[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN114780911A - Ocean wide swath distance ambiguity solving method based on deep learning - Google Patents

Ocean wide swath distance ambiguity solving method based on deep learning Download PDF

Info

Publication number
CN114780911A
CN114780911A CN202210269819.2A CN202210269819A CN114780911A CN 114780911 A CN114780911 A CN 114780911A CN 202210269819 A CN202210269819 A CN 202210269819A CN 114780911 A CN114780911 A CN 114780911A
Authority
CN
China
Prior art keywords
matrix
distance
vector
real
deep learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210269819.2A
Other languages
Chinese (zh)
Other versions
CN114780911B (en
Inventor
张双喜
胡国彩
李少杰
曾红芸
刘艳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202210269819.2A priority Critical patent/CN114780911B/en
Publication of CN114780911A publication Critical patent/CN114780911A/en
Application granted granted Critical
Publication of CN114780911B publication Critical patent/CN114780911B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
    • G06F17/141Discrete Fourier transforms
    • G06F17/142Fast Fourier transforms, e.g. using a Cooley-Tukey type algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Remote Sensing (AREA)
  • Mathematical Optimization (AREA)
  • Software Systems (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computational Linguistics (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Discrete Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于深度学习的海洋宽测绘带距离解模糊方法,首先获取星载SAR系统的回波信号,根据雷达参数构造参考信号向量,将回波信号点乘参考信号向量的共轭,得到距离脉压后的数据矩阵;再进行傅里叶逆变换和傅里叶变换;接下来构造多普勒补偿函数,与傅里叶变换后的矩阵进行点乘;最后再构造深度神经网络,将得到的向量作为输入和标签,进行训练后实现海洋宽测绘带距离解模糊。本发明可以有效解决星载SAR系统的款测绘带距离解模糊问题,得到无距离模糊的海洋宽测绘带信息,以达到对海面运动目标的无距离模糊SAR成像的目的。

Figure 202210269819

The invention discloses a deep learning-based method for de-ambiguating the distance of a wide oceanic swath. First, an echo signal of a spaceborne SAR system is acquired, a reference signal vector is constructed according to radar parameters, and the echo signal points are multiplied by the conjugate of the reference signal vector. , get the data matrix after distance pulse pressure; then perform inverse Fourier transform and Fourier transform; then construct a Doppler compensation function, and perform dot product with the Fourier transformed matrix; finally construct a deep neural network , the obtained vector is used as input and label, and the distance deblurring of ocean wide swath is realized after training. The invention can effectively solve the problem of deblurring the distance of the swath of the spaceborne SAR system, and obtain the information of the wide swath of the ocean without range ambiguity, so as to achieve the purpose of SAR imaging of moving targets on the sea surface without range ambiguity.

Figure 202210269819

Description

一种基于深度学习的海洋宽测绘带距离解模糊方法A deep learning-based method for distance deblurring of ocean wide swaths

技术领域technical field

本发明属于雷达信号处理技术领域,具体涉及一种海洋宽测绘带距离解模糊方法。The invention belongs to the technical field of radar signal processing, and in particular relates to a distance deblurring method for an ocean wide swath.

背景技术Background technique

对于星载SAR系统,当需要对某一场景进行高分辨率成像时,可以通过增加卫星的重访周期来实现。但是,卫星重访周期的增加会带来巨大的成本。为了减少卫星的重访周期,可以利用星载SAR系统发射高脉冲重复频率(PRF)的线性调频信号。由于系统发射高PRF的信号,可以得到场景目标的更多回波信息,从而实现星载SAR雷达的高分辨率成像。For the spaceborne SAR system, when high-resolution imaging of a scene is required, it can be achieved by increasing the revisit period of the satellite. However, the increase in satellite revisit cycles comes with significant costs. In order to reduce the revisit period of the satellite, the spaceborne SAR system can be used to transmit a high pulse repetition frequency (PRF) chirp signal. Since the system transmits a high PRF signal, more echo information of the scene target can be obtained, thereby realizing high-resolution imaging of the spaceborne SAR radar.

然而发射高PRF的信号也会带来距离模糊的问题,如图1,当测绘带内不同的成像场景的回波时延之差等于脉冲重复周期(PRT)的整数倍时,接收到的宽测绘带回波会产生距离模糊。However, transmitting a high PRF signal will also bring about the problem of distance ambiguity. As shown in Figure 1, when the echo delay difference of different imaging scenes in the swath is equal to an integer multiple of the pulse repetition period (PRT), the received wide The swath echoes produce distance blur.

对于宽测绘带解距离模糊问题,最常用的有查表法和发射正交编码信号方法。对于发射正交编码信号方法,常用的有正交相位编号信号和正交频率编码信号。利用正交相位编码信号进行解模糊的精度很难达到分辨率要求,而正交频率编码信号可以达到分辨率要求,但是正交编码信号对多普勒比较敏感。但是,这些方法都需要满足回波信噪比较高的条件。For wide swath solution range ambiguity, the most commonly used methods are look-up table method and transmitting orthogonal coded signal method. For the method of transmitting quadrature coded signals, there are commonly used quadrature phase numbered signals and quadrature frequency coded signals. It is difficult to achieve the resolution requirement by using the quadrature phase coded signal to deblur the accuracy, while the quadrature frequency coded signal can meet the resolution requirement, but the quadrature coded signal is more sensitive to Doppler. However, these methods all need to meet the condition of high echo signal-to-noise ratio.

在实际情况中,对于海洋目标的回波信噪比都比较低,一般为0dB。同时,大多数的星载SAR系统都是通过发射高PRF的信号来获取宽测绘带信息,因此要面临宽测绘带低信噪比回波的距离模糊问题。In practical situations, the signal-to-noise ratio of echoes for marine targets is relatively low, generally 0dB. At the same time, most spaceborne SAR systems acquire wide swath information by transmitting high PRF signals, so they face the problem of distance ambiguity of echoes with low SNR in wide swaths.

发明内容SUMMARY OF THE INVENTION

为了克服现有技术的不足,本发明提供了一种基于深度学习的海洋宽测绘带距离解模糊方法,首先获取星载SAR系统的回波信号,根据雷达参数构造参考信号向量,将回波信号点乘参考信号向量的共轭,得到距离脉压后的数据矩阵;再进行傅里叶逆变换和傅里叶变换;接下来构造多普勒补偿函数,与傅里叶变换后的矩阵进行点乘;最后再构造深度神经网络,将得到的向量作为输入和标签,进行训练后实现海洋宽测绘带距离解模糊。本发明可以有效解决星载SAR系统的款测绘带距离解模糊问题,得到无距离模糊的海洋宽测绘带信息,以达到对海面运动目标的无距离模糊SAR成像的目的。In order to overcome the deficiencies of the prior art, the present invention provides a deep learning-based ocean wide swath range de-ambiguity method. First, the echo signal of the spaceborne SAR system is obtained, a reference signal vector is constructed according to the radar parameters, and the echo signal is Dot multiply the conjugate of the reference signal vector to obtain the data matrix after the distance pulse pressure; then perform inverse Fourier transform and Fourier transform; then construct a Doppler compensation function, and perform point with the Fourier transformed matrix Finally, a deep neural network is constructed, and the obtained vector is used as the input and label, and after training, the distance deblurring of the ocean wide swath is realized. The invention can effectively solve the problem of deblurring the distance of the swath of the spaceborne SAR system, and obtain the information of the wide swath of the ocean without range ambiguity, so as to achieve the purpose of SAR imaging of moving targets on the sea surface without range ambiguity.

本发明解决其技术问题所采用的技术方案包括如下步骤:The technical scheme adopted by the present invention to solve the technical problem comprises the following steps:

步骤1:获取星载SAR系统的回波信号,所述回波信号是nr×na维矩阵,对回波信号矩阵按列进行傅里叶变换处理,并将结果保存在矩阵s(n1,n2)中;nr表示距离向点数,na表示方位向点数;Step 1: Obtain the echo signal of the spaceborne SAR system, which is an n r ×n a -dimensional matrix, perform Fourier transform processing on the echo signal matrix by column, and save the result in the matrix s(n1 , n2); n r represents the number of points in the distance direction, and na represents the number of points in the azimuth direction;

步骤2:根据雷达参数,构造参考信号向量

Figure BDA0003552845870000021
s_r(n1)为nr×1向量;其中,kr表示调频率,kr=B/Tp,B表示发射信号带宽,Tp表示发射脉冲宽度,fr表示为距离向频域坐标,
Figure BDA0003552845870000022
Δf为距离频域间隔,
Figure BDA0003552845870000023
n1=0,1,...,nr-1;Step 2: According to the radar parameters, construct the reference signal vector
Figure BDA0003552845870000021
s_r(n1) is an n r ×1 vector; among them, k r represents the frequency modulation, k r =B/T p , B represents the transmission signal bandwidth, T p represents the transmission pulse width, and fr represents the range-to-frequency domain coordinates,
Figure BDA0003552845870000022
Δf is the distance frequency domain interval,
Figure BDA0003552845870000023
n1=0,1,..., nr -1;

步骤3:将s(n1,n2)的每一列,均点乘参考信号向量s_r(n1)的共轭,得到距离脉压后的数据矩阵s(fr,xn2);其中,xn2表示方位向时域坐标,

Figure BDA0003552845870000024
L表示为合成孔径长度,n2=0,1,...,na-1;Step 3: Multiply each column of s(n1, n2) with the conjugate of the reference signal vector s_r(n1) to obtain the data matrix s(f r , x n2 ) after the distance pulse pressure; wherein, x n2 represents Azimuth time domain coordinates,
Figure BDA0003552845870000024
L represents the synthetic aperture length, n2=0,1,...,n a -1;

步骤4:对矩阵s(fr,xn2)按列进行傅里叶逆变换处理,将结果保存在矩阵s(nr,na)中;Step 4: Perform inverse Fourier transform processing on the matrix s(f r , x n2 ) by column, and store the result in the matrix s(n r , n a );

步骤5:对矩阵s(nr,na)按行进行傅里叶变换,将结果存于s(nr,fa)矩阵中;其中,fa表示方位向频域坐标,

Figure BDA0003552845870000025
PRF为方位采用频率,Δfa为方位频域间隔,
Figure BDA0003552845870000026
Step 5: Fourier transform is performed on the matrix s(n r ,n a ) by row, and the result is stored in the s(n r ,f a ) matrix; among them, f a represents the azimuth frequency domain coordinate,
Figure BDA0003552845870000025
PRF is the azimuth adopted frequency, Δf a is the azimuth frequency domain interval,
Figure BDA0003552845870000026

步骤6:根据雷达参数构造多普勒补偿函数

Figure BDA0003552845870000027
Figure BDA0003552845870000028
s_h(n1)为nr×1的向量;其中,nr表示距离向点数,v为动目标径向速度,V为雷达平台运动速度,θ为斜距平面雷达视线的方位角,λ为雷达的工作波长,g表示重力加速度;Step 6: Construct the Doppler compensation function according to the radar parameters
Figure BDA0003552845870000027
Figure BDA0003552845870000028
s_h(n1) is a vector of n r × 1; among them, n r represents the number of points in the range direction, v is the radial velocity of the moving target, V is the moving speed of the radar platform, θ is the azimuth angle of the slant range plane radar line of sight, and λ is the radar The working wavelength of , g is the acceleration of gravity;

步骤7:将s(nr,fa)与多普勒补偿函数s_h(n1)向量的共轭进行点乘,并对相乘结果按行进行逆FFT处理,得到脉内多普勒补偿后的数据矩阵ss(nr,na);Step 7: Do point multiplication with the conjugate of s(n r , f a ) and the Doppler compensation function s_h(n1) vector, and perform inverse FFT processing on the multiplication result row by row to obtain the post-pulse Doppler compensation. The data matrix ss(n r ,n a );

步骤8:根据空域滤波理论,构造由目标散射系数组成的矩阵Ω,Ω为nr×na维的矩阵;Step 8: According to the spatial filtering theory, construct a matrix Ω composed of target scattering coefficients, where Ω is an n r ×n a -dimensional matrix;

步骤9:将矩阵ss(nr,na)按实部和虚部分为两个通道数据ss_r eal(nr,na)和ss_imag(nr,na);将矩阵Ω按实部和虚部分为两个通道数据Ω_r eal(nr,na)和Ω_i mag(nr,na);Step 9: Divide the matrix ss(n r , na ) into two channel data ss_real( n r , na ) and ss_imag ( n r , na ) according to the real part and the imaginary part; The imaginary part is the two channel data Ω_real(n r ,n a ) and Ω_i mag(n r ,n a );

步骤10:构建基于卷积神经网络两通道输入两通道输出的深度学习网络;将矩阵ss_r eal(nr,na)和矩阵ss_i mag(nr,na)作为深度学习网络输入数据,将矩阵Ω_r eal(nr,na)和矩阵Ω_i mag(nr,na)作为训练的标签数据,对深度学习网络进行训练;Step 10: Construct a deep learning network based on two-channel input and two-channel output of a convolutional neural network; use the matrix ss_real(n r ,n a ) and the matrix ss_i mag(n r ,n a ) as the input data of the deep learning network, and set the The matrix Ω_real(n r ,n a ) and the matrix Ω_i mag(n r ,n a ) are used as training label data to train the deep learning network;

步骤11:将需要解模糊的数据输入步骤10训练完成的深度学习网络中,得到距离解模糊后的数据矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na);Step 11: Input the data to be deblurred into the deep learning network trained in step 10, and obtain the data matrix y_real(n r ,n a ) and matrix y_i mag(n r ,n a ) after distance deblurring;

步骤12:将矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na)按实部虚部关系合成矩阵y(nr,na);Step 12: Combine the matrix y_real(n r ,n a ) and the matrix y_i mag(n r ,n a ) into the matrix y(n r ,n a ) according to the relationship between the real and imaginary parts;

步骤13:对矩阵y(nr,na)进行多普勒参数估计,得到估计的多普勒参数

Figure BDA0003552845870000031
Step 13: Perform Doppler parameter estimation on the matrix y( n r , na ) to obtain the estimated Doppler parameter
Figure BDA0003552845870000031

步骤14:根据多普勒参数fdc对矩阵y(nr,na)进行距离徙动校正,将结果存于矩阵y′(nr,na)中。Step 14: Perform range migration correction on the matrix y( n r , na ) according to the Doppler parameter f dc , and store the result in the matrix y′( n r , na ).

步骤15:根据雷达参数,构造参考信号向量

Figure BDA0003552845870000032
Figure BDA0003552845870000033
s_a(n2)为1×na向量;其中,fc表示雷达发射信号的载频,c为电磁波的传播速度,V为卫星速度,θ为卫星的斜视角,tn2为方位慢时间;Step 15: According to the radar parameters, construct the reference signal vector
Figure BDA0003552845870000032
Figure BDA0003552845870000033
s_a(n2) is a 1×na vector; among them, f c represents the carrier frequency of the radar transmission signal, c is the propagation speed of the electromagnetic wave, V is the satellite speed, θ is the oblique angle of the satellite, and t n2 is the azimuth slow time;

步骤16:将矩阵y′(nr,na)按行进行FFT处理得到y(nr,fa);取出y(nr,fa)的每一行,均点乘参考信号向量s_a(n2)的共轭,得到距离脉压后的数据矩阵y(nr,fa);Step 16: Perform FFT processing on the matrix y'(n r , n a ) by row to obtain y(n r , f a ); take out each row of y(n r , f a ), and multiply the average point by the reference signal vector s_a( The conjugate of n2), the data matrix y(n r , f a ) after distance pulse pressure is obtained;

步骤17:将矩阵y(nr,fa)按行进行逆FFT处理,得到SAR聚焦结果矩阵z(nr,na)。Step 17: Perform inverse FFT processing on the matrix y(n r , f a ) by row to obtain the SAR focusing result matrix z( n r , na ).

进一步地,所述步骤8具体步骤如下:Further, the specific steps of step 8 are as follows:

星载SAR系统发射多组码型的编码信号,将采用多天线数字接收机接收的回波信号表示为A=[s(1),…,s(m),…,s(M)],m=1,2,…,M,M为测绘带个数,s(m)表示利用多天线数字接收机接收的第m测绘带的回波信号;利用空域滤波矢量对信号进行空域滤波,能从模糊的回波信号中恢复出目标的散射系数,即存在目标时所对应的散射系数为1,没有目标时对应的散射系数为0;权值矢量为Ω=[Ω1,…,Ωm,…,ΩM];对于第m个测绘带有ATΩM=Ym,其中,Ym=[0,…,1,…0];由目标散射系数组成的矩阵为Ωm=inv(A)Ym,解出Ω即完成整个解模糊过程。The spaceborne SAR system transmits encoded signals of multiple code patterns, and the echo signal received by the multi-antenna digital receiver is expressed as A=[s(1),...,s(m),...,s(M)], m=1,2,...,M, where M is the number of swaths, and s(m) represents the echo signal of the mth swath received by the multi-antenna digital receiver; The scattering coefficient of the target is recovered from the fuzzy echo signal, that is, the corresponding scattering coefficient is 1 when there is a target, and 0 when there is no target; the weight vector is Ω=[Ω 1 ,…,Ω m , . _ _ _ _ (A) Y m , the whole defuzzification process is completed by solving Ω.

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

本发明可以有效解决星载SAR系统的款测绘带距离解模糊问题,得到无距离模糊的海洋宽测绘带信息,以达到对海面运动目标的无距离模糊SAR成像的目的。The invention can effectively solve the problem of deblurring the distance of the swath of the spaceborne SAR system, and obtain the information of the wide swath of the ocean without range ambiguity, so as to achieve the purpose of SAR imaging of moving targets on the sea surface without range ambiguity.

附图说明Description of drawings

图1为本发明宽测绘带距离模糊示意图。FIG. 1 is a schematic diagram of the distance blurring of a wide swath of the present invention.

图2本发明实施例星载SAR系统宽测绘带距离解模糊结果,其中,(a)迭代100次解模糊结果;(b)迭代200次解模糊结果;(c)迭代300次解模糊结果;(d)迭代500次解模糊结果;(e)迭代900次解模糊结果;(f)迭代1500次解模糊结果。Fig. 2 The results of the wide swath range deblurring of the spaceborne SAR system according to the embodiment of the present invention, wherein, (a) 100 iterations of deblurring results; (b) 200 iterations of deblurring results; (c) 300 iterations of deblurring results; (d) 500 iterations of defuzzification results; (e) 900 iterations of defuzzification results; (f) 1500 iterations of defuzzification results.

图3本发明实施例解距离模糊后成像结果,其中,(a)三个运动目标的成像结果;(b)第一点的距离剖面图;(c)第一点的方位剖面图;(d)第二点的距离剖面图;(e)第二点的方位剖面图;(f)第三点的距离剖面图;(g)第三点的方位剖面图。Fig. 3 Imaging results after distance blurring according to an embodiment of the present invention, wherein (a) imaging results of three moving targets; (b) distance profile diagram of the first point; (c) azimuth profile diagram of the first point; (d) ) the distance profile of the second point; (e) the azimuth profile of the second point; (f) the distance profile of the third point; (g) the azimuth profile of the third point.

具体实施方式Detailed ways

下面结合附图和实施例对本发明进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.

针对星载SAR系统的海洋宽测绘带距离模糊问题,在现有的距离解模糊算法的基础上,本发明的目的在于结合离散频率编码信号和深度学习技术,提出一种基于深度学习的海洋宽测绘带距离解模糊方法,该方法可以实现对低信噪比回波的距离解模糊。Aiming at the distance ambiguity of the ocean wide swath of the spaceborne SAR system, on the basis of the existing distance deblurring algorithm, the purpose of the present invention is to combine the discrete frequency coded signal and the deep learning technology, and propose a deep learning-based ocean wide A swath range deblurring method, which can achieve range deblurring of echoes with low signal-to-noise ratios.

一种基于深度学习的海洋宽测绘带距离解模糊方法,包括如下步骤:A deep learning-based method for deblurring the distance of a wide ocean swath, comprising the following steps:

步骤1:获取星载SAR系统的回波信号,所述回波信号是nr×na维矩阵,对回波信号矩阵按列进行傅里叶变换处理,并将结果保存在矩阵s(n1,n2)中;nr表示距离向点数,na表示方位向点数;Step 1: Obtain the echo signal of the spaceborne SAR system, which is an n r ×n a -dimensional matrix, perform Fourier transform processing on the echo signal matrix by column, and save the result in the matrix s(n1 , n2); n r represents the number of points in the distance direction, and na represents the number of points in the azimuth direction;

步骤2:根据雷达参数,构造参考信号向量

Figure BDA0003552845870000041
s_r(n1)为nr×1向量;其中,kr表示调频率,kr=B/Tp,B表示发射信号带宽,Tp表示发射脉冲宽度,fr表示为距离向频域坐标,
Figure BDA0003552845870000042
Δf为距离频域间隔,
Figure BDA0003552845870000043
n1=0,1,...,nr-1;Step 2: According to the radar parameters, construct the reference signal vector
Figure BDA0003552845870000041
s_r(n1) is an n r ×1 vector; among them, k r represents the frequency modulation, k r =B/T p , B represents the transmission signal bandwidth, T p represents the transmission pulse width, and fr represents the range-to-frequency domain coordinates,
Figure BDA0003552845870000042
Δf is the distance frequency domain interval,
Figure BDA0003552845870000043
n1=0,1,..., nr -1;

步骤3:将s(n1,n2)的每一列,均点乘参考信号向量s_r(n1)的共轭,得到距离脉压后的数据矩阵s(fr,xn2);其中,xn2表示方位向时域坐标,

Figure BDA0003552845870000044
L表示为合成孔径长度,n2=0,1,...,na-1;Step 3: Multiply each column of s(n1, n2) with the conjugate of the reference signal vector s_r(n1) to obtain the data matrix s(f r , x n2 ) after the distance pulse pressure; wherein, x n2 represents Azimuth time domain coordinates,
Figure BDA0003552845870000044
L represents the synthetic aperture length, n2=0,1,...,n a -1;

步骤4:对矩阵s(fr,xn2)按列进行傅里叶逆变换处理,将结果保存在矩阵s(nr,na)中;Step 4: Perform inverse Fourier transform processing on the matrix s(f r , x n2 ) by column, and store the result in the matrix s(n r , n a );

步骤5:对矩阵s(nr,na)按行进行傅里叶变换,将结果存于s(nr,fa)矩阵中;其中,fa表示方位向频域坐标,

Figure BDA0003552845870000051
PRF为方位采用频率,Δfa为方位频域间隔,
Figure BDA0003552845870000052
Step 5: Fourier transform is performed on the matrix s(n r ,n a ) by row, and the result is stored in the s(n r ,f a ) matrix; among them, f a represents the azimuth frequency domain coordinate,
Figure BDA0003552845870000051
PRF is the azimuth adopted frequency, Δf a is the azimuth frequency domain interval,
Figure BDA0003552845870000052

步骤6:根据雷达参数构造多普勒补偿函数s_h(n1),s_h(n1)为nr×1的向量;Step 6: Construct a Doppler compensation function s_h(n1) according to the radar parameters, where s_h(n1) is a vector of n r × 1;

步骤7:将s(nr,fa)与多普勒补偿函数s_h(n1)向量的共轭进行点乘,并对相乘结果按行进行逆FFT处理,得到脉内多普勒补偿后的数据矩阵ss(nr,na);Step 7: Do point multiplication with the conjugate of s(n r , f a ) and the Doppler compensation function s_h(n1) vector, and perform inverse FFT processing on the multiplication result row by row to obtain the post-pulse Doppler compensation. The data matrix ss(n r ,n a );

步骤8:根据空域滤波理论,构造由目标散射系数组成的矩阵Ω,Ω为nr×na维的矩阵;Step 8: According to the spatial filtering theory, construct a matrix Ω composed of target scattering coefficients, where Ω is an n r ×n a -dimensional matrix;

步骤9:将矩阵ss(nr,na)按实部和虚部分为两个通道数据ss_r eal(nr,na)和ss_imag(nr,na);将矩阵Ω按实部和虚部分为两个通道数据Ω_r eal(nr,na)和Ω_i mag(nr,na);Step 9: Divide the matrix ss(n r , na ) into two channel data ss_real( n r , na ) and ss_imag ( n r , na ) according to the real part and the imaginary part; The imaginary part is the two channel data Ω_real(n r ,n a ) and Ω_i mag(n r ,n a );

步骤10:构建基于卷积神经网络两通道输入两通道输出的深度学习网络;将矩阵ss_r eal(nr,na)和矩阵ss_i mag(nr,na)作为深度学习网络输入数据,将矩阵Ω_r eal(nr,na)和矩阵Ω_i mag(nr,na)作为训练的标签数据,对深度学习网络进行训练;Step 10: Construct a deep learning network based on two-channel input and two-channel output of a convolutional neural network; use the matrix ss_real(n r ,n a ) and the matrix ss_i mag(n r ,n a ) as the input data of the deep learning network, and set the The matrix Ω_real(n r ,n a ) and the matrix Ω_i mag(n r ,n a ) are used as training label data to train the deep learning network;

步骤11:将需要解模糊的数据输入步骤10训练完成的深度学习网络中,得到距离解模糊后的数据矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na);Step 11: Input the data to be deblurred into the deep learning network trained in step 10, and obtain the data matrix y_real(n r ,n a ) and matrix y_i mag(n r ,n a ) after distance deblurring;

步骤12:将矩阵y_r eal(nr,na)和矩阵y_i mag(nr,na)按实部虚部关系合成矩阵y(nr,na);Step 12: Combine the matrix y_real(n r ,n a ) and the matrix y_i mag(n r ,n a ) into the matrix y(n r ,n a ) according to the relationship between the real and imaginary parts;

步骤13:对矩阵y(nr,na)进行多普勒参数估计,得到估计的多普勒参数

Figure BDA0003552845870000053
Step 13: Perform Doppler parameter estimation on the matrix y( n r , na ) to obtain the estimated Doppler parameter
Figure BDA0003552845870000053

步骤14:根据多普勒参数fdc对矩阵y(nr,na)进行距离徙动校正,将结果存于矩阵y′(nr,na)中。Step 14: Perform range migration correction on the matrix y( n r , na ) according to the Doppler parameter f dc , and store the result in the matrix y′( n r , na ).

步骤15:根据雷达参数,构造参考信号向量

Figure BDA0003552845870000054
Figure BDA0003552845870000055
s_a(n2)为1×na向量;其中,fc表示雷达发射信号的载频,c为电磁波的传播速度,V为卫星速度,θ为卫星的斜视角,tn2为方位慢时间;Step 15: According to the radar parameters, construct the reference signal vector
Figure BDA0003552845870000054
Figure BDA0003552845870000055
s_a(n2) is a 1×na vector; among them, f c represents the carrier frequency of the radar transmission signal, c is the propagation speed of the electromagnetic wave, V is the satellite speed, θ is the oblique angle of the satellite, and t n2 is the azimuth slow time;

步骤16:将矩阵y′(nr,na)按行进行FFT处理得到y(nr,fa);取出y(nr,fa)的每一行,均点乘参考信号向量s_a(n2)的共轭,得到距离脉压后的数据矩阵y(nr,fa);Step 16: Perform FFT processing on the matrix y'(n r , n a ) by row to obtain y(n r , f a ); take out each row of y(n r , f a ), and multiply the average point by the reference signal vector s_a( The conjugate of n2), the data matrix y(n r , f a ) after distance pulse pressure is obtained;

步骤17:将矩阵y(nr,fa)按行进行逆FFT处理,得到SAR聚焦结果矩阵z(nr,na)。Step 17: Perform inverse FFT processing on the matrix y(n r , f a ) by row to obtain the SAR focusing result matrix z( n r , na ).

进一步地,所述步骤8具体步骤如下:Further, the specific steps of step 8 are as follows:

星载SAR系统发射多组码型的编码信号,将采用多天线数字接收机接收的回波信号表示为A=[s(1),…,s(m),…,s(M)],m=1,2,…,M,M为测绘带个数;利用空域滤波矢量对信号进行空域滤波,能从模糊的回波信号中恢复出目标的散射系数,即存在目标时所对应的散射系数为1,没有目标时对应的散射系数为0;权值矢量为Ω=[Ω1,…,Ωm,…,ΩM];对于第m个测绘带有ATΩm=Ym,其中,Ym=[0,…,1,…0];由目标散射系数组成的矩阵为Ωm=inv(A)Ym,解出Ω即完成整个解模糊过程。The spaceborne SAR system transmits encoded signals of multiple code patterns, and the echo signal received by the multi-antenna digital receiver is expressed as A=[s(1),...,s(m),...,s(M)], m=1,2,...,M, where M is the number of swaths; using the spatial filtering vector to filter the signal in the spatial domain, the scattering coefficient of the target can be recovered from the blurred echo signal, that is, the scattering corresponding to the presence of the target The coefficient is 1, and the corresponding scattering coefficient is 0 when there is no target; the weight vector is Ω=[Ω 1 ,…,Ω m ,…,Ω M ]; for the mth mapping with A T Ω m =Y m , Among them, Y m =[0,...,1,...0]; the matrix composed of the target scattering coefficients is Ω m =inv(A)Y m , and the whole deblurring process is completed by solving Ω.

具体实施例:Specific examples:

以下通过仿真实验数据来进一步验证本发明的有效性。The effectiveness of the present invention is further verified through simulation experimental data below.

(一)仿真实验(1) Simulation experiment

1.实测参数1. Measured parameters

为了验证本发明方法的有效性,此处给出了表1中的实测数据参数。In order to verify the effectiveness of the method of the present invention, the measured data parameters in Table 1 are given here.

表1仿真数据参数Table 1 Simulation data parameters

载波频率carrier frequency 5.3GHz5.3GHz 采样频率Sampling frequency 200MHz200MHz 星载SAR系统的速度Velocity of spaceborne SAR systems 7100m/s7100m/s 信号带宽Signal bandwidth 160MHz160MHz 场景中心线距离Scene centerline distance 850km850km 一倍模糊距离Double the blur distance 75km75km 脉冲重复频率(PRF)Pulse repetition frequency (PRF) 2000Hz2000Hz 测绘带数量Number of swaths 33 运动目标个数Number of moving targets 33 运动目标速度moving target speed -8m/s,4m/s,10m/s-8m/s,4m/s,10m/s

2.实验内容2. Experiment content

图2示意了利用本发明提出的一种基于深度学习的海洋宽测绘带距离解模糊算法获得的仿真数据处理结果。其中,(a)迭代100次解模糊结果;(b)迭代200次解模糊结果;(c)迭代300次解模糊结果;(d)迭代500次解模糊结果;(e)迭代900次解模糊结果;(f)迭代1500次解模糊结果。从图中可以看出本发明方法的距离解模糊效果,利用深度学习网络进行训练,当迭代次数达到300次时,可以得到较好的距离解模糊结果。FIG. 2 illustrates a simulation data processing result obtained by using a deep learning-based ocean wide swath distance deblurring algorithm proposed by the present invention. Among them, (a) 100 iterations of defuzzification results; (b) 200 iterations of defuzzification results; (c) 300 iterations of defuzzification results; (d) 500 iterations of defuzzification results; (e) 900 iterations of defuzzification Results; (f) 1500 iterations of deblurring results. It can be seen from the figure that the distance deblurring effect of the method of the present invention is used for training with a deep learning network. When the number of iterations reaches 300 times, a better distance deblurring result can be obtained.

图3示意了利用本发明进行距离解模糊后的数据进行SAR成像的结果,其中,(a)三个运动目标的成像结果;(b)第一点的距离剖面图;(c)第一点的方位剖面图;(d)第二点的距离剖面图;(e)第二点的方位剖面图;(f)第三点的距离剖面图;(g)第三点的方位剖面图。从图中可以看出本发明方法解距离模糊后的数据可以实现对不同速度的海洋运动目标进行二维高分辨率的SAR成像。3 shows the results of SAR imaging using the data after distance deblurring according to the present invention, wherein (a) the imaging results of three moving targets; (b) the distance profile of the first point; (c) the first point The azimuth profile of ; (d) the distance profile of the second point; (e) the azimuth profile of the second point; (f) the distance profile of the third point; (g) the azimuth profile of the third point. It can be seen from the figure that the method of the present invention can realize two-dimensional high-resolution SAR imaging of ocean moving targets at different speeds by de-blurring the data.

因此采用本发明方法的可以有效解决星载SAR系统宽测绘带距离解模糊问题。Therefore, the method of the present invention can effectively solve the problem of de-ambiguity of the wide swath of the spaceborne SAR system.

Claims (2)

1.一种基于深度学习的海洋宽测绘带距离解模糊方法,其特征在于,包括如下步骤:1. a kind of ocean wide swath distance deblurring method based on deep learning, is characterized in that, comprises the steps: 步骤1:获取星载SAR系统的回波信号,所述回波信号是nr×na维矩阵,对回波信号矩阵按列进行傅里叶变换处理,并将结果保存在矩阵s(n1,n2)中;nr表示距离向点数,na表示方位向点数;Step 1: Obtain the echo signal of the spaceborne SAR system, which is an n r ×n a -dimensional matrix, perform Fourier transform processing on the echo signal matrix by column, and save the result in the matrix s(n1 , n2); n r represents the number of points in the distance direction, and na represents the number of points in the azimuth direction; 步骤2:根据雷达参数,构造参考信号向量
Figure FDA0003552845860000011
s_r(n1)为nr×1向量;其中,kr表示调频率,kr=B/Tp,B表示发射信号带宽,Tp表示发射脉冲宽度,fr表示为距离向频域坐标,
Figure FDA0003552845860000012
Δf为距离频域间隔,
Figure FDA0003552845860000013
Figure FDA0003552845860000014
Step 2: According to the radar parameters, construct the reference signal vector
Figure FDA0003552845860000011
s_r(n1) is an n r ×1 vector; among them, k r represents the frequency modulation, k r =B/T p , B represents the transmission signal bandwidth, T p represents the transmission pulse width, and fr represents the range-to-frequency domain coordinates,
Figure FDA0003552845860000012
Δf is the distance frequency domain interval,
Figure FDA0003552845860000013
Figure FDA0003552845860000014
步骤3:将s(n1,n2)的每一列,均点乘参考信号向量s_r(n1)的共轭,得到距离脉压后的数据矩阵s(fr,xn2);其中,xn2表示方位向时域坐标,
Figure FDA0003552845860000015
L表示为合成孔径长度,n2=0,1,...,na-1;
Step 3: Multiply each column of s(n1, n2) with the conjugate of the reference signal vector s_r(n1) to obtain the data matrix s(f r , x n2 ) after the distance pulse pressure; wherein, x n2 represents Azimuth time domain coordinates,
Figure FDA0003552845860000015
L is expressed as the synthetic aperture length, n2=0, 1, . . . , n a -1;
步骤4:对矩阵s(fr,xn2)按列进行傅里叶逆变换处理,将结果保存在矩阵s(nr,na)中;Step 4: Perform inverse Fourier transform processing on the matrix s(f r , x n2 ) by column, and store the result in the matrix s(n r , n a ); 步骤5:对矩阵s(nr,na)按行进行傅里叶变换,将结果存于s(nr,fa)矩阵中;其中,fa表示方位向频域坐标,
Figure FDA0003552845860000016
PRF为方位采用频率,Δfa为方位频域间隔,
Figure FDA0003552845860000017
Step 5: Fourier transform is performed on the matrix s( n r , na ) by row, and the result is stored in the s(n r , f a ) matrix;
Figure FDA0003552845860000016
PRF is the azimuth adopted frequency, Δf a is the azimuth frequency domain interval,
Figure FDA0003552845860000017
步骤6:根据雷达参数构造多普勒补偿函数
Figure FDA0003552845860000018
Figure FDA0003552845860000019
s_h(n1)为nr×1的向量;其中,nr表示距离向点数,v为动目标径向速度,V为雷达平台运动速度,θ为斜距平面雷达视线的方位角,λ为雷达的工作波长,g表示重力加速度;
Step 6: Construct the Doppler compensation function according to the radar parameters
Figure FDA0003552845860000018
Figure FDA0003552845860000019
s_h(n1) is a vector of n r × 1; among them, n r represents the number of points in the range direction, v is the radial velocity of the moving target, V is the moving speed of the radar platform, θ is the azimuth angle of the slant range plane radar line of sight, and λ is the radar The working wavelength of , g is the acceleration of gravity;
步骤7:将s(nr,fa)与多普勒补偿函数s_h(n1)向量的共轭进行点乘,并对相乘结果按行进行逆FFT处理,得到脉内多普勒补偿后的数据矩阵ss(nr,na);Step 7: Do point multiplication with the conjugate of s(n r , f a ) and the Doppler compensation function s_h(n1) vector, and perform inverse FFT processing on the multiplication result row by row to obtain the intrapulse Doppler compensation. The data matrix ss(n r , n a ); 步骤8:根据空域滤波理论,构造由目标散射系数组成的矩阵Ω,Ω为nr×na维的矩阵;Step 8: According to the spatial filtering theory, construct a matrix Ω composed of target scattering coefficients, where Ω is an n r ×n a -dimensional matrix; 步骤9:将矩阵ss(nr,na)按实部和虚部分为两个通道数据ss_real(nr,na)和ss_imag(nr,na);将矩阵Ω按实部和虚部分为两个通道数据Ω_real(nr,na)和Ω_imag(nr,na);Step 9: Divide the matrix ss(n r , na ) into two channel data ss_real( n r , na ) and ss_imag ( n r , na ) according to the real and imaginary parts; divide the matrix Ω according to the real and imaginary parts The part is two channel data Ω_real( n r , na ) and Ω_imag( n r , na ); 步骤10:构建基于卷积神经网络两通道输入两通道输出的深度学习网络;将矩阵ss_real(nr,na)和矩阵ss_imag(nr,na)作为深度学习网络输入数据,将矩阵Ω_real(nr,na)和矩阵Ω_imag(nr,na)作为训练的标签数据,对深度学习网络进行训练;Step 10: Construct a deep learning network based on two-channel input and two-channel output of a convolutional neural network; use the matrix ss_real( n r , na ) and the matrix ss_imag( n r , na ) as the input data of the deep learning network, and the matrix Ω_real (n r , n a ) and the matrix Ω_imag (n r , n a ) are used as training label data to train the deep learning network; 步骤11:将需要解模糊的数据输入步骤10训练完成的深度学习网络中,得到距离解模糊后的数据矩阵y_real(nr,na)和矩阵y_imag(nr,na);Step 11: Input the data that needs to be deblurred into the deep learning network trained in step 10, and obtain the data matrix y_real( n r , na ) and matrix y_imag( n r , na ) after distance deblurring; 步骤12:将矩阵y_real(nr,na)和矩阵y_imag(nr,na)按实部虚部关系合成矩阵y(nr,na);Step 12: Combine the matrix y_real( n r , na ) and the matrix y_imag(n r , na ) into the matrix y ( n r , na ) according to the relationship between the real part and the imaginary part; 步骤13:对矩阵y(nr,na)进行多普勒参数估计,得到估计的多普勒参数
Figure FDA0003552845860000021
Step 13: Perform Doppler parameter estimation on the matrix y( n r , na ) to obtain the estimated Doppler parameter
Figure FDA0003552845860000021
步骤14:根据多普勒参数fdc对矩阵y(nr,na)进行距离徙动校正,将结果存于矩阵y′(nr,na)中。Step 14: Perform range migration correction on the matrix y( n r , na ) according to the Doppler parameter f dc , and store the result in the matrix y′( n r , na ). 步骤15:根据雷达参数,构造参考信号向量
Figure FDA0003552845860000022
Figure FDA0003552845860000023
s_a(n2)为1×na向量;其中,fc表示雷达发射信号的载频,c为电磁波的传播速度,V为卫星速度,θ为卫星的斜视角,tn2为方位慢时间;
Step 15: According to the radar parameters, construct the reference signal vector
Figure FDA0003552845860000022
Figure FDA0003552845860000023
s_a(n2) is a 1×na vector; among them, f c represents the carrier frequency of the radar transmission signal, c is the propagation speed of the electromagnetic wave, V is the satellite speed, θ is the oblique angle of the satellite, and t n2 is the azimuth slow time;
步骤16:将矩阵y′(nr,na)按行进行FFT处理得到y(nr,fa);取出y(nr,fa)的每一行,均点乘参考信号向量s_a(n2)的共轭,得到距离脉压后的数据矩阵y(nr,fa);Step 16: Perform FFT processing on the matrix y'( n r , na ) by row to obtain y(n r , f a ); take out each row of y(n r , f a ), and multiply the reference signal vector s_a( The conjugate of n2), the data matrix y(n r , f a ) after distance pulse pressure is obtained; 步骤17:将矩阵y(nr,fa)按行进行逆FFT处理,得到SAR聚焦结果矩阵z(nr,na)。Step 17: Perform inverse FFT processing on the matrix y(n r , f a ) by row to obtain the SAR focusing result matrix z( n r , na ).
2.根据权利要求1所述的一种基于深度学习的海洋宽测绘带距离解模糊方法,其特征在于,所述步骤8具体步骤如下:2. a kind of ocean wide swath distance deblurring method based on deep learning according to claim 1, is characterized in that, described step 8 concrete steps are as follows: 星载SAR系统发射多组码型的编码信号,将采用多天线数字接收机接收的回波信号表示为A=[s(1),…,s(m),…,s(M)],m=1,2,…,M,M为测绘带个数,s(m)表示利用多天线数字接收机接收的第m测绘带的回波信号;利用空域滤波矢量对信号进行空域滤波,能从模糊的回波信号中恢复出目标的散射系数,即存在目标时所对应的散射系数为1,没有目标时对应的散射系数为0;权值矢量为Ω=[Ω1,…,Ωm,…,ΩM];对于第m个测绘带有ATΩm=Ym,其中,Ym=[0,…,1,…0];由目标散射系数组成的矩阵为Ωm=inv(A)Ym,解出Ω即完成整个解模糊过程。The spaceborne SAR system transmits encoded signals of multiple code patterns, and the echo signal received by the multi-antenna digital receiver is expressed as A=[s(1),...,s(m),...,s(M)], m=1, 2, ..., M, M is the number of swaths, and s(m) represents the echo signal of the mth swath received by the multi-antenna digital receiver; The scattering coefficient of the target is recovered from the fuzzy echo signal, that is, the corresponding scattering coefficient is 1 when there is a target, and 0 when there is no target; the weight vector is Ω=[Ω 1 ,...,Ω m , . _ _ _ _ (A) Y m , the whole defuzzification process is completed by solving Ω.
CN202210269819.2A 2022-03-18 2022-03-18 Ocean wide swath distance defuzzification method based on deep learning Active CN114780911B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210269819.2A CN114780911B (en) 2022-03-18 2022-03-18 Ocean wide swath distance defuzzification method based on deep learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210269819.2A CN114780911B (en) 2022-03-18 2022-03-18 Ocean wide swath distance defuzzification method based on deep learning

Publications (2)

Publication Number Publication Date
CN114780911A true CN114780911A (en) 2022-07-22
CN114780911B CN114780911B (en) 2024-03-01

Family

ID=82424280

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210269819.2A Active CN114780911B (en) 2022-03-18 2022-03-18 Ocean wide swath distance defuzzification method based on deep learning

Country Status (1)

Country Link
CN (1) CN114780911B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116027317A (en) * 2023-01-06 2023-04-28 中国人民解放军空军预警学院 Sea surface ship target two-dimensional speed estimation method based on spaceborne broadband radar
CN116824155A (en) * 2023-06-19 2023-09-29 西北工业大学 A tissue microstructure estimation model and method based on undersampled DMRI data
CN119004042A (en) * 2024-10-21 2024-11-22 中国人民解放军国防科技大学 Depth learning-based radar measurement distance fitting method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669183A (en) * 2017-12-27 2019-04-23 北京航空航天大学 A kind of geostationary orbit SAR motive target imaging processing unit based on Keystone and time-frequency conversion
CN110824473A (en) * 2019-10-21 2020-02-21 西北工业大学 A subspace-based high-resolution wide swath SAR-GMTI clutter suppression method
CN113189547A (en) * 2021-04-20 2021-07-30 成都汇蓉国科微系统技术有限公司 Synthetic bandwidth frequency scaling-based SAR imaging method and system
US20210349205A1 (en) * 2020-05-11 2021-11-11 Institute Of Electronics, Chinese Academy Of Sciences Method and apparatus for space-variance correction imaging of bistatic sar, device and storage medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669183A (en) * 2017-12-27 2019-04-23 北京航空航天大学 A kind of geostationary orbit SAR motive target imaging processing unit based on Keystone and time-frequency conversion
CN110824473A (en) * 2019-10-21 2020-02-21 西北工业大学 A subspace-based high-resolution wide swath SAR-GMTI clutter suppression method
US20210349205A1 (en) * 2020-05-11 2021-11-11 Institute Of Electronics, Chinese Academy Of Sciences Method and apparatus for space-variance correction imaging of bistatic sar, device and storage medium
CN113189547A (en) * 2021-04-20 2021-07-30 成都汇蓉国科微系统技术有限公司 Synthetic bandwidth frequency scaling-based SAR imaging method and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张双喜;李少杰;吴亿锋;熊文俊;吴玉峰;: "基于压缩感知的宽测绘带海面运动目标多普勒补偿成像算法", 航空科学技术, no. 06, 25 June 2020 (2020-06-25) *
胡英辉;郑远;耿旭朴;邓云凯;: "相位编码信号的多普勒补偿", 电子与信息学报, no. 11, 15 November 2009 (2009-11-15) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116027317A (en) * 2023-01-06 2023-04-28 中国人民解放军空军预警学院 Sea surface ship target two-dimensional speed estimation method based on spaceborne broadband radar
CN116027317B (en) * 2023-01-06 2024-01-26 中国人民解放军空军预警学院 Sea surface ship target two-dimensional speed estimation method based on spaceborne broadband radar
CN116824155A (en) * 2023-06-19 2023-09-29 西北工业大学 A tissue microstructure estimation model and method based on undersampled DMRI data
CN116824155B (en) * 2023-06-19 2025-07-04 西北工业大学 Tissue microstructure estimation model and method based on undersampled DMRI data
CN119004042A (en) * 2024-10-21 2024-11-22 中国人民解放军国防科技大学 Depth learning-based radar measurement distance fitting method and device
CN119004042B (en) * 2024-10-21 2024-12-31 中国人民解放军国防科技大学 Depth learning-based radar measurement distance fitting method and device

Also Published As

Publication number Publication date
CN114780911B (en) 2024-03-01

Similar Documents

Publication Publication Date Title
CN107966688B (en) Defuzzification method of broadband radar target velocity based on phase interferometry
CN114780911A (en) Ocean wide swath distance ambiguity solving method based on deep learning
CN106970371B (en) A kind of object detection method based on Keystone and matched filtering
CN110907910B (en) Distributed coherent radar moving target echo coherent synthesis method
CN105699969B (en) MAP estimation angle super-resolution imaging method based on Generalized Gaussian constraint
CN102998672B (en) Step frequency inverse synthetic aperture radar (ISAR) imaging method based on coherent processing
CN107132534B (en) An optimization method for high-speed radar target detection in frequency domain
CN109507666B (en) ISAR sparse band imaging method based on off-network variational Bayesian algorithm
CN109709552B (en) A Motion Compensation Method for ISAR Imaging with Low Signal-to-Noise Ratio
CN109407070B (en) A method for detecting ground moving objects on high-orbit platforms
CN108562884A (en) A kind of Air-borne Forward-looking sea-surface target angle ultra-resolution method based on maximum a posteriori probability
CN103969628A (en) Compressive-sensing-based synthetic aperture radar PFA imaging algorithm
CN104793194B (en) Range Doppler method of estimation based on the compression of improved self adaptation multiple-pulse
CN109212489B (en) An FDA-MIMO Radar Fuzzy Clutter Suppression Method Based on Auxiliary Pulse
CN103308913A (en) Foresight SAR ambiguity resolving algorithm of double antennas carried by high-speed aircraft
CN111060879B (en) Joint side lobe suppression method based on two-dimensional matched filtering result
CN111781595A (en) Imaging method of complex maneuvering group target based on matching search and Doppler deblurring
CN110208796B (en) Scanning radar super-resolution imaging method based on singular value inverse filtering
CN110133646B (en) NLCS imaging-based multi-channel two-pulse clutter cancellation method for bistatic forward-looking SAR
CN104808188A (en) High-speed stealth target detection method of polynomial Hough Fourier transform
CN114371478A (en) Three-dimensional imaging method of airborne radar for ship target based on single antenna system
CN103245949B (en) SAR azimuth ambiguity suppression method based on improved ideal filter
CN110109097B (en) A scanning radar forward-looking imaging azimuth super-resolution method
CN118276026A (en) Sea surface moving target course angle estimation method based on energy track extraction
CN116908802A (en) Skywave over-the-horizon radar distance estimation method based on sparse Bayesian algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant