CN114807872B - 一种高熵合金/Ti3SiC2多层复合涂层及其制备方法 - Google Patents
一种高熵合金/Ti3SiC2多层复合涂层及其制备方法 Download PDFInfo
- Publication number
- CN114807872B CN114807872B CN202210474405.3A CN202210474405A CN114807872B CN 114807872 B CN114807872 B CN 114807872B CN 202210474405 A CN202210474405 A CN 202210474405A CN 114807872 B CN114807872 B CN 114807872B
- Authority
- CN
- China
- Prior art keywords
- layer
- sic
- tivnbmotaw
- entropy alloy
- composite coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3435—Applying energy to the substrate during sputtering
- C23C14/345—Applying energy to the substrate during sputtering using substrate bias
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3485—Sputtering using pulsed power to the target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210474405.3A CN114807872B (zh) | 2022-04-29 | 2022-04-29 | 一种高熵合金/Ti3SiC2多层复合涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210474405.3A CN114807872B (zh) | 2022-04-29 | 2022-04-29 | 一种高熵合金/Ti3SiC2多层复合涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114807872A CN114807872A (zh) | 2022-07-29 |
CN114807872B true CN114807872B (zh) | 2022-12-16 |
Family
ID=82512297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210474405.3A Active CN114807872B (zh) | 2022-04-29 | 2022-04-29 | 一种高熵合金/Ti3SiC2多层复合涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114807872B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118109782B (zh) * | 2024-04-23 | 2024-09-20 | 深圳市奥美特纳米科技有限公司 | 一种耐冲击高强度复合陶瓷涂层及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE531749C2 (sv) * | 2007-09-17 | 2009-07-28 | Seco Tools Ab | Metod att utfälla slitstarka skikt på hårdmetall med bågförångning och katod med Ti3SiC2 som huvudbeståndsdel |
JP2011253651A (ja) * | 2010-05-31 | 2011-12-15 | National Institute Of Advanced Industrial & Technology | 高温耐酸化性に優れた導電性快削セラミックス及びその製造方法 |
JP6048423B2 (ja) * | 2014-02-05 | 2016-12-21 | Jfeスチール株式会社 | 靭性に優れた高強度薄鋼板およびその製造方法 |
CN105624618B (zh) * | 2016-02-11 | 2018-01-19 | 广东工业大学 | TiAlSiZrN基复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 |
CN112981320B (zh) * | 2021-01-18 | 2022-04-19 | 南京航空航天大学 | 一种钛合金表面复合涂层及其制备方法 |
CN113929485A (zh) * | 2021-11-12 | 2022-01-14 | 中国人民解放军国防科技大学 | 一种TiC-Ti3SiC2双重改性的C/C-SiC复合材料的制备方法 |
CN114032502B (zh) * | 2021-11-23 | 2022-05-03 | 江西省科学院应用物理研究所 | 一种耐磨耐蚀复合层及其制备方法 |
-
2022
- 2022-04-29 CN CN202210474405.3A patent/CN114807872B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN114807872A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109161841B (zh) | 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用 | |
CN107620033B (zh) | 一种高纯强致密max相涂层的制备方法 | |
CN108796444B (zh) | 一种高硬度四元难熔高熵合金薄膜的制备方法 | |
CN109504940B (zh) | 一种周期性纳米多层结构的AlCrN/AlCrSiNiN涂层及其制备方法和应用 | |
CN114411037B (zh) | 一种高熵合金及其制备方法和耐磨抗氧化涂层及其制备方法 | |
CN108251797B (zh) | 一种钛合金切削刀具用TiAlN/CrN多层涂层及其制备方法 | |
CN113981392B (zh) | 一种Ti-Al-C MAX相涂层及其低温成相制备方法 | |
CN114807872B (zh) | 一种高熵合金/Ti3SiC2多层复合涂层及其制备方法 | |
Yongqiang et al. | Characterization and mechanical properties of TiN/TiAlN multilayer coatings with different modulation periods | |
CN108456843A (zh) | 一种高性能TiAlSiN纳米复合涂层及其制备方法和应用 | |
CN113174571B (zh) | 一种超微晶二硼化钛复合涂层及其制备方法和应用 | |
CN115386828A (zh) | 一种max相固溶体涂层、制备方法及其应用 | |
CN110158035B (zh) | 耐高温海洋环境腐蚀的金属-金属氮化物多层涂层及制备 | |
CN110129732B (zh) | 一种高电阻率高熵合金薄膜及其制备方法 | |
CN112941463B (zh) | 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用 | |
CN106756841A (zh) | 一种刀具复合涂层的制备方法 | |
ZHANG et al. | Influence of substrate bias on microstructure and morphology of ZrN thin films deposited by arc ion plating | |
CN113802100A (zh) | 一种调控非晶/非晶纳米多层膜加工硬化能力的方法 | |
CN114032502A (zh) | 一种耐磨耐蚀复合层及其制备方法 | |
CN116219381B (zh) | 一种max相涂层的低温制备方法及其应用 | |
CN112553580B (zh) | 一种二硼化物复合涂层及其制备方法和应用 | |
CN102345094A (zh) | 涂层、具有该涂层的被覆件及该被覆件的制备方法 | |
CN113667939A (zh) | 具有高硬度与高温抗氧化性的Zr-B-N/ZrO2纳米多层复合涂层的制备工艺 | |
CN109487209B (zh) | 一种高硬度max相陶瓷涂层及其制备方法 | |
CN114672777A (zh) | 一种抗氧化Cr/CrAl纳米多层涂层及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Xie Shifang Inventor after: Wei Shiyong Inventor after: Hu Qiang Inventor after: Chen Yun Inventor after: Wan Zhenzhen Inventor after: Jin Ying Inventor before: Wei Shiyong Inventor before: Hu Qiang Inventor before: Chen Yun Inventor before: Wan Zhenzhen Inventor before: Jin Ying Inventor before: Xie Shifang |
|
GR01 | Patent grant | ||
GR01 | Patent grant |