[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN114736010A - 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用 - Google Patents

一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用 Download PDF

Info

Publication number
CN114736010A
CN114736010A CN202210345982.2A CN202210345982A CN114736010A CN 114736010 A CN114736010 A CN 114736010A CN 202210345982 A CN202210345982 A CN 202210345982A CN 114736010 A CN114736010 A CN 114736010A
Authority
CN
China
Prior art keywords
oxide ceramic
entropy oxide
entropy
ceramic according
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210345982.2A
Other languages
English (en)
Other versions
CN114736010B (zh
Inventor
赵彪
张锐
严智凯
郭晓琴
关莉
范冰冰
李德鹏
门乔乔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University of Aeronautics
Original Assignee
Zhengzhou University of Aeronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University of Aeronautics filed Critical Zhengzhou University of Aeronautics
Priority to CN202210345982.2A priority Critical patent/CN114736010B/zh
Publication of CN114736010A publication Critical patent/CN114736010A/zh
Application granted granted Critical
Publication of CN114736010B publication Critical patent/CN114736010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明属于电磁波吸收材料技术领域,具体涉及一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用。分子式为(Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)O/Fe2O4,具有两种晶型:岩盐型和尖晶石型。制备步骤如下:(1)、选取FeO、CoO、NiO、CuO、ZnO作为原料,称取FeO、CoO、NiO、CuO、ZnO粉体的摩尔比为1∶1∶1∶1∶1,混合均匀,获得混合粉体;(2)、将步骤(1)制备好的混合粉体压制成圆片生坯,空气气氛下控温在1200‑1300℃煅烧10‑12h,取出煅烧产物即得高熵氧化物陶瓷。本发明以氧化亚铁、氧化钴、氧化镍、氧化铜、氧化锌为原料,进行煅烧,获得高纯度、强吸波性能、宽吸收频带的高熵氧化物陶瓷,经分析表明制备得到的高熵氧化物陶瓷的最小反射损耗值为‑52.3dB。

Description

一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的 应用
技术领域
本发明属于电磁波吸收材料技术领域,具体涉及一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用。
背景技术
随着电磁波的应用与发展,电磁波给人们带来了很大的便利。例如,手机通话、网上聊天等。但是,电磁波是一把双刃剑,在使用电磁波的同时,还伴随着电磁波辐射的困扰。长期暴露在电磁辐射中对人体健康有害,会引起恶心、头痛、眼病等症状,以及对婴儿大脑发育有不利的影响。在机场,航班可能因电磁波干扰无法起飞;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。此外,在军事领域,出于雷达隐身的需要,飞行器需要避开电磁波的作用。因此需要研发吸波材料来对电磁波信号进行吸收。随着技术的发展,吸波材料不仅需要有“薄、轻、宽、强”的特点,还要有环境适应性、耐高温、抗氧化等特点。但是,传统的吸波材料中磁性材料较多,其缺点是质量大,在高温下容易失去磁性,严重影响其高温吸波性能。
高熵陶瓷具有“高熵效应”、“晶格畸变效应”、“迟滞扩散效应”和“鸡尾酒效应”,这四种效应使高熵陶瓷具有耐高温、抗氧化等特点,并且还具有良好的性能调控空间,有利于通过不同金属的加入对其性能进行大范围的控制,但目前关于高熵氧化物成分与电磁吸收性能的文章还比较少。
发明内容
本发明的目的在于提供一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用。
为实现上述目的,本发明采取的技术方案如下:
一种高熵氧化物陶瓷,分子式为(Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)O/Fe2O4,具有两种晶型:岩盐型和尖晶石型。
所述高熵陶瓷的制备方法,制备步骤如下:
(1)、选取FeO、CoO、NiO、CuO、ZnO作为原料,称取FeO、CoO、NiO、CuO、ZnO粉体的摩尔比为1∶1∶1∶1∶1,混合均匀,获得混合粉体;
(2)、将步骤(1)制备好的混合粉体压制成圆片生坯,空气气氛下控温在1200-1300℃煅烧10-12h,取出煅烧产物即得高熵氧化物陶瓷。
较好地,步骤(1)中,所述FeO、CoO、NiO、CuO、ZnO粉体原料粒径均为1-2mm。
较好地,步骤(1)中,采用湿法球磨的方式将所有金属氧化物原料混合均匀;球磨后,将浆体干燥,得到混合粉体。
较好地,湿法球磨时,添加的球磨珠与所有金属氧化物原料总量的质量比为(5-10)∶1,研磨助剂是无水乙醇,转速为250-300 r/min。
较好地,干燥温度为60-80℃、干燥时间为2-4 h。
较好地,球磨后,所述混合粉体的粒径为0.1-0.5mm。
较好地,步骤(2)中,压制的压力为50-100MPa,持续时间为60-90s。
较好地,步骤(2)中,以5-10℃/min的速率升温至煅烧温度。
较好地,所述高熵氧化物陶瓷作为电磁波吸收材料的应用。
本发明中,煅烧温度和时间主要影响陶瓷材料的纯度,烧结温度过低且低于上述范围的最小值,则无法得到高纯度的高熵氧化物陶瓷,时间过短且短于上述范围的最小值时,也无法得到高纯度的高熵氧化物陶瓷。
有益效果:
(1)、本发明以氧化亚铁、氧化钴、氧化镍、氧化铜、氧化锌为原料,进行煅烧,获得高纯度、强吸波性能、宽吸收频带的高熵氧化物陶瓷,经分析表明制备得到的高熵氧化物陶瓷的最小反射损耗值为-52.3dB;
(2)、本发明提供的一种高熵氧化物陶瓷的制备方法,工艺简单、快速、实用性强,制备得到的高熵氧化物陶瓷具有耐高温、纯度高、吸波性能强、吸收频带宽等优点。
附图说明
图1:实施例1制得的高熵氧化物陶瓷的XRD图。
图2:实施例1制得的高熵氧化物陶瓷的SEM图。
图3:对照例样品的XRD图。
图4:对照例样品的SEM图。
图5:实施例1制得的高熵氧化物陶瓷的吸波性能曲线。
图6:对照例样品的吸波性能曲线。
具体实施方式
为使本发明更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
一种高熵氧化物陶瓷的制备方法,步骤如下:
(1)、按照摩尔比为1∶1∶1∶1∶1分别称取0.18mol FeO(12.933g)、0.18mol CoO(13.4874g)、0.18mol NiO(13.444g)、0.18mol CuO(14.319g)、0.18mol ZnO(14.6538g),共68.8372g,一起置于球磨机中,加入400g球磨珠和适量的无水乙醇,250 r/min转速下搅拌成糊状,用球磨机室温下球磨8h,放入干燥箱中升温至70℃,保温干燥3h,得混合粉体,其中混合粉体的粒径为0.2mm;
(2)、称取步骤(1)制备好的混合粉末8g,放入直径为30mm的圆形模具中,用压片机施以70MPa的压力,持续时间为90s,得到圆片生坯;
(3)、将步骤(2)所得圆片生坯放入马弗炉中,空气气氛下以10℃/min的速率升温至煅烧温度1200℃,煅烧12h,取出煅烧产物即得高熵氧化物陶瓷。
制得的高熵氧化物陶瓷的XRD图和SEM图分别如图1和2所示,所得的高熵氧化物陶瓷具有两种晶型:岩盐型和尖晶石型,所得的高熵氧化物陶瓷的平均粒径为25mm。
实施例2
与实施例1的区别在于:步骤(1)中,按照摩尔比为1∶1∶1∶1∶1分别称取0.025molFeO(1.79625g)、0.025mol CoO(1.87325g)、0.025mol NiO(1.86725g)、0.025mol CuO(1.98875g)、0.025mol ZnO(2.03525g),共9.56075g,加入50g球磨珠和适量的无水乙醇;其它均同实施例1。
实施例3
与实施例1的区别在于:步骤(3)中,煅烧温度为1250℃;其它均同实施例1。
实施例4
与实施例1的区别在于:步骤(3)中,煅烧温度为1300℃;其它均同实施例1。
对照例
与实施例1的区别在于:步骤(3)中,煅烧温度为1100℃;其它均同实施例1。
该对照例所得产品的XRD图、SEM图分别见图3和图4。XRD图显示:在1100℃下合成的高熵氧化物陶瓷,也具有岩盐型与尖晶石型结构,且与PDF卡片都对应上,但是相比于实施例1的样品,它的尖晶石相的峰强并不高;同时,SEM图显示样品的晶粒尺寸较小,且有大量气孔,与实施例1的样品相比,它的致密度不高。
电磁波吸收性能的研究:
取实施例1和对照例制得的高熵氧化物陶瓷作为样品,利用矢量网络分析仪(VNA,Agilent N5234A,8.2-12.4GHz) 对材料进行介电性能和电磁性能的分析。具体做法是:先将圆形块体切割为长22.86mm、宽10.16mm的长方体陶瓷,用自动磨抛机打磨精确。利用矢量网络分析仪模拟测试不同厚度样品的吸波性能。
实施例1和对照例制得的高熵氧化物陶瓷的吸波性能曲线,分别如图5和图6所示,图例中的数字代表网络矢量分析仪所模拟的样品厚度。由图5可知:高熵氧化物陶瓷展示出优异的电磁吸波性能,其中最大反射损耗在吸波涂层厚度仅为2.2mm时,达到-52.3 dB,反射率在-10dB以下时最大吸收频带宽为3.2GHz。由图6可知:在8.2-12.4GHz内,样品的吸波性能较差,不同厚度下的反射损耗值均在-10 dB以上。

Claims (10)

1.一种高熵氧化物陶瓷,其特征在于:分子式为(Fe0.2Co0.2Ni0.2Cu0.2Zn0.2)O/Fe2O4,具有两种晶型:岩盐型和尖晶石型。
2.如权利要求1所述的高熵陶瓷的制备方法,其特征在于,制备步骤如下:
(1)、选取FeO、CoO、NiO、CuO、ZnO作为原料,称取FeO、CoO、NiO、CuO、ZnO粉体的摩尔比为1∶1∶1∶1∶1,混合均匀,获得混合粉体;
(2)、将步骤(1)制备好的混合粉体压制成圆片生坯,空气气氛下控温在1200-1300℃煅烧10-12h,取出煅烧产物即得高熵氧化物陶瓷。
3.如权利要求2所述的高熵氧化物陶瓷的制备方法,其特征在于:步骤(1)中,所述FeO、CoO、NiO、CuO、ZnO粉体原料粒径均为1-2mm。
4.如权利要求2所述的高熵氧化物陶瓷的制备方法,其特征在于:步骤(1)中,采用湿法球磨的方式将所有金属氧化物原料混合均匀;球磨后,将浆体干燥,得到混合粉体。
5.如权利要求4所述的高熵氧化物陶瓷的制备方法,其特征在于:湿法球磨时,添加的球磨珠与所有金属氧化物原料总量的质量比为(5-10)∶1,研磨助剂是无水乙醇,转速为250-300 r/min。
6.如权利要求4所述的高熵氧化物陶瓷的制备方法,其特征在于:干燥温度为60-80℃、干燥时间为2-4 h。
7.如权利要求4所述的高熵氧化物陶瓷的制备方法,其特征在于:球磨后,所述混合粉体的粒径为0.1-0.5mm。
8.如权利要求2所述的高熵氧化物陶瓷的制备方法,其特征在于:步骤(2)中,压制的压力为50-100MPa,持续时间为60-90s。
9.如权利要求2所述的高熵氧化物陶瓷的制备方法,其特征在于:步骤(2)中,以5-10℃/min的速率升温至煅烧温度。
10.如权利要求1所述的高熵氧化物陶瓷作为电磁波吸收材料的应用。
CN202210345982.2A 2022-04-02 2022-04-02 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用 Active CN114736010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210345982.2A CN114736010B (zh) 2022-04-02 2022-04-02 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210345982.2A CN114736010B (zh) 2022-04-02 2022-04-02 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用

Publications (2)

Publication Number Publication Date
CN114736010A true CN114736010A (zh) 2022-07-12
CN114736010B CN114736010B (zh) 2023-05-23

Family

ID=82278946

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210345982.2A Active CN114736010B (zh) 2022-04-02 2022-04-02 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用

Country Status (1)

Country Link
CN (1) CN114736010B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504778A (zh) * 2022-09-28 2022-12-23 复旦大学 一种钴基高熵陶瓷及其制备方法与应用
CN115594497A (zh) * 2022-10-31 2023-01-13 安徽大学(Cn) 一种具有尖晶石结构的高熵陶瓷及其制备方法和应用
CN116239376A (zh) * 2023-02-22 2023-06-09 太原理工大学 一种高熵尖晶石吸波陶瓷材料及其制备方法
CN116768614A (zh) * 2023-07-17 2023-09-19 太原理工大学 一种高熵氧化物陶瓷材料及其制备方法和应用
CN117658242A (zh) * 2024-01-30 2024-03-08 太原理工大学 高吸波能力纳米尖晶石型高熵氧化物及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180022929A1 (en) * 2016-07-20 2018-01-25 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
WO2020077771A1 (zh) * 2018-10-15 2020-04-23 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
WO2020114089A1 (zh) * 2018-12-06 2020-06-11 洛阳尖端技术研究院 低频吸波材料及其制备方法
CN112408409A (zh) * 2020-10-29 2021-02-26 航天材料及工艺研究所 一种耐高温高熵吸波陶瓷及其制备方法和应用
AU2021102229A4 (en) * 2021-04-28 2021-07-08 Nanchang Hangkong University A new class of high-entropy perovskite ceramics with robust ferroelectricity
CN113860911A (zh) * 2021-10-27 2021-12-31 江西科技师范大学 一种高熵铁氧体多孔陶瓷材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180022929A1 (en) * 2016-07-20 2018-01-25 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
WO2020077771A1 (zh) * 2018-10-15 2020-04-23 广东工业大学 一种超细高熵固熔体粉末及其制备方法和应用
WO2020114089A1 (zh) * 2018-12-06 2020-06-11 洛阳尖端技术研究院 低频吸波材料及其制备方法
CN112408409A (zh) * 2020-10-29 2021-02-26 航天材料及工艺研究所 一种耐高温高熵吸波陶瓷及其制备方法和应用
AU2021102229A4 (en) * 2021-04-28 2021-07-08 Nanchang Hangkong University A new class of high-entropy perovskite ceramics with robust ferroelectricity
CN113860911A (zh) * 2021-10-27 2021-12-31 江西科技师范大学 一种高熵铁氧体多孔陶瓷材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI XIE等: "Oxidation behavior of medium-entropy (Y1/3Yb1/3Lu1/3)2O3 modified SiC ceramic at 1700 °C: Experimental and theoretical study", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
裴欣彤: "高熵氧化物的制备与性能", 《中国硕士学位论文全文数据库工程科技I辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115504778A (zh) * 2022-09-28 2022-12-23 复旦大学 一种钴基高熵陶瓷及其制备方法与应用
CN115504778B (zh) * 2022-09-28 2023-09-26 复旦大学 一种钴基高熵陶瓷及其制备方法与应用
CN115594497A (zh) * 2022-10-31 2023-01-13 安徽大学(Cn) 一种具有尖晶石结构的高熵陶瓷及其制备方法和应用
CN116239376A (zh) * 2023-02-22 2023-06-09 太原理工大学 一种高熵尖晶石吸波陶瓷材料及其制备方法
CN116239376B (zh) * 2023-02-22 2023-12-01 太原理工大学 一种高熵尖晶石吸波陶瓷材料及其制备方法
CN116768614A (zh) * 2023-07-17 2023-09-19 太原理工大学 一种高熵氧化物陶瓷材料及其制备方法和应用
CN116768614B (zh) * 2023-07-17 2024-04-02 太原理工大学 一种高熵氧化物陶瓷材料及其制备方法和应用
CN117658242A (zh) * 2024-01-30 2024-03-08 太原理工大学 高吸波能力纳米尖晶石型高熵氧化物及其制备方法和应用
CN117658242B (zh) * 2024-01-30 2024-04-19 太原理工大学 高吸波能力纳米尖晶石型高熵氧化物及其制备方法和应用

Also Published As

Publication number Publication date
CN114736010B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
CN114736010B (zh) 一种高熵氧化物陶瓷及其制备方法和作为电磁波吸收材料的应用
CN112961650B (zh) 一种三金属有机框架衍生铁镍合金/多孔碳超薄吸波剂及其制备方法
US11508503B2 (en) Textured planar m-type hexagonal ferrites and methods of use thereof
CN114853458B (zh) 一种高熵陶瓷及其制备方法和作为电磁波吸收材料的应用
Gan et al. Low loss, enhanced magneto-dielectric properties of Bi2O3 doped Mg-Cd ferrites for high frequency antennas
CN116239376B (zh) 一种高熵尖晶石吸波陶瓷材料及其制备方法
CN108124413B (zh) 多孔空心铁纳米球形电磁波吸收材料及制备方法与应用
CN104078183A (zh) 近场用电波吸收片材及其制造方法
CN107235711B (zh) 温度稳定型锑酸镁锂基微波介质复合陶瓷及其制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
Xu et al. Influence of LZN nanoparticles on microstructure and magnetic properties of bi-substituted LiZnTi low-sintering temperature ferrites
CN114449877A (zh) 一种核壳Ni/Co合金@氮掺杂碳基吸波复合材料及其制备方法
KR20210089152A (ko) 저 손실 전력 페라이트 및 이의 제조방법
CN113045304A (zh) 一种混合尖晶石结构的铁氧体吸波材料与制备方法
CN111499375A (zh) 一种高品质因数微波介质陶瓷材料及其制备方法
CN114890786B (zh) 一种近零温漂5g陶瓷滤波器材料及其制备方法
CN115504778B (zh) 一种钴基高熵陶瓷及其制备方法与应用
KR102421861B1 (ko) Z형 페라이트, 이를 포함하는 전파 흡수체 조성물 및 이를 포함하는 전파 흡수 시트
CN115084870A (zh) 一种软磁铁氧体吸波材料及其制备方法以及一种复合吸波材料
CN111302795A (zh) 一种锂镁铌铝钨系微波介质陶瓷及其制备方法
CN109053180A (zh) 一种低温烧结低损耗LiZn铁氧体材料及制备方法
CN114535569B (zh) 一种磁性金属复合材料及其制备方法
CN112292016B (zh) 一种稀土复合吸波材料的制备方法
Lathiya et al. Influence of Hydraulic Pressure on Dynamic Magnetic Properties of Ni–Cu–Zn Ferrites
CN113214787B (zh) 一种吸波粉体材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant