CN114772593A - Preparation method and application of hard carbon anode material - Google Patents
Preparation method and application of hard carbon anode material Download PDFInfo
- Publication number
- CN114772593A CN114772593A CN202210336929.6A CN202210336929A CN114772593A CN 114772593 A CN114772593 A CN 114772593A CN 202210336929 A CN202210336929 A CN 202210336929A CN 114772593 A CN114772593 A CN 114772593A
- Authority
- CN
- China
- Prior art keywords
- hard carbon
- walnut
- sodium hydroxide
- alkalized
- anode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910021385 hard carbon Inorganic materials 0.000 title claims abstract description 33
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000010405 anode material Substances 0.000 title claims description 15
- 241000758789 Juglans Species 0.000 claims abstract description 39
- 235000009496 Juglans regia Nutrition 0.000 claims abstract description 39
- 235000020234 walnut Nutrition 0.000 claims abstract description 39
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 35
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 claims abstract description 20
- 239000007773 negative electrode material Substances 0.000 claims abstract description 19
- JYGQNQHGQBEFJQ-UHFFFAOYSA-M sodium;propan-2-ol;hydroxide Chemical compound [OH-].[Na+].CC(C)O JYGQNQHGQBEFJQ-UHFFFAOYSA-M 0.000 claims abstract description 16
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000010420 shell particle Substances 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 11
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 239000002253 acid Substances 0.000 claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012153 distilled water Substances 0.000 claims abstract description 6
- 239000011261 inert gas Substances 0.000 claims abstract description 6
- 230000004913 activation Effects 0.000 claims abstract description 5
- 238000001816 cooling Methods 0.000 claims abstract description 3
- 238000010298 pulverizing process Methods 0.000 claims abstract description 3
- 238000000967 suction filtration Methods 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 15
- 229910001415 sodium ion Inorganic materials 0.000 claims description 13
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 12
- 239000011259 mixed solution Substances 0.000 claims description 11
- BYTCDABWEGFPLT-UHFFFAOYSA-L potassium;sodium;dihydroxide Chemical compound [OH-].[OH-].[Na+].[K+] BYTCDABWEGFPLT-UHFFFAOYSA-L 0.000 claims description 6
- 229940106681 chloroacetic acid Drugs 0.000 claims description 5
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 2
- 238000001035 drying Methods 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 238000005406 washing Methods 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- 238000005245 sintering Methods 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 230000007935 neutral effect Effects 0.000 abstract description 5
- 238000003763 carbonization Methods 0.000 abstract description 2
- 239000012535 impurity Substances 0.000 abstract description 2
- 238000007254 oxidation reaction Methods 0.000 abstract description 2
- 239000011148 porous material Substances 0.000 abstract description 2
- 230000003647 oxidation Effects 0.000 abstract 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- 229910052744 lithium Inorganic materials 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/342—Preparation characterised by non-gaseous activating agents
- C01B32/348—Metallic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种硬碳负极材料的制备方法及应用,方法包括如下步骤:将碱化核桃壳粉碎后分散至氢氧化钠异丙醇溶液中,向氢氧化钠异丙醇溶液依次滴加维生素BT、一氯乙酸溶液,过滤、洗涤、烘干后得到活性核桃壳颗粒;将活性核桃壳颗粒置于惰性气体中烧结,得到碳材料;将碳材料浸渍于酸液中,在微波功率条件下加热处理,得到深棕色糊状物,自然冷却后进行抽滤,用蒸馏水反复洗涤至中性,干燥后得到硬碳负极材料。本申请基于碱化核桃壳,核桃壳廉价、环保、可再生、易获得,相比于人工制备的碳材料,具有明显的低成本优势。采用先活化、碳化,再氧化的方式,促使核桃中的杂质被祛除,实现核桃本身的孔洞结构形成碳含量较高的多孔碳材料。The invention discloses a preparation method and application of a hard carbon negative electrode material. The method comprises the following steps: pulverizing alkalized walnut shells and dispersing them into a sodium hydroxide isopropanol solution, and sequentially adding dropwise to the sodium hydroxide isopropanol solution Vitamin BT and monochloroacetic acid solution, filtered, washed and dried to obtain activated walnut shell particles; the activated walnut shell particles were sintered in an inert gas to obtain a carbon material; the carbon material was immersed in an acid solution, and heated under microwave power conditions Under heating treatment to obtain dark brown paste, after natural cooling, suction filtration is carried out, repeatedly washed with distilled water until neutral, and dried to obtain hard carbon negative electrode material. The present application is based on alkalized walnut shells, which are cheap, environmentally friendly, renewable and easy to obtain, and have obvious low-cost advantages compared to artificially prepared carbon materials. Using the method of first activation, carbonization, and then oxidation, the impurities in the walnut are removed, and the pore structure of the walnut itself is realized to form a porous carbon material with a high carbon content.
Description
技术领域technical field
本发明涉及钠离子储能设备技术领域,尤其涉及一种硬碳负极材料的制备方法及应用。The invention relates to the technical field of sodium ion energy storage devices, in particular to a preparation method and application of a hard carbon negative electrode material.
背景技术Background technique
在当前技术中,碳材料作为负极材料已经被广泛应用于锂离子电池之中。碳负极材料主要有人造石墨、天然石墨、碳纳米管,硬碳等多种碳材料,其中硬碳材料作为一种无定型碳,具有较高的可逆容量,理论上达到700mAh/g~1000mAh/g,超过了石墨化碳的理论容量372mAh/g,且硬碳的无规则结构,能够保障充放电过程中的结构稳定,使锂电池能够具有较长的循环寿命,且具有较好的倍率性能。但目前而言,硬碳材料存在首效较低,可逆容量较低(200mAh/g~400mAh/g),电压存在滞后等问题,阻碍了硬碳材料的进一步应用。业内也有提出用碳包覆硅材料作为负极材料提升性能,但碳包覆的主要作用是抑制硅材料在脱嵌锂过程中体积的膨胀收缩,从而解决了容量衰减快的问题。In the current technology, carbon materials have been widely used as negative electrode materials in lithium-ion batteries. Carbon anode materials mainly include artificial graphite, natural graphite, carbon nanotubes, hard carbon and other carbon materials. Among them, hard carbon material, as a kind of amorphous carbon, has a high reversible capacity, theoretically reaching 700mAh/g~1000mAh/ g, which exceeds the theoretical capacity of graphitized carbon of 372mAh/g, and the irregular structure of hard carbon can ensure the structural stability during charging and discharging, so that the lithium battery can have a long cycle life and good rate performance. . However, at present, hard carbon materials have problems such as low first effect, low reversible capacity (200mAh/g-400mAh/g), and voltage hysteresis, which hinders the further application of hard carbon materials. It has also been proposed in the industry to use carbon-coated silicon materials as negative electrode materials to improve performance, but the main function of carbon coating is to inhibit the volume expansion and contraction of silicon materials during the process of lithium deintercalation, thereby solving the problem of rapid capacity decay.
随着电动汽车、智能电子设备的广泛应用,锂的需求量将大大增加,而锂的储量有限,且分布资源不均匀,从而推高了与锂相关材料的价格,增大了电池成本。因此开发性能优异且廉价的非锂基电化学储能器件,已成为了迫在眉睫的任务。与锂离子电池工作原理类似,资源更加丰富的钠离子电池受到了广泛的关注。由于钠枝晶的形成很容易导致液态电池的短路,并且金属钠比金属锂更加活泼,如遇水很容易起火爆炸,因此实际的钠离子电池中不能应用钠金属作为负极。更加糟糕的是被广泛应用的锂离子电池石墨负极由于热力学原因没有储钠性能。钠离子电池的碳基负极材料跟锂离子电池的碳基负极材料相比是有较大区别的,这个区别主要源于钠离子较大的离子半径。在锂离子电池中广泛应用的传统石墨类负极材料由于层间距离小于钠离子直径,使得传统石墨类材料很难进行有效储钠。With the wide application of electric vehicles and smart electronic devices, the demand for lithium will increase greatly, while the reserves of lithium are limited and the distribution of resources is uneven, which pushes up the price of lithium-related materials and increases the cost of batteries. Therefore, the development of non-lithium-based electrochemical energy storage devices with excellent performance and low cost has become an urgent task. Similar to the working principle of lithium-ion batteries, sodium-ion batteries with more abundant resources have received extensive attention. Since the formation of sodium dendrites can easily lead to a short circuit in liquid batteries, and metal sodium is more active than metal lithium, it is easy to catch fire and explode in case of water, so sodium metal cannot be used as a negative electrode in practical sodium-ion batteries. To make matters worse, the widely used graphite anode for Li-ion batteries has no sodium storage performance due to thermodynamic reasons. Compared with the carbon-based anode materials of lithium-ion batteries, the carbon-based anode materials of sodium-ion batteries are quite different. This difference is mainly due to the larger ionic radius of sodium ions. The traditional graphite-based anode materials widely used in lithium-ion batteries are difficult to effectively store sodium because the interlayer distance is smaller than the diameter of the sodium ion.
核桃壳为一种可再生资源,且洁净环保,以核桃壳为前驱体制备硬碳材料为大批量、低成本制备硬碳材料提供了一种有效的思路方法。Walnut shell is a renewable resource, and it is clean and environmentally friendly. The preparation of hard carbon materials with walnut shell as a precursor provides an effective way of thinking for the preparation of hard carbon materials in large quantities and at low cost.
公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。The information disclosed in this Background section is only for enhancement of understanding of the general background of the invention and should not be taken as an acknowledgement or any form of suggestion that this information forms the prior art already known to a person skilled in the art.
发明内容SUMMARY OF THE INVENTION
基于上述原因,本申请人提出了一种硬碳负极材料的制备方法及应用,旨在解决上述问题。Based on the above reasons, the applicant proposes a preparation method and application of a hard carbon negative electrode material, aiming at solving the above problems.
为了满足上述要求,本发明的第一个目的在于提供一种硬碳负极材料的制备方法,基于碱化核桃壳,应用于钠离子电池,包括如下步骤:In order to meet the above requirements, the first object of the present invention is to provide a preparation method of a hard carbon negative electrode material, based on the alkalized walnut shell, applied to a sodium ion battery, comprising the following steps:
将所述碱化核桃壳粉碎后分散至氢氧化钠异丙醇溶液中,向所述氢氧化钠异丙醇溶液依次滴加维生素BT、一氯乙酸溶液,过滤、洗涤、烘干后得到活性核桃壳颗粒;The alkalized walnut shells are pulverized and dispersed into a sodium hydroxide isopropanol solution, and vitamin BT and a monochloroacetic acid solution are sequentially added dropwise to the sodium hydroxide isopropanol solution, filtered, washed, and dried to obtain active walnut shell particles;
将所述活性核桃壳颗粒置于惰性气体中烧结,得到碳材料;The active walnut shell particles are placed in an inert gas and sintered to obtain a carbon material;
将所述碳材料浸渍于酸液中,在微波功率条件下加热处理,得到深棕色糊状物,自然冷却后进行抽滤,用蒸馏水反复洗涤至中性,干燥后得到硬碳负极材料。The carbon material is immersed in an acid solution and heated under microwave power conditions to obtain a dark brown paste, which is naturally cooled and then suction filtered, repeatedly washed with distilled water until neutral, and dried to obtain a hard carbon negative electrode material.
其中,所述向所述氢氧化钠异丙醇溶液依次滴加维生素BT、一氯乙酸溶液的步骤包括,滴加6-9份维生素BT后搅拌反应。Wherein, the step of sequentially adding vitamin BT and monochloroacetic acid solution dropwise to the sodium hydroxide isopropanol solution includes: adding 6-9 parts of vitamin BT dropwise and then stirring and reacting.
其中,所述滴加6-9份维生素BT后搅拌反应的步骤之后包括,将加入维生素BT的溶液分散在氢氧化钠的乙醇-水混合溶液中,滴加7-8份氯乙酸后搅拌。Wherein, the step of stirring and reacting after adding 6-9 parts of vitamin BT dropwise includes: dispersing the solution of adding vitamin BT in an ethanol-water mixed solution of sodium hydroxide, adding 7-8 parts of chloroacetic acid dropwise and stirring.
其中,所述将所述碳材料浸渍于酸液中的步骤包括,将碳材料按质量比为1:3浸渍于磷酸中。Wherein, the step of immersing the carbon material in the acid solution includes immersing the carbon material in phosphoric acid in a mass ratio of 1:3.
其中,所述将所述碳材料浸渍于酸液中的步骤包括,将所述碳材料浸渍于浓度为0.00001-6mol/L的氢氧化钾-氢氧化钠混和溶液中。Wherein, the step of immersing the carbon material in the acid solution includes immersing the carbon material in a potassium hydroxide-sodium hydroxide mixed solution with a concentration of 0.00001-6 mol/L.
其中,所述酸液的浓度为2-3.5 mol/L。Wherein, the concentration of the acid solution is 2-3.5 mol/L.
其中,所述将所述碱化核桃壳粉碎后分散至氢氧化钠异丙醇溶液中的步骤包括,粉碎后粒径在1-100微米之间。Wherein, the step of dispersing the alkalized walnut shell into the sodium hydroxide isopropanol solution after being pulverized includes that the particle size after pulverization is between 1-100 microns.
其中,所述在微波功率条件下加热处理的步骤之前包括,对所述碳材料微波真空活化3~15s。Wherein, before the step of heat treatment under microwave power conditions, microwave vacuum activation of the carbon material is included for 3 to 15 s.
其中,所述在微波功率条件下加热处理的步骤之前包括,加热温度为100-200℃。Wherein, before the step of heating treatment under microwave power conditions, the heating temperature is 100-200°C.
其中,所述在微波功率条件下加热处理的步骤包括,所述微波的功率为0.6-0.8kW。Wherein, the step of heating treatment under the condition of microwave power includes that the power of the microwave is 0.6-0.8kW.
在第二方面,本发明还提供了一种硬碳负极材料作为钠离子电池负极材料的应用。In a second aspect, the present invention also provides the application of a hard carbon negative electrode material as a negative electrode material for a sodium ion battery.
相比于现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
本申请基于碱化核桃壳,核桃壳廉价、环保、可再生、易获得,相比于人工制备的碳材料,具有明显的低成本优势。本申请将碱化核桃壳粉碎后经过首次处理得到活性核桃壳颗粒,将所述碳材料浸渍于酸液中,在微波功率条件下加热处理后得到硬碳负极材料。采用先活化、碳化,再氧化的方式,最大限度地促使核桃中的杂质被祛除,实现核桃本身的孔洞结构形成碳含量较高的多孔碳材料,进一步提升了材料的充放电效率,保证了硬碳材料的优异性能。The present application is based on alkalized walnut shells, which are cheap, environmentally friendly, renewable and easy to obtain, and have obvious low-cost advantages compared to artificially prepared carbon materials. In the present application, the alkalized walnut shell is crushed and processed for the first time to obtain active walnut shell particles, the carbon material is immersed in an acid solution, and heated under microwave power conditions to obtain a hard carbon negative electrode material. The method of first activation, carbonization, and re-oxidation is adopted to maximize the removal of impurities in the walnut, and to realize the pore structure of the walnut itself to form a porous carbon material with high carbon content, which further improves the charging and discharging efficiency of the material and ensures the hardness of the walnut. Excellent properties of carbon materials.
具体实施方式Detailed ways
以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。The implementations described in the illustrative examples below are not intended to represent all implementations consistent with the present invention. Rather, they are merely examples of apparatuses and methods consistent with some aspects of the present invention, as recited in the appended claims, and those skilled in the art may perform different embodiments or examples described in this specification. Join and combine.
实施例一Example 1
一种硬碳负极材料的制备方法,基于碱化核桃壳,应用于钠离子电池,包括如下步骤:A preparation method of a hard carbon negative electrode material, based on alkalized walnut shells, applied to a sodium ion battery, comprising the following steps:
将碱化核桃壳粉碎至20微米粒径,分散至氢氧化钠异丙醇溶液中,向氢氧化钠异丙醇溶液依次滴加维生素BT、一氯乙酸溶液,过滤、洗涤、烘干后得到活性核桃壳颗粒;具体地,滴加6份维生素BT后搅拌反应,将加入维生素BT的溶液分散在氢氧化钠的乙醇-水混合溶液中,滴加7份氯乙酸后搅拌。Pulverize the alkalized walnut shell to a particle size of 20 microns, disperse it into a sodium hydroxide isopropanol solution, add vitamin BT and a monochloroacetic acid solution dropwise to the sodium hydroxide isopropanol solution successively, filter, wash and dry to obtain the solution. Active walnut shell particles; specifically, after adding 6 parts of vitamin BT dropwise, stirring the reaction, dispersing the solution of adding vitamin BT in an ethanol-water mixed solution of sodium hydroxide, adding 7 parts of chloroacetic acid dropwise and stirring.
将活性核桃壳颗粒置于惰性气体中烧结,得到碳材料;The activated walnut shell particles are sintered in an inert gas to obtain a carbon material;
将碳材料按质量比为1:3的比例浸渍于浓度为0.0005mol/L的氢氧化钾-氢氧化钠混和溶液中,在微波为0.6kW的功率条件下加热至150℃处理,得到深棕色糊状物,自然冷却后进行抽滤,用蒸馏水反复洗涤至中性,干燥后得到硬碳负极材料。其中,氧化钾-氢氧化钠混和溶液的浓度还可以为0.1、0.3、0.4、0.6、1、2、3、4、4.5等。The carbon material was immersed in a potassium hydroxide-sodium hydroxide mixed solution with a concentration of 0.0005mol/L in a ratio of 1:3 by mass, and heated to 150°C under the condition of a microwave power of 0.6kW to obtain a dark brown color. The paste is naturally cooled and then suction filtered, repeatedly washed with distilled water until neutral, and dried to obtain a hard carbon negative electrode material. Wherein, the concentration of the potassium oxide-sodium hydroxide mixed solution can also be 0.1, 0.3, 0.4, 0.6, 1, 2, 3, 4, 4.5, etc.
实施例二Embodiment 2
一种硬碳负极材料的制备方法,基于碱化核桃壳,应用于钠离子电池,包括如下步骤:A preparation method of a hard carbon negative electrode material, based on alkalized walnut shells, applied to a sodium ion battery, comprising the following steps:
将碱化核桃壳粉碎至10微米粒径,分散至氢氧化钠异丙醇溶液中,向氢氧化钠异丙醇溶液依次滴加维生素BT、一氯乙酸溶液,过滤、洗涤、烘干后得到活性核桃壳颗粒;具体地,滴加8份维生素BT后搅拌反应,将加入维生素BT的溶液分散在氢氧化钠的乙醇-水混合溶液中,滴加8份氯乙酸后搅拌。Pulverize the alkalized walnut shell to a particle size of 10 microns, disperse it into a sodium hydroxide isopropanol solution, add vitamin BT and a monochloroacetic acid solution dropwise to the sodium hydroxide isopropanol solution successively, filter, wash and dry to obtain the solution. Active walnut shell particles; specifically, after adding 8 parts of vitamin BT dropwise and stirring the reaction, dispersing the solution of adding vitamin BT in an ethanol-water mixed solution of sodium hydroxide, adding 8 parts of chloroacetic acid dropwise and stirring.
将活性核桃壳颗粒置于惰性气体中烧结,得到碳材料;The activated walnut shell particles are sintered in an inert gas to obtain a carbon material;
将碳材料按质量比为1:2的比例浸渍于浓度为3mol/L的氢氧化钾-氢氧化钠混和溶液中,在微波为0.8kW的功率条件下加热至120℃处理,对碳材料微波真空活化8-10s,得到深棕色糊状物,自然冷却后进行抽滤,用蒸馏水反复洗涤至中性,干燥后得到硬碳负极材料。The carbon material was immersed in a potassium hydroxide-sodium hydroxide mixed solution with a concentration of 3 mol/L in a mass ratio of 1:2, and heated to 120 ° C under the condition of microwave power of 0.8 kW. Vacuum activation for 8-10s to obtain a dark brown paste, which is naturally cooled and then suction filtered, repeatedly washed with distilled water until neutral, and dried to obtain a hard carbon negative electrode material.
实施例三Embodiment 3
一种硬碳负极材料的制备方法,基于碱化核桃壳,应用于钠离子电池,包括如下步骤:A preparation method of a hard carbon negative electrode material, based on alkalized walnut shells, applied to a sodium ion battery, comprising the following steps:
将碱化核桃壳粉碎至10微米粒径,分散至氢氧化钠异丙醇溶液中,向氢氧化钠异丙醇溶液依次滴加维生素BT、一氯乙酸溶液,过滤、洗涤、烘干后得到活性核桃壳颗粒;具体地,滴加8份维生素BT后搅拌反应,将加入维生素BT的溶液分散在氢氧化钠的乙醇-水混合溶液中,滴加8份氯乙酸后搅拌。Pulverize the alkalized walnut shell to a particle size of 10 microns, disperse it into a sodium hydroxide isopropanol solution, add vitamin BT and a monochloroacetic acid solution dropwise to the sodium hydroxide isopropanol solution successively, filter, wash and dry to obtain the solution. Active walnut shell particles; specifically, after adding 8 parts of vitamin BT dropwise and stirring the reaction, dispersing the solution of adding vitamin BT in an ethanol-water mixed solution of sodium hydroxide, adding 8 parts of chloroacetic acid dropwise and stirring.
将活性核桃壳颗粒置于惰性气体中烧结,得到碳材料;The activated walnut shell particles are sintered in an inert gas to obtain a carbon material;
将碳材料按质量比为1:2的比例浸渍于浓度为3mol/L的氢氧化钾-氢氧化钠混和溶液中,在微波功率为0.7kW的条件下加热至180℃,得到深棕色糊状物,自然冷却后进行抽滤,用蒸馏水反复洗涤至中性,干燥后得到硬碳负极材料。The carbon material was immersed in a potassium hydroxide-sodium hydroxide mixed solution with a concentration of 3 mol/L in a ratio of 1:2 by mass, and heated to 180 ° C under the condition of a microwave power of 0.7 kW to obtain a dark brown paste. After natural cooling, suction filtration was performed, repeatedly washed with distilled water until neutral, and dried to obtain a hard carbon negative electrode material.
上述实施例为本发明较佳的实施方式,但本发明并不局限于上面揭示和描述的具体实施方式,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the present invention is not limited to the specific embodiments disclosed and described above, and any other changes, modifications, substitutions, and combinations made without departing from the spirit and principle of the present invention , simplification, all should be equivalent replacement modes, and are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210336929.6A CN114772593A (en) | 2022-04-01 | 2022-04-01 | Preparation method and application of hard carbon anode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210336929.6A CN114772593A (en) | 2022-04-01 | 2022-04-01 | Preparation method and application of hard carbon anode material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114772593A true CN114772593A (en) | 2022-07-22 |
Family
ID=82428007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210336929.6A Pending CN114772593A (en) | 2022-04-01 | 2022-04-01 | Preparation method and application of hard carbon anode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114772593A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115395108A (en) * | 2022-09-06 | 2022-11-25 | 中南大学 | Preparation method and application of water-based electrolyte containing quaternary ammonium salt type zwitterion additive |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106299365A (en) * | 2016-11-04 | 2017-01-04 | 郑州大学 | A kind of sodium-ion battery biomass hard carbon cathode material, preparation method and sodium-ion battery |
CN109592660A (en) * | 2018-11-22 | 2019-04-09 | 上海杉杉科技有限公司 | A kind of hard carbon presoma using carbon containing biological mass shell preparation, hard carbon/graphite composite material and its preparation method and application |
CN112645305A (en) * | 2021-01-22 | 2021-04-13 | 哈尔滨工业大学 | Preparation method of pre-activated pore-forming and high-temperature carbonization combined anthracite-based hard carbon material |
-
2022
- 2022-04-01 CN CN202210336929.6A patent/CN114772593A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106299365A (en) * | 2016-11-04 | 2017-01-04 | 郑州大学 | A kind of sodium-ion battery biomass hard carbon cathode material, preparation method and sodium-ion battery |
CN109592660A (en) * | 2018-11-22 | 2019-04-09 | 上海杉杉科技有限公司 | A kind of hard carbon presoma using carbon containing biological mass shell preparation, hard carbon/graphite composite material and its preparation method and application |
CN112645305A (en) * | 2021-01-22 | 2021-04-13 | 哈尔滨工业大学 | Preparation method of pre-activated pore-forming and high-temperature carbonization combined anthracite-based hard carbon material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115395108A (en) * | 2022-09-06 | 2022-11-25 | 中南大学 | Preparation method and application of water-based electrolyte containing quaternary ammonium salt type zwitterion additive |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106099113B (en) | A kind of core-shell structure silicon carbon composite material and preparation method thereof | |
CN104638240B (en) | Method for preparing lithium ion battery silicon carbon composite anode material and product prepared by method | |
CN110148734A (en) | Hard carbon cathode material and its preparation method and application | |
WO2017024720A1 (en) | Preparation method for high capacity lithium-ion battery negative electrode material | |
CN107887587A (en) | Composite cathode material for lithium ion cell and preparation method thereof | |
CN105633360B (en) | Amorphous state ferroso-ferric oxide/graphene aerogel composite, preparation method and applications | |
CN105226260A (en) | A kind of preparation method of lithium ion battery silicon based anode material | |
CN111646460B (en) | Preparation method of zinc ion battery positive electrode material | |
CN111048764A (en) | A kind of silicon carbon composite material and its preparation method and application | |
CN106981644A (en) | A kind of porous carbon based on biomass/sulphur composite material and preparation method thereof and its application | |
CN105449214A (en) | Lithium ion battery cathode material of which nano particles embedded into carbon nanosheet and preparation method of lithium ion battery cathode material | |
CN109616640B (en) | A kind of modified microcrystalline graphite and its preparation and application in lithium ion battery | |
CN115417396B (en) | Repairing method of lithium iron phosphate positive electrode material, positive electrode material and application | |
CN111370675B (en) | Carbon nanosheet sodium ion battery cathode material inlaid with metal phosphide and preparation method thereof | |
CN105161725B (en) | A kind of preparation method of cathode material for lithium-ion power battery | |
CN111470487A (en) | A kind of preparation method and application of biomass carbon material | |
CN115939378B (en) | A method for improving the performance of battery starch-based hard carbon negative electrode and prepared negative electrode material and application | |
CN116332154A (en) | Preparation method of porous silicon-carbon anode material | |
CN115249799A (en) | Rosin-based nitrogen doping coated hard carbon anode material for sodium ion battery and preparation method thereof | |
CN114772593A (en) | Preparation method and application of hard carbon anode material | |
CN111600005B (en) | Preparation method of lithium ion battery negative electrode material porous Si/C composite material | |
CN116885146B (en) | Battery negative electrode active material, preparation method and application thereof | |
CN108091866A (en) | A kind of preparation method for lithium ion battery silicon-carbon cathode material | |
CN108539158A (en) | A kind of rGO/WS2The preparation method of composite material and its application in lithium sulfur battery anode material | |
CN108682823A (en) | A kind of preparation method of lithium iron phosphate battery positive material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: Room 401, Unit 1, Building 1, Xinchen New Materials Pilot Industrialization Base, No. 300, Shutianpu Road, Shutianpu Community, Matian Street, Guangming District, Shenzhen, Guangdong Province, 518000 Applicant after: SHENZHEN CUBIC-SCIENCE Co.,Ltd. Address before: 518052 Guangqian Industrial Zone, Longzhu Third Road, Taoyuan Street, Nanshan District, Shenzhen City, Guangdong Province, 9 buildings, 1-2 floors Applicant before: SHENZHEN CUBIC-SCIENCE Co.,Ltd. |
|
CB02 | Change of applicant information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230801 Address after: Room 401, Unit 1, Building 1, Xinchen New Materials Pilot Industrialization Base, No. 300, Shutianpu Road, Shutianpu Community, Matian Street, Guangming District, Shenzhen, Guangdong Province, 518000 Applicant after: SHENZHEN CUBIC-SCIENCE Co.,Ltd. Applicant after: Wei Chunguang Address before: Room 401, Unit 1, Building 1, Xinchen New Materials Pilot Industrialization Base, No. 300, Shutianpu Road, Shutianpu Community, Matian Street, Guangming District, Shenzhen, Guangdong Province, 518000 Applicant before: SHENZHEN CUBIC-SCIENCE Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20220722 |
|
WD01 | Invention patent application deemed withdrawn after publication |