
WO2021027568A1 (en) * | 2019-08-12 | 2021-02-18 | 华为技术有限公司 | Obstacle avoidance method and device |
CN112000132A (en) * | 2020-07-08 | 2020-11-27 | 中国人民解放军军事科学院国防科技创新研究院 | Spacecraft obstacle avoidance control method based on ellipsoid description |
CN113741493A (en) * | 2021-08-11 | 2021-12-03 | 北京空间飞行器总体设计部 | Spacecraft safety approach control method |
Non-Patent Citations (5)
Title |
---|
Collision avoidance control for formation flying of multiple spacecraft using artificial potential field;JiyoonHwang等;《Advances in Space Research》;20220331;第69卷(第5期);2197-2209 * |
Low-thrust spacecraft trajectory optimization via a DNN-based method;YIN S等;《Advances in Space Research》;20201231;第66卷(第7期);1635-1646 * |
基于遗传算法的卫星攻击轨道优化方法;赵琳等;《系统工程与电子技术》;20160531(第05期);144-150 * |
多Euler-Lagrange系统协同跟踪避碰控制;史小平等;《黑龙江大学工程学报》;20180925(第03期);2+40-46 * |
深空环境下近距离绳系卫星系统控制方法研究;黄静;《中国博士学位论文全文数据库 工程科技Ⅱ辑》;20160315(第03(2016)期);C031-60 * |
Also Published As
Publication number | Publication date |
---|---|
CN114815872A (en) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114815872B (en) | A Constellation Intelligent Autonomous Orbit Control Method for Collision Avoidance | |
Wang et al. | Coordinated stabilization of tumbling targets using tethered space manipulators | |
CN114967453B (en) | Satellite thing level conservation state initial value estimation method based on neural network | |
CN109911249B (en) | Interstellar transfer limited thrust orbit-entering iterative guidance method for low thrust-weight ratio aircraft | |
CN104898683A (en) | Flexible satellite neural network backstepping sliding mode attitude control method | |
Navabi et al. | Spacecraft quaternion based attitude input-output feedback linearization control using reaction wheels | |
Holt et al. | Low-thrust trajectory design using closed-loop feedback-driven control laws and state-dependent parameters | |
CN114460952B (en) | Double-star cooperative orbit transfer method and system for initializing elliptical orbit flight accompanying configuration | |
CN109212970A (en) | A kind of neural network dynamic face control method of drive lacking rope system complex system | |
CN115258196A (en) | Low-orbit satellite constellation networking electric propulsion orbit transfer strategy optimization method and system | |
CN107918400B (en) | Aerospace vehicle on-orbit operation relative position attitude joint control method | |
Liu et al. | Optimal formation control for multiple rotation-translation coupled satellites using reinforcement learning | |
Ortega | Fuzzy logic techniques for rendezvous and docking of two geostationary satellites | |
CN117706921A (en) | High-precision continuous thrust approaching track planning method for spacecraft | |
CN114996839A (en) | Planning method for maneuvering strategy of service spacecraft in close range | |
Xu et al. | Coordinated control method of space-tethered robot system for tracking optimal trajectory | |
CN115994408A (en) | Method and device for optimizing transfer track of gravity wave detector in Japanese center configuration | |
CN113325862A (en) | Optimal cooperative control method for attaching small planet to flexible spacecraft | |
Zhang et al. | Dynamics of reconfiguration and assembly of a stacked satellite system | |
Li et al. | Optimal relative attitude tracking control for spacecraft proximity operation | |
Yoshimura et al. | Global trajectory design for position and attitude control of an underactuated satellite | |
Liu et al. | Design and Simulation of a Flexible Bending Actuator for Solar Sail Attitude Control. Aerospace 2021, 8, 372 | |
CN116187011A (en) | A Sequential Convex Optimization Method for Multi-Spacecraft Distributed Migration Maneuvers | |
Jian et al. | Multi⁃ spacecraft Intelligent Orbit Phasing Control Considering Collision Avoidance. | |
Kibune et al. | Attitude and Orbit Control Strategy with 10N Thruster for ALE-3 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |