[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN114805847B - 基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法 - Google Patents

基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法 Download PDF

Info

Publication number
CN114805847B
CN114805847B CN202210230688.7A CN202210230688A CN114805847B CN 114805847 B CN114805847 B CN 114805847B CN 202210230688 A CN202210230688 A CN 202210230688A CN 114805847 B CN114805847 B CN 114805847B
Authority
CN
China
Prior art keywords
protein
spider silk
solution
expression vector
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210230688.7A
Other languages
English (en)
Other versions
CN114805847A (zh
Inventor
钱志刚
刘树安
黄盛晨
夏小霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202210230688.7A priority Critical patent/CN114805847B/zh
Publication of CN114805847A publication Critical patent/CN114805847A/zh
Application granted granted Critical
Publication of CN114805847B publication Critical patent/CN114805847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43513Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae
    • C07K14/43518Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from arachnidae from spiders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Insects & Arthropods (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Polymers & Plastics (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

一种基于蛛丝‑阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法,将重组蛛丝蛋白基因与阳离子多肽的基因融合后连接至表达载体pET28a4构建得到重组表达载体,然后将重组表达载体导入表达宿主细胞中,经过发酵表达以及分离纯化后得到高纯度目的蛋白;再将高纯度目的蛋白的溶液与单宁酸溶液交联反应得到水下黏附水凝胶。本发明使用宿主本身的负电膜蛋白OmpF作为纯化介质,能够大量获得高纯度的融合蛋白,通过与单宁酸物理交联制成性能优良的水下粘附水凝胶,可批量纯化且降低成本。

Description

基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的 制备方法
技术领域
本发明涉及的是一种生物工程领域的技术,具体是一种基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法。
背景技术
在材料科学领域,制备具有水下高粘附性能的水凝胶材料一直是研究的热点和难点。天然高分子水凝胶如蛋白、壳聚糖、纤维素等由于其比化学高分子水凝胶具有更好的生物相容性及可调控的降解性因此备受关注。目前制备具水下粘附性能的天然高分子水凝胶的主流方法是通过化学枝接基团或物理掺合离子等手段对蛋白材料进行修饰,以创制出性能增强的蛋白水凝胶,但往往因稳定性不足且非天然修饰基团的生物相容性不足以致于限制了其应用范围。本发明利用基因工程和发酵工程技术直接生产出天然多肽修饰的融合蛋白而无需额外对水凝胶进行化学或物理修饰,避免了有细胞毒性的非天然组分并且解决了融合正电及疏水多肽的重组蛛丝蛋白难以用镍亲和层析纯化的问题,极大地方便了工业生产和使用,该方式制得的重组蛋白水凝胶可以实现常见材料例如铝、塑料和玻璃等以及组织器官表面快速,稳定的粘附性,尤其是水下环境的即时粘附,具有广阔的应用前景和价值。
发明内容
本发明针对现有基于天然高分子的粘附类水凝胶制备相对复杂,性能不稳定以及融合有阳离子肽段的重组蛛丝蛋白难以纯化或纯度不高的问题,提出一种基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法,使用宿主本身的负电膜蛋白OmpF作为纯化介质,能够大量获得高纯度的融合蛋白,通过与单宁酸物理交联制成性能优良的水下粘附水凝胶,可批量纯化且降低成本。
本发明是通过以下技术方案实现的:
本发明涉及一种基于蛛丝-阳离子多肽融合蛋白的水下粘附水凝胶的制备方法,将重组蛛丝蛋白基因与阳离子多肽的基因融合后连接至表达载体pET28a4构建得到重组表达载体,然后将重组表达载体导入表达宿主细胞中,经过发酵表达以及分离纯化后得到高纯度目的蛋白;再将高纯度目的蛋白的溶液与单宁酸溶液交联反应得到水下粘附水凝胶。
所述的重组蛛丝蛋白基因是指:金丝网蛛(Trichonephila clavipes)牵引丝蛋白MaSpI核心重复序列重复4、8、16、32和64次的蛋白,其中:MaSpI核心重复序列的氨基酸序列如 SEQ ID No.1所示。
所述的构建是指将合成的阳离子多肽基因通过限制性核酸内切酶BamHI HF和NcoI HF 进行双酶切后,通过T4 DNA连接酶连接至表达载体pET28a4得到重组蛛丝蛋白的表达载体。
所述的表达载体pET28a4是指:在市售pET28a(+)表达载体的多克隆位点修饰添加BamHI限制性酶切位点,其采用但不限于《大肠杆菌无膜隔室的形成和功能化》(Wei SP,Qian ZG,Hu CF,Pan F,Chen MT,Lee SY,XiaXX.“Formation and functionalization ofmembraneless compartments in Escherichia coli.”Nat Chem Biol,2020,16(10):1143-1148.)中记载的技术实现。
所述的阳离子多肽包括但不限于LL37、protamine多肽、多聚赖氨酸、多聚精氨酸、多聚组氨酸、富含赖氨酸、富含精氨酸、富含组氨酸等的带正电荷多肽。
所述的LL37的氨基酸序列如SEQ ID No.2所示,即:
LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES(来自数据库:PBD),其密码子优化过后的核苷酸序列如SEQ ID No.3所示,即:5’- CTGCTGGGCGATTTCTTCCGCAAAAGCAAAGAAAAAATCGGCAAAGAATTCAAACGCATCGTTCAGCGC ATCAAAGATTTCCTGCGCAATCTGGTTCCGCGCACCGAAAGC-3’。
所述的protamine多肽的氨基酸序列如SEQ ID No.4所示,即:
RSQSRSRYYRQRQRSRRRRRRS(来自数据库:NCBI),其密码子优化过后的核苷酸序列如SEQ ID No.5所示,即:5’- CGTAGCCAGAGCCGTAGCCGTTACTACCGTCAGCGTCAGCGTAGCCGTCGTCGTCGCCGTCGTAGC-3’。
所述的表达宿主为E.coli BL21(DE3)和E.coli BL21(DE3)plysS,所用的蛋白表达诱导剂为异丙基硫代半乳糖苷(IPTG)。
所述的分离纯化,具体包括:把表达有融合蛋白的大肠杆菌湿菌体以1:10质量体积比充分重悬于BufferA中再通过高压匀浆仪高压800~1000bar压力破壁释放胞内物质。将破壁后的破菌液调节pH至Z,即融合了多肽Y的重组蛛丝蛋白与破菌释放的负电膜蛋白OmpF 结合复合物的等电点,使用磁力搅拌器搅拌30min,随后离心弃上清取沉淀再重悬于BufferA 中,充分重悬洗涤重复3次,离心后将沉淀充分重悬于Buffer B中离心取上清,将上清进行硫酸铵沉淀,再将该沉淀重悬于蒸馏水中,离心取上清,最后若需要完全纯水溶解的蛋白可选用疏水柱过滤该上清取流出液。
所述的分离纯化,利用重组蛛丝蛋白的正电嵌段和负电的OmpF膜蛋白结合,将pH调节至该结合物的等电点Z使其沉淀粗纯,经漂洗后溶解于Buffer B中,利用Buffer B中PEI 的强正电荷结合该负电杂蛋白OmpF使其沉淀,而重组蛛丝蛋白仍存在于上清中实现了进一步纯化。
所述的等电点Z=多肽Y的等电点×其在复合物中含量占比+OmpF等电点4.5×其在复合物中的占比。
所述的BufferA为含有10mM Tris和50mM NaCl的水溶液,其pH值与等电点值Z 相同。
所述的Buffer B为含有50mM Tris,500mM NaCl,8M尿素,PEI10kd(2%m/v),的Triton X-100(1.5%v/v)的水溶液(pH 4.5)。
所述的硫酸铵沉淀,具体是指:将硫酸铵粉末加入到上清至40%饱和度,此时蛋白溶液会产生聚集沉淀,25℃下12000rpm(×21235g)离心30min取沉淀。
所述的疏水柱填料为Phenyl Beeds 6FF,过疏水柱的目的是去除残余的TritonX-100。
所述的高纯度目的蛋白的溶液是指:将冻干的蛋白溶解于90mM LiBr溶液中,配置100mg/ml的蛋白溶液。
所述的交联反应是指:按1:1体积比将高纯度目的蛋白的溶液逐渐滴加到单宁酸溶液中,滴加完毕后使用搅拌棒搅拌,即可形成粘附于搅拌棒的水凝胶。
本发明涉及上述方法制备得到的水下粘附水凝胶,其宏观形态为柔软可塑形的浅棕色固体,微观形态为丰富的孔洞结构,水下粘附强度为1~100kpa。
技术效果
与现有技术相比,本发明利用表达宿主本身的负电OmpF蛋白为纯化介质的纯化方式避免了柱层析纯化方式的上料体积限制,耗材昂贵,流程复杂缓慢,难以放大等问题,可将整个纯化流程时间缩短至亲和层析纯化的十分之一,耗材成本极低,操作便捷且可工业批量放大;本发明制得的天然多肽修饰的蛛丝融合蛋白对比蛛丝蛋白在同等水凝胶制备和使用条件下展示出更高的粘附性能,且无其他粘附水凝胶中的非天然致毒成分,对组织器官表面和常见材料如塑料,金属等均具有快速,稳定的粘附性。
附图说明
图1为实施例中蛛丝-阳离子多肽融合蛋白的SDS-PAGE图;
图中:#1为LL37-MaSpI16蛋白,#2为protamine-MaSpI16蛋白;
图2为本发明中蛛丝-阳离子多肽融合蛋白的纯化流程示意图;
图3为实施例LL37-MaSpI16蛋白纯化流程的SDS-PAGE图;
图中:#P0显示LL37-MaSpI16蛋白和OmpF蛋白结合而沉淀实现粗纯,#P1显示 OmpF蛋白被PEI10kDa所竞争结合沉淀分离,释放出#S2所示的LL37-MaSpI16蛋白。
图4为实施例LL37-MaSpI16 TA水凝胶实物照片,TA指代单宁酸;
图5为实施例LL37-MaSpI16 TA水凝胶,protamine-MaSpI16 TA水凝胶以及对照MaSpI16 TA水凝胶的扫描电子显微镜照片,制备水凝胶采用的蛋白浓度为100mg/ml,TA浓度为200mg/ml,两者体积比为1:1;
图6为实施例LL37-MaSpI16 TA水凝胶,protamine-MaSpI16 TA水凝胶以及对照MaSpI16 TA水凝胶的流变学实验数据,制备水凝胶采用的蛋白浓度为100mg/ml,TA浓度为200mg/ml,两者体积比为1:1;
图中:G’为弹性模量,G”为损耗模量;
图7为实施例LL37-MaSpI16 TA水凝胶,protamine-MaSpI16 TA水凝胶以及对照MaSpI16 TA水凝胶水下粘附性能测试数据示意图,制备水凝胶采用的蛋白浓度为100mg/ml, TA浓度为100~300mg/ml,两者体积比为1:1;
图8为蛛丝-阳离子多肽融合蛋白粘附应用示意图。
具体实施方式
本实施例包括以下步骤:
步骤1)构建目标蛋白表达载体,将该表达载体导入大肠杆菌E.coli BL21(DE3)中实现表达生产的方法,具体包括:
1.1)将合成的阳离子多肽基因通过限制性核酸内切酶BamHI HF和NcoIHF进行双酶切后,通过T4 DNA连接酶连接至表达载体pET28a4-MaSpI16上构建得到LL37-MaSpI16融合蛋白的表达载体和protamine-MaSpI16融合蛋白的表达载体。
1.2)对于LL37-MaSpI16融合蛋白而言,其表达生产流程为:将表达载体pET28a4-LL37-MaSpI16转化入表达宿主细胞后,将该表达宿主细胞在含卡那霉素(50mg/L)的4mL LB试管培养基中37℃培养6~8h后,接种在4~6个含卡那霉素(50mg/L)的50mL R/2培养基的小摇瓶中37℃培养8h左右之后,将其全部转入含卡那霉素的2L R/2培养基发酵罐中, 37℃培养至OD600为40左右时,加入浓度为1M的IPTG溶液2ml,16℃诱导表达 12~16h后收菌。
对于protamine-MaSpI16融合蛋白而言,其表达生产流程为:将表达载体pET28a4-protamine-MaSpI16转化入表达宿主细胞后,将该表达宿主细胞接种于含卡那霉素(50mg/L) 的4mL LB试管,37℃,220rpm过夜培养。以1%的接种量,将上述菌液转接至100mL 含卡那霉素(50mg/L)的LB液体培养基中,37℃,220rpm培养3~4h,至菌液OD600达到 3~4时,将上述菌液全部添加至含卡那霉素(50mg/L)的800ml TB液体培养基中,37℃, 220rpm培养。当OD600达到6~8时诱导表达,添加0.9mL 1M IPTG进行诱导,诱导条件为16℃、220rpm、20h。
所述的克隆宿主大肠杆菌E.coli DH5α,表达宿主E.coli BL21(DE3);表达质粒pET28a4;BamHI&NcoI限制性内切酶,T4 DNA连接酶;卡那霉素,氯霉素;LB培养基, R/2培养基。
所述的LB培养基(每升)的组分含量为:10g/L胰蛋白胨、5g/L酵母粉和10g/L氯化钠,高压蒸汽灭菌121℃,20min。
所述的TB培养基(每升)的组分含量为:13.4g/L胰蛋白胨,26.7g/L酵母提取物,5.6g/L甘油以配置组分A,搅拌混匀后每个2L摇瓶中装入720ml组分A,高压蒸汽灭菌 121℃,20min。组分B磷酸盐缓冲液:23.1g/L KH2PO4,164.3g/L K2HPO4·3H2O,高压蒸汽灭菌121℃,20min。使用前在每720mL组分A中添加组分B 80mL。
所述的R/2培养基(每升)的组分含量为:2g/L(NH4)2SO4、6.75g/L KH2PO4、0.85g/L柠檬酸、Trace metal 5mL/L,该培养基经氢氧化钾调节pH至6.8,高压蒸汽灭菌 121℃,20min。
步骤2)收获发酵菌体后的分离纯化:把表达有融合蛋白LL37-MaSpI的大肠杆菌湿菌体以1:10质量体积比充分重悬于BufferA中调节pH至Z,再通过高压匀浆仪高压 800~1000bar压力破壁释放胞内物质。破壁后的破菌液调节pH至Z,随后离心弃上清取沉淀置于搅拌台上搅拌,使其充分重悬于BufferA中,随后25℃下12000rpm(×21235g)离心 20min取沉淀,此步骤起洗涤作用,共重复3次。将洗涤3遍后的沉淀充分搅拌重悬于 Buffer B中,离心取上清,缓慢加入硫酸铵粉末至饱和度为40%以盐析蛋白,室温静置 5~10min后25℃下12000rpm(×21235g)离心20min取沉淀,再将该沉淀悬于蒸馏水中,置于搅拌台上充分搅拌均匀后离心取上清。最后若需要完全纯水溶解的蛋白可选用疏水柱过滤该上清取流出液。纯化后的蛋白视存储需求进行冻干。纯化流程如图2所示。
在本实施例中,对于LL37-MaSpI16融合蛋白而言,Z=6.9,其计算方式为LL37等电点10.61×该融合蛋白在复合物中的含量40%+负电蛋白OmpF等电点4.5×该负电蛋白在复合物中的含量60%;对于protamine-MaSpI16融合蛋白而言,Z=6.1,其计算方式为protamine等电点12.48×该融合蛋白在复合物中的含量20%+负电蛋白OmpF等电点4.5×该负电蛋白在复合物中的含量80%。
所述的BufferA为含有10mM Tris和50mM NaCl的水溶液(pH=Z)。
所述的Buffer B含有50mM Tris,500mM NaCl,8M尿素,2%m/v的PEI10kd, 1.5%v/v的Triton X-100的水溶液(pH 4.5)。
所述的BufferA调节pH至Z是为了让目的蛋白和负电杂蛋白OmpF的结合复合物在等电点处沉淀以达到粗纯作用,Buffer B中50mM Tris是为了缓冲pH的变化,500mM NaCl是为了竞争减弱目的蛋白和负电杂蛋白的静电相互作用,8M尿素是氢键、疏水相互作用的强破坏剂,让沉淀充分溶解,2%m/v的PEI10kd是为了结合负电杂蛋白将其沉降下来,1.5%v/v的TritonX-100是目的蛋白的促溶剂,pH 4.5是为了让所有杂蛋白进一步沉淀。
步骤3)获取高纯度冻干蛋白后制备水下粘附水凝胶:将冻干的蛋白少量多次逐渐加入 90mM LiBr溶液中,每次待加入的冻干粉末充分溶解后再行续加,直到配置为100mg/ml的蛋白溶液。将一定体积的该蛋白溶液逐渐滴加到等体积的200mg/ml单宁酸液中,边滴加边搅拌,制备时的溶液体积视水凝胶需求量大小而定,如5ml的蛋白溶液滴加入5ml单宁酸溶液可制得大约1cm直径的球状水凝胶,如图4所示。
所述的溶解冻干蛋白粉的溶剂为LiBr溶液,且浓度为90mM。
所述的蛋白溶液浓度为100mg/ml。
所述的单宁酸溶液浓度为200mg/ml。
所述的蛋白溶液和单宁酸溶液体积比为1:1。
经过具体实际实验,在采用上述表达宿主细胞和按照上述分离纯化操作参数条件下,可在2h内快速完成纯化流程,将整个纯化流程时间缩短至亲和层析纯化的十分之一,纯化所得蛋白纯度高达90%以上,如图1所示。
经过具体实际实验,在蛋白浓度100mg/ml,单宁酸溶液浓度100~300mg/ml,蛋白溶液和单宁酸溶液体积比为1:1条件下,所得到的LL37-MaSpI16融合蛋白水凝胶水下粘附强度约为20~24kPa,对比MaSpI16在同等水凝胶制备使用条件下粘附强度提高了30%~100%; protamine-MaSpI16融合蛋白水凝胶水下粘附强度约为18~23kPa,对比MaSpI16在同等水凝胶制备使用条件下粘附强度提高了18%~50%,且无均其他粘附水凝胶中的非天然致毒成分,对组织器官表面和常见材料如塑料,金属等均具有快速,稳定的粘附性,如图8所示。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。
序列表
<110> 上海交通大学
<120> 基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法
<130> fxc850e
<141> 2022-03-09
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 31
<212> PRT
<213> MaSpI核心重复序列(Trichonephila clavipes)
<400> 1
Gly Arg Gly Gly Leu Gly Gly Gln Gly Ala Gly Ala Ala Ala Ala Ala
1 5 10 15
Gly Gly Ala Gly Gln Gly Gly Tyr Gly Gly Leu Gly Ser Gln Gly
20 25 30
<210> 2
<211> 37
<212> PRT
<213> 阳离子多肽LL37(Artificial Sequence)
<400> 2
Leu Leu Gly Asp Phe Phe Arg Lys Ser Lys Glu Lys Ile Gly Lys Glu
1 5 10 15
Phe Lys Arg Ile Val Gln Arg Ile Lys Asp Phe Leu Arg Asn Leu Val
20 25 30
Pro Arg Thr Glu Ser
35
<210> 3
<211> 111
<212> DNA
<213> LL37密码子优化后序列(Artificial Sequence)
<400> 3
ctgctgggcg atttcttccg caaaagcaaa gaaaaaatcg gcaaagaatt caaacgcatc 60
gttcagcgca tcaaagattt cctgcgcaat ctggttccgc gcaccgaaag c 111
<210> 4
<211> 22
<212> PRT
<213> protamine多肽(Artificial Sequence)
<400> 4
Arg Ser Gln Ser Arg Ser Arg Tyr Tyr Arg Gln Arg Gln Arg Ser Arg
1 5 10 15
Arg Arg Arg Arg Arg Ser
20
<210> 5
<211> 66
<212> DNA
<213> protamine密码子优化后序列(Artificial Sequence)
<400> 5
cgtagccaga gccgtagccg ttactaccgt cagcgtcagc gtagccgtcg tcgtcgccgt 60
cgtagc 66

Claims (6)

1.一种基于蛛丝-阳离子多肽融合蛋白的水下粘附水凝胶的制备方法,其特征在于,将重组蛛丝蛋白基因与阳离子多肽的基因融合后连接至表达载体pET28a4构建得到重组表达载体,然后将重组表达载体导入表达宿主细胞中,经过发酵表达以及分离纯化后得到高纯度目的蛋白;再将高纯度目的蛋白的溶液与单宁酸溶液交联反应得到水下粘附水凝胶;
所述的重组蛛丝蛋白基因是指:金丝网蛛(Trichonephila clavipes)牵引丝蛋白MaSpI核心重复序列重复4、8、16、32和64次的蛋白,其中:MaSpI核心重复序列的氨基酸序列如SEQ ID No.1所示;
所述的分离纯化,利用重组蛛丝蛋白的正电嵌段和负电的OmpF膜蛋白结合,将pH调节至该结合物的等电点Z使其沉淀粗纯,经漂洗后溶解于Buffer B中,利用Buffer B中PEI的强正电荷结合该负电杂蛋白OmpF使其沉淀,而重组蛛丝蛋白仍存在于上清中实现了进一步纯化;
所述的阳离子多肽选自:LL37、protamine多肽、多聚赖氨酸、多聚精氨酸或多聚组氨酸的带正电荷多肽;
所述的LL37的氨基酸序列如SEQ ID No.2所示,即:
LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES,
其密码子优化过后的核苷酸序列如SEQ ID No.3所示,即:5’-CTGCTGGGCGATTTCTTCCGC
AAAAGCAAAGAAAAAATCGGCAAAGAATTCAAACGCATCGTTCAGCGCATCAAAGATTTCCTGCGCAATCTGGTTCCGCGCACCGAAAGC-3’;
所述的protamine多肽的氨基酸序列如SEQ ID No.4所示,即:RSQSRSRYYRQRQRSRRRRRRS序列来自数据库:NCBI,
其密码子优化过后的核苷酸序列如SEQ ID No.5所示,即:5’-CGTAGCCAGAGCCGTAGCCGT
TACTACCGTCAGCGTCAGCGTAGCCGTCGTCGTCGCCGTCGTAGC-3’;
所述的表达宿主为E. coli BL21(DE3)和E. coli BL21(DE3) plysS,所用的蛋白表达诱导剂为异丙基硫代半乳糖苷(IPTG)。
2.根据权利要求1所述的制备方法,其特征是,所述的构建是指:将合成的阳离子多肽基因通过限制性核酸内切酶BamHI HF和NcoI HF进行双酶切后,通过T4 DNA连接酶连接至表达载体pET28a4得到重组蛛丝蛋白的表达载体。
3.根据权利要求1所述的制备方法,其特征是,所述的分离纯化,具体包括:把表达有融合蛋白的大肠杆菌湿菌体以1:10质量体积比充分重悬于Buffer A中再通过高压匀浆仪高压800~1000 bar压力破壁释放胞内物质;将破壁后的破菌液调节pH至Z,即融合了多肽Y的重组蛛丝蛋白与破菌释放的负电膜蛋白OmpF结合复合物的等电点,使用磁力搅拌器搅拌30min,随后离心弃上清取沉淀再重悬于Buffer A中,充分重悬洗涤重复3次,离心后将沉淀充分重悬于Buffer B中离心取上清,将上清进行硫酸铵沉淀,再将该沉淀重悬于蒸馏水中,离心取上清,最后若需要完全纯水溶解的蛋白选用疏水柱过滤该上清取流出液。
4.根据权利要求3所述的制备方法,其特征是,所述的等电点Z=多肽Y的等电点×其在复合物中含量占比+OmpF等电点4.5×其在复合物中的占比;
所述的Buffer A为含有10 mM Tris和50 mM NaCl的水溶液,其pH值与等电点值Z相同;
所述的Buffer B为含有50 mM Tris,500 mM NaCl,8 M 尿素,PEI10kd 2% m/v,的Triton X-100 1.5% v/v 的水溶液 pH 4.5;
所述的硫酸铵沉淀,具体是指:将硫酸铵粉末加入到上清至40%饱和度,此时蛋白溶液会产生聚集沉淀,25℃下12000 rpm ×21235 g离心30 min取沉淀。
5.根据权利要求1所述的制备方法,其特征是,所述的高纯度目的蛋白的溶液是指:将冻干的蛋白溶解于90 mM LiBr溶液中,配置100 mg/ml的蛋白溶液;
所述的交联反应是指:按1:1体积比将高纯度目的蛋白的溶液逐渐滴加到单宁酸溶液中,滴加完毕后使用搅拌棒搅拌,即可形成粘附于搅拌棒的水凝胶。
6.一种根据权利要求1~5中任一所述方法制备得到的水下粘附水凝胶,其特征在于,为柔软可塑形的浅棕色固体,具有丰富的孔洞结构,水下粘附强度为1~100kpa。
CN202210230688.7A 2022-03-09 2022-03-09 基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法 Active CN114805847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210230688.7A CN114805847B (zh) 2022-03-09 2022-03-09 基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210230688.7A CN114805847B (zh) 2022-03-09 2022-03-09 基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN114805847A CN114805847A (zh) 2022-07-29
CN114805847B true CN114805847B (zh) 2024-03-19

Family

ID=82529538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210230688.7A Active CN114805847B (zh) 2022-03-09 2022-03-09 基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN114805847B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118531517A (zh) * 2024-05-21 2024-08-23 上海交通大学 基于重组蜘蛛丝蛋白的水下可驱动纤维的制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450169A (zh) * 2003-05-08 2003-10-22 福建师范大学 制备性基因重组蜘蛛拖丝蛋白的分离纯化方法
CN104725497A (zh) * 2013-12-19 2015-06-24 天津耀宇生物技术有限公司 一种家蚕主要协助转运蛋白BmMFS及其融合表达和纯化方法
CN105031723A (zh) * 2015-06-23 2015-11-11 上海交通大学 基于蜘蛛丝蛋白的温敏性水凝胶
WO2019242047A1 (zh) * 2018-06-22 2019-12-26 常州京森生物医药研究所有限公司 重组蜘蛛丝蛋白及其制备方法和产业化应用
CN110684208A (zh) * 2018-07-05 2020-01-14 中国科学院青岛生物能源与过程研究所 一种高机械强度的蛛丝蛋白-胶原蛋白复合水凝胶的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450169A (zh) * 2003-05-08 2003-10-22 福建师范大学 制备性基因重组蜘蛛拖丝蛋白的分离纯化方法
CN104725497A (zh) * 2013-12-19 2015-06-24 天津耀宇生物技术有限公司 一种家蚕主要协助转运蛋白BmMFS及其融合表达和纯化方法
CN105031723A (zh) * 2015-06-23 2015-11-11 上海交通大学 基于蜘蛛丝蛋白的温敏性水凝胶
WO2019242047A1 (zh) * 2018-06-22 2019-12-26 常州京森生物医药研究所有限公司 重组蜘蛛丝蛋白及其制备方法和产业化应用
CN110684208A (zh) * 2018-07-05 2020-01-14 中国科学院青岛生物能源与过程研究所 一种高机械强度的蛛丝蛋白-胶原蛋白复合水凝胶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Formation and functionalization of membraneless compartments in Escherichia coli.;Shao-Peng Wei et al.;《Nature Chemical Biology》;20200629;全文 *
Responsive Protein Hydrogels Assembled from Spider Silk Carboxyl-Terminal Domain and Resilin Copolymers;Fang Luo et al.;《Polymers》;20180814;全文 *
RGD-蜘蛛拖丝蛋白聚合物的生物合成与纯化;李敏, 黄建坤, 涂桂云, 黄曦;生物医学工程学杂志;20041230(06);全文 *

Also Published As

Publication number Publication date
CN114805847A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
CN111712574B (zh) 融合蛋白
WO2024087761A1 (zh) 一种重组融合蛋白生产多肽的方法及其应用
US20050261479A1 (en) Method for purifying and recovering silk proteins using magnetic affinity separation
US20210163576A1 (en) Preparation Method for Collagen Hydrogel
JPH06166698A (ja) ハイブリッドポリペプチド
US8765682B2 (en) Method for in vivo residue-specific DOPA incorporation into mussel adhesive proteins
CN114805847B (zh) 基于蛛丝-阳离子多肽融合蛋白的纯化及水下粘附水凝胶的制备方法
EP2764018B1 (en) Self-assembling polypeptide polyhedra
US10000544B2 (en) Process for production of insulin and insulin analogues
CN102199214B (zh) 制备蛋白质的方法
WO2009014404A2 (en) Multifunctional protein simultaneously delivering antibodies and nanoparticles
CN111548392A (zh) 一种促溶标签及其应用
CN106755042B (zh) 一种基于组合自剪切与蛋白支架的生物活性小肽制备方法
JP2023531168A (ja) インスリンデグルデク誘導体およびその製造方法と使用
JP2005506319A (ja) 融合タンパク質から目的タンパク質を分離する方法。
WO2016063926A1 (ja) 精製方法、精製キット、および、これらに用いられる酸化ケイ素結合タグ
CN117756925A (zh) 一种重组弹性蛋白Pro.ELP及其制备方法和应用
CN114249839A (zh) 一种ⅲ型胶原蛋白的融合蛋白、表达系统、药物组合物及应用
EP2488546B1 (en) Self-assembled structures composed of single polypeptide comprising at least three coiled-coil forming elements
CN110540601B (zh) 重组PLB-hEGF融合蛋白及其应用
CN110904139A (zh) 重组载体、菌株、水稻纹枯病菌效应蛋白的表达纯化方法
CN117801123B (zh) 沃索利肽可溶性中间体、中间体制备方法及沃索利肽的制备方法
JPH10338700A (ja) 新規ペプチド化合物
CN109851661B (zh) 一种重组病毒衣壳结构蛋白及其制备方法和应用
KR102028931B1 (ko) 지능형 약물 전달을 위한 다중 자극 반응성을 지닌 칼모듈린-엘라스틴 이중 블럭 폴리펩타이드의 동적 나노 전달체 및 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant