[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN114703211A - Sucrose isomerase activity inclusion body fused with coiled coil structure domain - Google Patents

Sucrose isomerase activity inclusion body fused with coiled coil structure domain Download PDF

Info

Publication number
CN114703211A
CN114703211A CN202210142279.1A CN202210142279A CN114703211A CN 114703211 A CN114703211 A CN 114703211A CN 202210142279 A CN202210142279 A CN 202210142279A CN 114703211 A CN114703211 A CN 114703211A
Authority
CN
China
Prior art keywords
asp
tdot
arg
asn
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210142279.1A
Other languages
Chinese (zh)
Inventor
王从纲
高向红
庞焦
马志宇
李明玉
李宪臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202210142279.1A priority Critical patent/CN114703211A/en
Publication of CN114703211A publication Critical patent/CN114703211A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/16Enzymes or microbial cells immobilised on or in a biological cell
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y504/00Intramolecular transferases (5.4)
    • C12Y504/99Intramolecular transferases (5.4) transferring other groups (5.4.99)
    • C12Y504/99011Isomaltulose synthase (5.4.99.11)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention discloses a sucrose isomerase activity inclusion body fused with a coiled coil domain, belonging to the field of biological engineering. The invention takes SI derived from Klebsiella sp.LX3 as a research object, Tdot is respectively fused at the N end or the C end of the SI from which a natural signal peptide sequence is removed, a recombinant expression vector is constructed and transferred into Escherichia coli E.coli BL21(DE3) for induced expression, and enzymatic property characterization is carried out after active inclusion bodies are further separated and purified, thereby providing a new strategy for heterologous expression and efficient utilization of recombinant sucrose isomerase.

Description

Sucrose isomerase activity inclusion body fused with coiled coil structure domain
Technical Field
The invention relates to a sucrose isomerase activity inclusion body fused with a coiled coil structure domain, belonging to the field of biological engineering.
Background
Isomaltulose (alpha-D-glucopyranosyl-1, 6-fructose) is an isomer of sucrose, naturally present in honey, sugarcane juice, and has a sweetness of about 50% of sucrose. At present, isomaltulose is used mainly in the food industry as a substitute for sucrose in the production of health products, diabetic foods and sports drinks. In addition, isomaltulose is also used as a raw material for producing some surfactants and high molecular polymers in the chemical field, and thus is a functional sugar with good development prospects. At present, Sucrose Isomerase (SI) is mainly used for catalyzing Sucrose to be converted into isomaltulose industrially, and compared with a chemical method for synthesis, the method has the advantages of being mild in reaction conditions, environment-friendly in preparation process, high in reaction specificity and the like. Since the application of isomaltulose is more and more widespread and is more popular with consumers, the market demand of isomaltulose is increasing year by year, but the production is mainly monopolized by foreign companies, and the market price per ton is about 1.5 ten thousand yuan, so that the utilization rate of sucrose isomerase is increased, and the production cost of isomaltulose is reduced.
Various sucrose isomerase-producing bacteria have been found, including Erwinia rhapontici (Erwinia rhapontici), Serratia vulgaris (Serratia plymuthica), Polyporus frondosa (Pantoea dispersa), and Klebsiella pneumoniae (Klebsiella sp). However, the wild bacteria have low enzyme production level generally and are difficult to meet the requirements of industrial production, such as the fermentation enzyme activity of Erwinia rhapontici NX-5 is 1.3U/mL, and KlebsThe fermentation enzyme activity of iella sp.LX3 is 15.12U/mL. Therefore, researchers currently prepare recombinant sucrose isomerase mainly through heterologous expression means and immobilize it on a water-insoluble carrier to prepare immobilized enzyme so as to improve the utilization rate. Such as mesoporous TiO modified by epsilon-poly-L-lysine2And the sponge prepared from epsilon-poly-L-lysine and gelatin is used for immobilizing the sucrose isomerase, and the enzyme activity recovery rates are respectively 93.3% and 84.5%; the chitosan-glutaraldehyde crosslinking method, the sodium alginate-sodium carboxymethylcellulose mixed embedding method and the cross-linked enzyme aggregate method are used for immobilizing the sucrose isomerase, so that the enzyme activity recovery rates of 70.3%, 32.5% and 30.9% are respectively realized. In summary, although sucrose isomerase is successfully prepared into immobilized enzyme by the traditional adsorption method, binding method, crosslinking method and embedding method, the pure enzyme needs to be separated and purified by chromatographic technology first, and then the water-insoluble carrier and the pure enzyme are used for carrying out immobilization reaction, and the separation and purification, carrier preparation and chemical reagents related to the immobilization reaction in the process all increase the production cost of the immobilized enzyme, and are not beneficial to the large-scale production and application of the immobilized sucrose isomerase. In recent years, researches show that a specific tag sequence and enzyme protein are used for fusion expression, so that the specific tag sequence can be induced to form an Inclusion body (CatIBs, hereinafter referred to as active Inclusion body) with catalytic activity in cells, the expression quantity is large, the separation and purification are easy, especially the expression and immobilization processes are carried out synchronously, no additional carrier material and immobilization reaction are needed, the novel self-immobilized enzyme is a novel self-immobilized enzyme, the view that the past 'the Inclusion body is a completely inactive protein aggregate' is theoretically changed, and the novel enzyme heterologous expression and immobilization method has better industrial application potential.
Disclosure of Invention
In order to solve the problems in the prior art, the invention provides a sucrose isomerase activity inclusion body fused with a coiled coil domain. The SI derived from Klebsiella sp.LX3 is taken as a research object, and the invention has the advantages of higher sucrose conversion rate (99.5%), isomaltulose serving as a main product and the like. Tdot is respectively fused at the N end or the C end of SI from which a natural signal peptide sequence is removed, a recombinant expression vector is constructed and transferred into Escherichia coli E.coli BL21(DE3) for induced expression, and enzymatic property characterization is carried out after active inclusion bodies are further separated and purified, so that a new strategy is provided for heterologous expression and efficient utilization of the recombinant sucrose isomerase.
The invention provides a gene, the nucleotide sequence of which is shown as SEQ ID NO. 1.
The invention also provides a gene, and the nucleotide sequence is shown as SEQ ID NO. 2.
The invention also provides a fusion protein containing Tdot-SI and encoded by the gene with the nucleotide sequence shown as SEQ ID NO.1, and the amino acid sequence is shown as SEQ ID NO. 3.
The invention also provides a fusion protein containing SI-Tdot and encoded by the gene with the nucleotide sequence shown as SEQ ID NO.2, and the amino acid sequence is shown as SEQ ID NO. 4.
The invention also provides a recombinant engineering bacterium containing the gene with the nucleotide sequence shown as SEQ ID NO. 1.
The invention also provides a recombinant engineering bacterium containing the gene with the nucleotide sequence shown as SEQ ID NO. 2.
The invention also provides a sucrose isomerase active inclusion body which is obtained by inducing fusion protein expression by recombinant engineering bacteria containing a gene with a nucleotide sequence shown as SEQ ID NO.1 or recombinant engineering bacteria containing a gene with a nucleotide sequence shown as SEQ ID NO.2, and crushing, separating and purifying thalli.
Specifically, the preparation method of the inclusion body with sucrose isomerase activity comprises the following steps: a coiled-coil domain Tdot is fused at the N or C end of sucrose isomerase SI to construct a recombinant expression vector, and the recombinant expression vector is transferred into Escherichia coli E.coli BL21(DE3) for induced expression to prepare an active inclusion body.
The preparation method of the sucrose isomerase activity inclusion body of the recombinant engineering bacteria containing the gene with the nucleotide sequence shown as SEQ ID NO.1 specifically comprises the following steps:
(1) constructing a recombinant expression vector pET-24a-Tdot-SI containing a coding gene of Tdot-SI fusion protein, and transferring the recombinant expression vector into an expression host cell to obtain recombinant engineering bacteria;
(2) culturing the recombinant engineering bacteria, and inducing the expression of the fusion protein;
(3) collecting bacterial cells, carrying out cell disruption, separating cell disruption supernatant and a sediment sample containing the inclusion body, and washing and purifying the sediment sample by buffer solution to obtain the active inclusion body.
The preparation method of the sucrose isomerase activity inclusion body of the recombinant engineering bacteria containing the gene with the nucleotide sequence shown as SEQ ID NO.2 specifically comprises the following steps:
(1) constructing a recombinant expression vector pET-24b-SI-Tdot containing an encoding gene of SI-Tdot fusion protein, transferring the recombinant expression vector into an expression host cell to obtain recombinant engineering bacteria;
(2) culturing the recombinant engineering bacteria, and inducing the expression of the fusion protein;
(3) collecting bacterial cells, carrying out cell disruption, separating cell disruption supernatant and a sediment sample containing the inclusion body, and washing and purifying the sediment sample by buffer solution to obtain the active inclusion body.
Preferably, the sucrose isomerase SI is derived from Klebsiella sp.LX3, and the nucleotide sequence of the sucrose isomerase SI is shown as SEQ ID NO. 5.
Preferably, the Tdot gene is derived from Staphylothermus marinus (Staphylothermus marinus), and the nucleotide sequence of the Tdot gene is shown as SEQ ID NO. 6.
By way of example and not limitation, the expression host cell is preferably E.coli BL21(DE 3).
The invention also provides application of the inclusion body with sucrose isomerase activity in catalyzing conversion of sucrose into isomaltulose.
Further, the inclusion body of the sucrose isomerase catalyzes sucrose to be converted into isomaltulose, the pH value is 4.5-6.5, and the temperature is 30-45 ℃.
The present invention expresses the tetrameric coiled-coil domain of the cell-surface protein tetrabrachion (Tdot) derived from the cell surface protein tetrabrachion in fusion with SI and studies the enzymatic properties of the recombinase. Respectively fusing the N/C terminals of Tdot and SI to construct a recombinant expression vector, transferring the recombinant expression vector into E.coli BL21(DE3) for induced expression, and displaying that Tdot-SI and SI-Tdot are expressed as inclusion bodies with catalytic activity, while SI inclusion bodies without fused Tdot have no catalytic activity. Further, active inclusion bodies are purified by centrifugation and washing with a buffer solution, and the study on the enzymology property shows that the optimum reaction temperature of Tdot-SI and SI-Tdot active inclusion bodies is 40 ℃, and the optimum reaction pH is 5.5 and 5.0 respectively. The kinetic constants Km of Tdot-SI active inclusion bodies are 103.9 +/-9.5 mmol/L, kcat/Km is 0.06 +/-0.002L/(mmol.s), the kinetic constants Km of SI-Tdot active inclusion bodies are 54.4 +/-6.6 mmol/L, and kcat/Km is 0.03 +/-0.002L/(mmol.s). The results of the product specificity studies show that as the reaction temperature increases, the isomaltulose content of the product does not change significantly, whereas the trehalulose content of the product decreases as the conversion reaction temperature increases, while the monosaccharide content increases as the conversion reaction temperature increases. The sucrose isomerase active inclusion body fused with the coiled coil structure domain is successfully prepared by a fusion expression technology, has the advantages of synchronous realization of expression and immobilization as a novel self-immobilized enzyme, and provides a new strategy for realizing large-scale preparation and high-efficiency utilization of recombinant sucrose isomerase.
Drawings
FIG. 1 is colony PCR identification of transformed recombinant plasmid engineering bacteria; lane M is 250bp DNA Ladder Marker, and Lane 1 is pET-24 a-Tdot-SI; lane 2 is pET-24 b-SI-Tdot.
FIG. 2 is an SDS-PAGE analysis of recombinant 6 XHis-SI/SI-6 XHis; lane M is Protein Marker; lanes 1-4 are pET24b-6 XHis-SI before induction, after induction, supernatant, and pellet; lanes 5-8 show pET24b-SI-6 XHis, pre-induction, post-induction, supernatant, and pellet.
FIG. 3 is an SDS-PAGE analysis of recombinant Tdot-SI/SI-Tdot; lane M is Protein Marker; lanes 1-4 are inclusion bodies before, after, supernatant, and washing pET24a-Tdot-SI induction; lanes 5-8 are inclusion bodies before, after, supernatant, and wash of pET24b-SI-Tdot induction.
FIG. 4 is a graph of the effect of temperature on Tdot-SI and SI-Tdot enzyme activity.
FIG. 5 is a graph of the effect of pH on Tdot-SI and SI-Tdot enzyme activity.
Detailed Description
The following non-limiting examples will allow one of ordinary skill in the art to more fully understand the present invention, but are not intended to limit the invention in any way.
Sucrose isomerase SI (NCBI access number AAK82938) is derived from Klebsiella sp.LX3, and the nucleotide sequence of the sucrose isomerase SI gene is shown in SEQ ID NO. 5. The plasmid pET-28a-SI carrying the SI gene of sucrose isomerase can be synthesized by conventional means in the art. Plasmids pET24b-6 XHis-SI (nucleotide sequence shown in SEQ ID NO. 13) and pET24b-SI-6 XHis (nucleotide sequence shown in SEQ ID NO. 14) fused with histidine tags at the N/C terminal respectively can be synthesized by the conventional method in the field.
The nucleotide sequence of Tdot is shown in SEQ ID NO.6, and the plasmid pET-24a-Tdot carrying Tdot gene is synthesized by Suzhou Hongxi Biotechnology GmbH.
Kanamycin, Isopropyl-beta-D-thiogalactopyranoside (IPTG), Triton-X100, a SanPrep column type plasmid DNA small extraction kit, a SanPrep column type DNA gel recovery kit and a BCA protein quantitative detection kit are all purchased from the company Limited in the Biotechnology engineering (Shanghai).
Figure BDA0003507549710000061
HS DNA Polymerase, QuickCutTM BamH I and QuickCutTM Xho I, Dpn I, T4 DNA ligase, DNA and protein relative molecular weight standards were purchased from Takara Bio Inc.
Gene sequencing work was performed by Jilin province, Kuumei, Biotechnology, Inc.
Isomaltulose was purchased from Sigma.
Other chemicals were purchased from chemical reagents ltd, miuiou, department of tianjin.
LB liquid medium: contains 10g/L tryptone, 5g/L yeast powder and 10g/L NaCl, and has the pH value of 7.2; the LB solid medium was LB liquid medium to which 1.5% agar was added.
LLB medium: contains 10g/L tryptone, 5g/L yeast powder and 5g/L NaCl, and has a pH value of 7.2.
Buffer a Buffer: na (Na)2HPO4·12H2O:16.937g、NaH2PO42H 2O: 0.62g of the extract is dissolved in 750mL of deionized water, the pH value is adjusted to 8.0, 50mL of glycerol is added, and the volume is adjusted to 1L by using the deionized water.
Buffer B Buffer: 0.5mL of Triton-X100 was dissolved in 100mL of Buffer A Buffer.
Buffer C Buffer: na (Na)2HPO4·12H2O:16.937g、NaH2PO4·2H2O: 0.62g of the suspension is dissolved in 750mL of deionized water with the concentration of 450-.
EXAMPLE 1 construction of recombinant expression vectors
The pET-24a-Tdot-SI expression vector is constructed by using the inner primers in the table 1 and adopting an enzyme digestion connection method: taking pET-28a-SI preserved in a laboratory as a template, carrying SI coding gene which does not contain natural signal peptide, amplifying by using a primer P1/P2 to obtain an SI gene fragment containing a restriction enzyme cutting site, carrying out double restriction on the SI gene fragment and pET-24a-Tdot by using QuickCutTM BamH I and QuickCutTM Xho I, carrying out electrophoresis separation on restriction enzyme products by using 1% agarose gel, recovering a linearized vector and a target gene fragment by using a DNA gel recovery kit, and continuing carrying out ligation reaction by using T4 DNA ligase. The ligation reaction products were transformed into E.coli DH10B competent cells by heat shock and plated on LB solid plates containing 50. mu.g/mL kanamycin. The single colony is picked and colony PCR identification is carried out by using the primer P5/P6, and the result is shown in FIG. 1(A), and the amplification product has a single band at the position of 1500-2250bp and is consistent with the size of the expected amplification sequence 2055 bp. And continuing culturing the positive monoclonal antibody which is verified to be correct, extracting plasmids, then carrying out gene sequencing, and marking the recombinant expression vector which is correctly sequenced as pET-24 a-Tdot-SI.
The cloning technology of the Restriction free-cloning (RF) is adopted to construct a pET-24b-SI-Tdot expression vector: and carrying out a first round of PCR amplification reaction by using pET-24a-Tdot as a template and using a primer P3/P4, separating a PCR amplification product by using 1% agarose gel electrophoresis, recovering by using a DNA gel recovery kit, using the PCR amplification product as a long primer of a second round of PCR reaction, and continuously carrying out a second round of PCR reaction by using pET24b-SI-6 × His as a template. After the reaction was completed, Dpn I was added to decompose the template plasmid, and the reaction product was transformed into E.coli DH10B competent cells by electric shock and plated on LB solid plates containing 50. mu.g/mL kanamycin. The single colony is picked and subjected to colony PCR identification by using the primer P5/P6, and the result is shown in FIG. 1(B), and the amplification product has a single band at the position of 1500-2250bp and is consistent with the expected amplification sequence 2049bp in size. And continuing culturing the positive monoclonal antibody which is verified to be correct, extracting plasmids, then carrying out gene sequencing, and marking the recombinant expression vector which is correctly sequenced as pET-24 b-SI-Tdot.
TABLE 1 primer sequences used in the present invention
Figure BDA0003507549710000081
Example 2 inducible expression and isolation and purification of recombinant genes in E.coli
The constructed recombinant expression vectors pET-24a-Tdot-SI and pET-24b-SI-Tdot and the recombinant expression vectors pET24b-6 XHis-SI and pET24b-SI-6 XHis are respectively transformed into E.coli BL21(DE3) competent cells, the positive monoclonals are selected and inoculated into 5mL LB liquid culture medium containing 50 ug/mL kanamycin, and the liquid is cultured at 37 ℃ and 200r/min for 14h to obtain seed liquid. Inoculating the seed liquid into LLB liquid culture medium containing 50 μ g/mL kanamycin at 1% (v/v), culturing at 37 deg.C and 200r/min until OD600nm reaches 0.6-0.8, adding inducer, wherein recombinant engineering bacteria E.coli BL21(DE3)/pET-24a-Tdot-SI is added with IPTG with final concentration of 0.8mmol/L, E.coli BL21(DE3)/pET-24b-SI-Tdot is added with IPTG with final concentration of 0.1mmol/L, E.coli BL21(DE3)/pET24b-6 × His-SI and E.coli BL21(DE3)/pET24b-SI-6 × His is added with IPTG with final concentration of 0.5mmol/L, and culturing the bacterial liquid with IPTG added with the above liquid at 16 deg.C and 200r/min for inducing expression for 20 h.
And (3) separating and purifying the active inclusion bodies by using a buffer solution cleaning method: the bacterial liquid after induction expression is collected by centrifugation and is subjected to ultrasonic disruption in an ice water bath after being resuspended by Buffer A (the power is 500W, the disruption time is 3s, the interval is 5s, and the disruption time is 20 min). And centrifuging the crushed whole bacteria sample at 10000r/min for 15min to separate a soluble supernatant and a precipitate component containing the inclusion body. And washing the precipitate for 2 times and 3 times by using a Buffer B and a Buffer C in sequence, centrifuging the washed inclusion body sample for 15min at 10000r/min for recycling, and fully suspending the washed inclusion body sample by using the Buffer C to obtain the active inclusion body enzyme solution. And (3) adding a small amount of active inclusion body enzyme solution into an isometric 10% SDS solution for treatment for 5min to completely dissolve the inclusion bodies, and then determining the protein concentration by using a BCA protein quantitative detection kit. The cell disruption supernatant and the washed active inclusion body sample were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
As shown in FIG. 2, SDS-PAGE analysis of recombinant 6 XHis-SI and SI-6 XHis was performed. After induction, a target band which is consistent with the theoretical relative molecular mass of 6 XHis-SI and SI-6 XHis of 68.14kDa appears at 66.4kDa, and is mainly expressed in the form of inclusion bodies, and enzyme activity detection finds that the inclusion body precipitate has no catalytic activity, which shows that recombinant SI protein is mainly expressed in the form of inactive inclusion bodies no matter histidine tags are fused at the N/C end.
As shown in FIG. 3, SDS-PAGE analysis of recombinant Tdot-SI and SI-Tdot is performed. After induction, a target band which is consistent with the theoretical relative molecular mass of Tdot-SI and SI-Tdot and has 73.18kDa appears on the whole bacteria sample above the 66.4kDa protein relative molecular mass standard, which indicates that the fusion protein is successfully induced and expressed. The expressed fusion proteins Tdot-SI and SI-Tdot still mainly exist in a precipitate sample in the form of inclusion bodies, and the inclusion bodies are subjected to enzyme activity detection to find that the fusion proteins have high catalytic activity, which indicates that the fusion Tdot label induces the SI to be expressed as an active inclusion body.
Example 4 determination of active Inclusion body enzyme Activity
(1) Determination of optimum reaction temperature
Taking 100 mu L of Tdot-SI and SI-Tdot activity inclusion body enzyme liquid with the concentration of 4mg/mL, respectively mixing with 400 mu L of pH 6.0 disodium hydrogen phosphate-citric acid buffer solution containing 4% of cane sugar, respectively reacting at 30, 35, 40, 45, 50 and 55 ℃ at 200r/min for 2h, and then treating a reaction sample in boiling water with the temperature of 100 ℃ for 15min for enzyme inactivation. Then, the reaction product after enzyme deactivation is centrifuged for 15min at 10000r/min, and the obtained supernatant is filtered by a 0.22 mu m filter membrane and then is subjected to HPLC detection. The HPLC detection conditions are as follows: the reaction product was detected using a Hypersil APS-2, 4.6X 250mm, 5 μm amino column, with a differential detector, mobile phase acetonitrile: water (80: 20 v/v), column temperature 35 ℃, sample size 10 μ L, flow rate 1.0 mL/min. And calculating the concentration of the isomaltulose in the reaction product and calculating the enzyme activity according to a labeling curve fitted by the isomaltulose standard substance and the corresponding peak area. Definition of enzyme activity units: the amount of enzyme required to release 1. mu. moL of isomaltulose per minute using sucrose as substrate was 1 enzyme activity unit (U). Definition of relative enzyme activity: the highest enzyme activity of the same group is 100%, and the calculated ratio is the relative enzyme activity.
The results are shown in fig. 4, the Tdot-SI and SI-Tdot active inclusion bodies have the highest enzyme activity at 40 ℃, the enzyme activity increases and increases with the temperature within the range of 30-40 ℃, the both have the enzyme activity of more than 80% within the range of 35-45 ℃, and the enzyme activities of the Tdot-SI and SI-Tdot active inclusion bodies are rapidly reduced after the temperature is higher than 45 ℃.
(2) Determination of optimum reaction pH
Mixing Tdot-SI and SI-Tdot activity inclusion body enzyme liquid with 4% sucrose pH 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0 disodium hydrogen phosphate-citric acid buffer solution, performing enzyme catalysis reaction at 40 deg.C, quantitatively detecting isomaltulose in the product, calculating enzyme activity, and measuring enzyme activity to determine optimum reaction pH.
As shown in FIG. 5, the enzyme activities of Tdot-SI and SI-Tdot activity inclusion bodies were increased with increasing pH in the range of pH 4.0 to 5.0, and had the highest enzyme activities at pH 5.5 and pH 5.0, respectively. In addition, both have more than 80% catalytic activity in the pH range of 5.0-6.0, and the enzyme activity rapidly decreases after pH above 6.5.
(3) Determination of the kinetic constants of the enzymatic reaction
Tdot-SI and SI-Tdot active inclusion body enzyme solutions are respectively mixed with sucrose solutions with different concentrations (10, 20, 40, 50, 100, 200, 250, 400, 500 and 800mmol/L), catalytic reaction is carried out under the optimal reaction conditions (Tdot-SI: 40 ℃, pH 5.5; SI-Tdot: 40 ℃, pH 5), and then the generation amount of the product isomaltulose is detected by HPLC and the reaction speed is calculated. Then nonlinear fitting is carried out by utilizing GraphPad Prism 5.0 based on a Michaelis-Menten equation to obtain kinetic constants Km and Vmax, and kcat/Km is calculated.
The specific activity of Tdot-SI and SI-Tdot active inclusion bodies is 622.6 +/-17.5U/g and 252.6 +/-17.1U/g respectively under the optimal reaction condition. Further detecting the conversion reaction product of the active inclusion body under sucrose substrates with different concentrations, calculating to obtain the catalytic reaction speed, obtaining a kinetic constant through nonlinear fitting, and obtaining the result shown in Table 2, wherein the K of Tdot-SIm103.9. + -. 9.5mmol/L, kcat/KmK of 0.06 + -0.002L/(mmols), SI-TdotmIs 54.4 +/-6.6 mmol/L, kcat/KmThe activity inclusion body formed by fusing the Tdot label with the N/C end of the SI has different kinetic parameters on substrate sucrose, and the SI-Tdot has stronger binding capacity with the substrate sucrose, but the catalytic efficiency is slightly lower than that of the Tdot-SI.
TABLE 2 kinetic parameters of Tdot-SI/SI-Tdot
Figure BDA0003507549710000111
Research work has been reported on the preparation of immobilized sucrose isomerase, such as mesoporous TiO modified with epsilon-poly-L-lysine2The specific activity of immobilized SI is 39.41U/g, Km is 204.92mmol/L [ Wu L, Liu Y, Chi B, et al, an innovative method for immobilizing a sugar isomer on epsilon-poly-L-lysine modified meso-TiO 2[ J].Food chemistry,2015,187:182-188.]Sucrose Isomerase was immobilized using a Sponge made of epsilon-poly-L-lysine and gelatin with a specific activity of 71.58U/g and a Km of 245.71mmol/L, and was not significantly changed from the unimmobilized free enzyme Km of 259.71mmol/L [ Wu L, Qiu J, Wu S, et al, Bioinspired Production of Antibacterial Sucrose isomer-Sponge for the Synthesis of Isomaltulose [ J L].Advanced Synthesis&Catalysis,2016,358(24):4030-4040.]. The invention synchronously expresses and fixes SI in cellsThe active inclusion body is prepared by the customization, so that a carrier material and an additional immobilization reaction are not needed, and the specific activity per unit mass is better, and the application potential is better. Meanwhile, the invention discovers that the active inclusion bodies formed by fusing the Tdot label at the N/C terminal of the SI show different kinetic parameters to the substrate sucrose, which indicates that the formed active inclusion bodies influence the combination with the substrate and the catalytic process due to different microstructures.
Example 6 product specificity analysis
Mixing 100 μ L of Tdot-SI active inclusion body enzyme solution with concentration of 4mg/mL and 400 μ L of disodium hydrogen phosphate-citric acid buffer solution with pH 5.5 containing 4% sucrose; mu.L of SI-Tdot active inclusion body enzyme solution with the concentration of 4mg/mL is mixed with 400 mu.L of disodium hydrogen phosphate-citric acid buffer solution with the pH value of 5.0 and containing 4 percent of sucrose. And (3) reacting the active inclusion body conversion reaction system at 30, 35 and 40 ℃ for 12h at 200r/min respectively, then treating an enzyme conversion sample by boiling water at 100 ℃ for 15min for inactivating enzyme, centrifuging at 10000r/min for 15min to obtain reaction product supernatant, filtering by using a 0.22 mu m filter membrane, and detecting the conversion reaction product by using HPLC.
As shown in Table 3, the isomaltulose content of the conversion reaction products did not change significantly in the current temperature range of Tdot-SI and SI-Tdot active inclusion bodies, while the trehalulose content of the products generally showed a decreasing trend with increasing conversion reaction temperature, while the monosaccharide (fructose and glucose) content increased with increasing temperature.
TABLE 3 analysis of the composition of the catalytic product of sucrose isomerase fused with Tdot tag at different temperatures
Figure BDA0003507549710000131
The invention successfully expresses sucrose isomerase as an active inclusion body in Escherichia coli E.coli BL21(DE3) by using a coiled coil domain Tdot as a fusion label through a fusion expression technology, realizes the synchronous expression and immobilization, is used as a novel self-immobilized enzyme, does not need a carrier material and a chemical reagent for a traditional immobilization reaction, has potential industrial application value, provides a new strategy for realizing the efficient preparation and utilization of the recombinant sucrose isomerase, and lays a foundation for further design and optimization.
SEQUENCE LISTING
<110> constitution of plum wine
<120> sucrose isomerase activity inclusion body fused with coiled coil domain
<130> 2022
<160> 14
<170> PatentIn version 3.5
<210> 1
<211> 1869
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
atgatcatta acgaaactgc cgatgacatc gtttatcgcc tgacagtcat tatcgatgat 60
cgctacgaat cgctgaaaaa cctgattacc ttacgtgcag atcgcttgga gatgatcatc 120
aatgacaatg tgtccaccat tctcgcgagc attggatccg caccatcctt gaatcaggat 180
attcacgttc aaaaggaaag tgaatatcct gcatggtgga aagaagctgt tttttatcag 240
atctatcctc gctcatttaa agacaccaat gatgatggca ttggcgatat tcgcggtatt 300
attgaaaagc tggactatct gaaatcgctc ggtattgacg ctatctggat caatccccat 360
tacgactctc cgaacaccga taacggctat gacatcagta attatcgtca gataatgaaa 420
gagtatggca caatggagga ttttgatagc cttgttgccg aaatgaaaaa acgaaatatg 480
cgcttaatga tcgacgtggt cattaaccat accagtgatc aacacccgtg gtttattcag 540
agtaaaagcg ataaaaacaa cccttatcgt gactattatt tctggcgtga cggaaaagat 600
aatcagccac ctaataatta cccctcattt ttcggcggct cggcatggca aaaagatgca 660
aagtcaggac agtactattt acactatttt gccagacagc aacctgatct caactgggat 720
aacccgaaag tacgtgagga tctttacgca atgctccgct tctggctgga taaaggcgtt 780
tcaggcatgc gatttgatac ggtggcaact tattccaaaa tcccgggatt tcccaatctg 840
acacctgaac aacagaaaaa ttttgctgaa caatacacca tggggcctaa tattcatcga 900
tacattcagg aaatgaaccg gaaagttctg tcccggtatg atgtggccac cgcgggtgaa 960
atttttggcg tcccgctgga tcgttcgtcg cagttttttg atcgccgccg acatgagctg 1020
aatatggcgt ttatgtttga cctcattcgt ctcgatcgcg acagcaatga acgctggcgt 1080
cacaagtcgt ggtcgctctc tcagttccgc cagatcatca gcaaaatgga tgtcacggtc 1140
ggaaagtatg gctggaacac gttcttctta gataaccatg acaacccccg tgcggtatct 1200
cacttcgggg atgacaggcc gcaatggcgg gaggcgtcgg ctaaggcact ggcgacgatt 1260
accctcactc agcgggcgac gccgtttatt tatcagggtt cagagctggg aatgactaat 1320
tatcccttca ggcaactcaa cgaatttgac gacatcgagg tcaaaggttt ctggcaggat 1380
tatgtccaga gtggaaaagt cacggccaca gagtttctcg ataatgtgcg cctgacgagc 1440
cgcgataaca gcagaacacc tttccagtgg aatgacaccc tgaatgctgg ttttactcgc 1500
ggaaagccgt ggtttcacat caacccaaac tatgtggaga tcaacgccga acgcgaagaa 1560
acccgcgaag attcagtgct gaattactat aaaaaaatga ttcagctacg ccaccatatc 1620
cctgctctgg tatatggcgc ctatcaggat cttaatccac aggacaatac cgtttatgcc 1680
tatacccgaa cgctgggtaa cgagcgttat ctggtcgtgg tgaactttaa ggagtacccg 1740
gtccgctata ctctcccggc taatgatgcc atcgaggaag tggtcattga tactcagcag 1800
caggcggctg cgccgcacag cacatccctg tcattgagcc cctggcaggc aggtgtgtat 1860
aagctgcgg 1869
<210> 2
<211> 1869
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
atggcaccat ccttgaatca ggatattcac gttcaaaagg aaagtgaata tcctgcatgg 60
tggaaagaag ctgtttttta tcagatctat cctcgctcat ttaaagacac caatgatgat 120
ggcattggcg atattcgcgg tattattgaa aagctggact atctgaaatc gctcggtatt 180
gacgctatct ggatcaatcc ccattacgac tctccgaaca ccgataacgg ctatgacatc 240
agtaattatc gtcagataat gaaagagtat ggcacaatgg aggattttga tagccttgtt 300
gccgaaatga aaaaacgaaa tatgcgctta atgatcgacg tggtcattaa ccataccagt 360
gatcaacacc cgtggtttat tcagagtaaa agcgataaaa acaaccctta tcgtgactat 420
tatttctggc gtgacggaaa agataatcag ccacctaata attacccctc atttttcggc 480
ggctcggcat ggcaaaaaga tgcaaagtca ggacagtact atttacacta ttttgccaga 540
cagcaacctg atctcaactg ggataacccg aaagtacgtg aggatcttta cgcaatgctc 600
cgcttctggc tggataaagg cgtttcaggc atgcgatttg atacggtggc aacttattcc 660
aaaatcccgg gatttcccaa tctgacacct gaacaacaga aaaattttgc tgaacaatac 720
accatggggc ctaatattca tcgatacatt caggaaatga accggaaagt tctgtcccgg 780
tatgatgtgg ccaccgcggg tgaaattttt ggcgtcccgc tggatcgttc gtcgcagttt 840
tttgatcgcc gccgacatga gctgaatatg gcgtttatgt ttgacctcat tcgtctcgat 900
cgcgacagca atgaacgctg gcgtcacaag tcgtggtcgc tctctcagtt ccgccagatc 960
atcagcaaaa tggatgtcac ggtcggaaag tatggctgga acacgttctt cttagataac 1020
catgacaacc cccgtgcggt atctcacttc ggggatgaca ggccgcaatg gcgggaggcg 1080
tcggctaagg cactggcgac gattaccctc actcagcggg cgacgccgtt tatttatcag 1140
ggttcagagc tgggaatgac taattatccc ttcaggcaac tcaacgaatt tgacgacatc 1200
gaggtcaaag gtttctggca ggattatgtc cagagtggaa aagtcacggc cacagagttt 1260
ctcgataatg tgcgcctgac gagccgcgat aacagcagaa cacctttcca gtggaatgac 1320
accctgaatg ctggttttac tcgcggaaag ccgtggtttc acatcaaccc aaactatgtg 1380
gagatcaacg ccgaacgcga agaaacccgc gaagattcag tgctgaatta ctataaaaaa 1440
atgattcagc tacgccacca tatccctgct ctggtatatg gcgcctatca ggatcttaat 1500
ccacaggaca ataccgttta tgcctatacc cgaacgctgg gtaacgagcg ttatctggtc 1560
gtggtgaact ttaaggagta cccggtccgc tatactctcc cggctaatga tgccatcgag 1620
gaagtggtca ttgatactca gcagcaggcg gctgcgccgc acagcacatc cctgtcattg 1680
agcccctggc aggcaggtgt gtataagctg cggggatcca tcattaacga aactgccgat 1740
gacatcgttt atcgcctgac agtcattatc gatgatcgct acgaatcgct gaaaaacctg 1800
attaccttac gtgcagatcg cttggagatg atcatcaatg acaatgtgtc caccattctc 1860
gcgagcatt 1869
<210> 3
<211> 623
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 3
Met Ile Ile Asn Glu Thr Ala Asp Asp Ile Val Tyr Arg Leu Thr Val
1 5 10 15
Ile Ile Asp Asp Arg Tyr Glu Ser Leu Lys Asn Leu Ile Thr Leu Arg
20 25 30
Ala Asp Arg Leu Glu Met Ile Ile Asn Asp Asn Val Ser Thr Ile Leu
35 40 45
Ala Ser Ile Gly Ser Ala Pro Ser Leu Asn Gln Asp Ile His Val Gln
50 55 60
Lys Glu Ser Glu Tyr Pro Ala Trp Trp Lys Glu Ala Val Phe Tyr Gln
65 70 75 80
Ile Tyr Pro Arg Ser Phe Lys Asp Thr Asn Asp Asp Gly Ile Gly Asp
85 90 95
Ile Arg Gly Ile Ile Glu Lys Leu Asp Tyr Leu Lys Ser Leu Gly Ile
100 105 110
Asp Ala Ile Trp Ile Asn Pro His Tyr Asp Ser Pro Asn Thr Asp Asn
115 120 125
Gly Tyr Asp Ile Ser Asn Tyr Arg Gln Ile Met Lys Glu Tyr Gly Thr
130 135 140
Met Glu Asp Phe Asp Ser Leu Val Ala Glu Met Lys Lys Arg Asn Met
145 150 155 160
Arg Leu Met Ile Asp Val Val Ile Asn His Thr Ser Asp Gln His Pro
165 170 175
Trp Phe Ile Gln Ser Lys Ser Asp Lys Asn Asn Pro Tyr Arg Asp Tyr
180 185 190
Tyr Phe Trp Arg Asp Gly Lys Asp Asn Gln Pro Pro Asn Asn Tyr Pro
195 200 205
Ser Phe Phe Gly Gly Ser Ala Trp Gln Lys Asp Ala Lys Ser Gly Gln
210 215 220
Tyr Tyr Leu His Tyr Phe Ala Arg Gln Gln Pro Asp Leu Asn Trp Asp
225 230 235 240
Asn Pro Lys Val Arg Glu Asp Leu Tyr Ala Met Leu Arg Phe Trp Leu
245 250 255
Asp Lys Gly Val Ser Gly Met Arg Phe Asp Thr Val Ala Thr Tyr Ser
260 265 270
Lys Ile Pro Gly Phe Pro Asn Leu Thr Pro Glu Gln Gln Lys Asn Phe
275 280 285
Ala Glu Gln Tyr Thr Met Gly Pro Asn Ile His Arg Tyr Ile Gln Glu
290 295 300
Met Asn Arg Lys Val Leu Ser Arg Tyr Asp Val Ala Thr Ala Gly Glu
305 310 315 320
Ile Phe Gly Val Pro Leu Asp Arg Ser Ser Gln Phe Phe Asp Arg Arg
325 330 335
Arg His Glu Leu Asn Met Ala Phe Met Phe Asp Leu Ile Arg Leu Asp
340 345 350
Arg Asp Ser Asn Glu Arg Trp Arg His Lys Ser Trp Ser Leu Ser Gln
355 360 365
Phe Arg Gln Ile Ile Ser Lys Met Asp Val Thr Val Gly Lys Tyr Gly
370 375 380
Trp Asn Thr Phe Phe Leu Asp Asn His Asp Asn Pro Arg Ala Val Ser
385 390 395 400
His Phe Gly Asp Asp Arg Pro Gln Trp Arg Glu Ala Ser Ala Lys Ala
405 410 415
Leu Ala Thr Ile Thr Leu Thr Gln Arg Ala Thr Pro Phe Ile Tyr Gln
420 425 430
Gly Ser Glu Leu Gly Met Thr Asn Tyr Pro Phe Arg Gln Leu Asn Glu
435 440 445
Phe Asp Asp Ile Glu Val Lys Gly Phe Trp Gln Asp Tyr Val Gln Ser
450 455 460
Gly Lys Val Thr Ala Thr Glu Phe Leu Asp Asn Val Arg Leu Thr Ser
465 470 475 480
Arg Asp Asn Ser Arg Thr Pro Phe Gln Trp Asn Asp Thr Leu Asn Ala
485 490 495
Gly Phe Thr Arg Gly Lys Pro Trp Phe His Ile Asn Pro Asn Tyr Val
500 505 510
Glu Ile Asn Ala Glu Arg Glu Glu Thr Arg Glu Asp Ser Val Leu Asn
515 520 525
Tyr Tyr Lys Lys Met Ile Gln Leu Arg His His Ile Pro Ala Leu Val
530 535 540
Tyr Gly Ala Tyr Gln Asp Leu Asn Pro Gln Asp Asn Thr Val Tyr Ala
545 550 555 560
Tyr Thr Arg Thr Leu Gly Asn Glu Arg Tyr Leu Val Val Val Asn Phe
565 570 575
Lys Glu Tyr Pro Val Arg Tyr Thr Leu Pro Ala Asn Asp Ala Ile Glu
580 585 590
Glu Val Val Ile Asp Thr Gln Gln Gln Ala Ala Ala Pro His Ser Thr
595 600 605
Ser Leu Ser Leu Ser Pro Trp Gln Ala Gly Val Tyr Lys Leu Arg
610 615 620
<210> 4
<211> 623
<212> PRT
<213> Artificial Sequence (Artificial Sequence)
<400> 4
Met Ala Pro Ser Leu Asn Gln Asp Ile His Val Gln Lys Glu Ser Glu
1 5 10 15
Tyr Pro Ala Trp Trp Lys Glu Ala Val Phe Tyr Gln Ile Tyr Pro Arg
20 25 30
Ser Phe Lys Asp Thr Asn Asp Asp Gly Ile Gly Asp Ile Arg Gly Ile
35 40 45
Ile Glu Lys Leu Asp Tyr Leu Lys Ser Leu Gly Ile Asp Ala Ile Trp
50 55 60
Ile Asn Pro His Tyr Asp Ser Pro Asn Thr Asp Asn Gly Tyr Asp Ile
65 70 75 80
Ser Asn Tyr Arg Gln Ile Met Lys Glu Tyr Gly Thr Met Glu Asp Phe
85 90 95
Asp Ser Leu Val Ala Glu Met Lys Lys Arg Asn Met Arg Leu Met Ile
100 105 110
Asp Val Val Ile Asn His Thr Ser Asp Gln His Pro Trp Phe Ile Gln
115 120 125
Ser Lys Ser Asp Lys Asn Asn Pro Tyr Arg Asp Tyr Tyr Phe Trp Arg
130 135 140
Asp Gly Lys Asp Asn Gln Pro Pro Asn Asn Tyr Pro Ser Phe Phe Gly
145 150 155 160
Gly Ser Ala Trp Gln Lys Asp Ala Lys Ser Gly Gln Tyr Tyr Leu His
165 170 175
Tyr Phe Ala Arg Gln Gln Pro Asp Leu Asn Trp Asp Asn Pro Lys Val
180 185 190
Arg Glu Asp Leu Tyr Ala Met Leu Arg Phe Trp Leu Asp Lys Gly Val
195 200 205
Ser Gly Met Arg Phe Asp Thr Val Ala Thr Tyr Ser Lys Ile Pro Gly
210 215 220
Phe Pro Asn Leu Thr Pro Glu Gln Gln Lys Asn Phe Ala Glu Gln Tyr
225 230 235 240
Thr Met Gly Pro Asn Ile His Arg Tyr Ile Gln Glu Met Asn Arg Lys
245 250 255
Val Leu Ser Arg Tyr Asp Val Ala Thr Ala Gly Glu Ile Phe Gly Val
260 265 270
Pro Leu Asp Arg Ser Ser Gln Phe Phe Asp Arg Arg Arg His Glu Leu
275 280 285
Asn Met Ala Phe Met Phe Asp Leu Ile Arg Leu Asp Arg Asp Ser Asn
290 295 300
Glu Arg Trp Arg His Lys Ser Trp Ser Leu Ser Gln Phe Arg Gln Ile
305 310 315 320
Ile Ser Lys Met Asp Val Thr Val Gly Lys Tyr Gly Trp Asn Thr Phe
325 330 335
Phe Leu Asp Asn His Asp Asn Pro Arg Ala Val Ser His Phe Gly Asp
340 345 350
Asp Arg Pro Gln Trp Arg Glu Ala Ser Ala Lys Ala Leu Ala Thr Ile
355 360 365
Thr Leu Thr Gln Arg Ala Thr Pro Phe Ile Tyr Gln Gly Ser Glu Leu
370 375 380
Gly Met Thr Asn Tyr Pro Phe Arg Gln Leu Asn Glu Phe Asp Asp Ile
385 390 395 400
Glu Val Lys Gly Phe Trp Gln Asp Tyr Val Gln Ser Gly Lys Val Thr
405 410 415
Ala Thr Glu Phe Leu Asp Asn Val Arg Leu Thr Ser Arg Asp Asn Ser
420 425 430
Arg Thr Pro Phe Gln Trp Asn Asp Thr Leu Asn Ala Gly Phe Thr Arg
435 440 445
Gly Lys Pro Trp Phe His Ile Asn Pro Asn Tyr Val Glu Ile Asn Ala
450 455 460
Glu Arg Glu Glu Thr Arg Glu Asp Ser Val Leu Asn Tyr Tyr Lys Lys
465 470 475 480
Met Ile Gln Leu Arg His His Ile Pro Ala Leu Val Tyr Gly Ala Tyr
485 490 495
Gln Asp Leu Asn Pro Gln Asp Asn Thr Val Tyr Ala Tyr Thr Arg Thr
500 505 510
Leu Gly Asn Glu Arg Tyr Leu Val Val Val Asn Phe Lys Glu Tyr Pro
515 520 525
Val Arg Tyr Thr Leu Pro Ala Asn Asp Ala Ile Glu Glu Val Val Ile
530 535 540
Asp Thr Gln Gln Gln Ala Ala Ala Pro His Ser Thr Ser Leu Ser Leu
545 550 555 560
Ser Pro Trp Gln Ala Gly Val Tyr Lys Leu Arg Gly Ser Ile Ile Asn
565 570 575
Glu Thr Ala Asp Asp Ile Val Tyr Arg Leu Thr Val Ile Ile Asp Asp
580 585 590
Arg Tyr Glu Ser Leu Lys Asn Leu Ile Thr Leu Arg Ala Asp Arg Leu
595 600 605
Glu Met Ile Ile Asn Asp Asn Val Ser Thr Ile Leu Ala Ser Ile
610 615 620
<210> 5
<211> 1713
<212> DNA
<213> Sucrose Isomerase (SI)
<400> 5
atggcaccat ccttgaatca ggatattcac gttcaaaagg aaagtgaata tcctgcatgg 60
tggaaagaag ctgtttttta tcagatctat cctcgctcat ttaaagacac caatgatgat 120
ggcattggcg atattcgcgg tattattgaa aagctggact atctgaaatc gctcggtatt 180
gacgctatct ggatcaatcc ccattacgac tctccgaaca ccgataacgg ctatgacatc 240
agtaattatc gtcagataat gaaagagtat ggcacaatgg aggattttga tagccttgtt 300
gccgaaatga aaaaacgaaa tatgcgctta atgatcgacg tggtcattaa ccataccagt 360
gatcaacacc cgtggtttat tcagagtaaa agcgataaaa acaaccctta tcgtgactat 420
tatttctggc gtgacggaaa agataatcag ccacctaata attacccctc atttttcggc 480
ggctcggcat ggcaaaaaga tgcaaagtca ggacagtact atttacacta ttttgccaga 540
cagcaacctg atctcaactg ggataacccg aaagtacgtg aggatcttta cgcaatgctc 600
cgcttctggc tggataaagg cgtttcaggc atgcgatttg atacggtggc aacttattcc 660
aaaatcccgg gatttcccaa tctgacacct gaacaacaga aaaattttgc tgaacaatac 720
accatggggc ctaatattca tcgatacatt caggaaatga accggaaagt tctgtcccgg 780
tatgatgtgg ccaccgcggg tgaaattttt ggcgtcccgc tggatcgttc gtcgcagttt 840
tttgatcgcc gccgacatga gctgaatatg gcgtttatgt ttgacctcat tcgtctcgat 900
cgcgacagca atgaacgctg gcgtcacaag tcgtggtcgc tctctcagtt ccgccagatc 960
atcagcaaaa tggatgtcac ggtcggaaag tatggctgga acacgttctt cttagataac 1020
catgacaacc cccgtgcggt atctcacttc ggggatgaca ggccgcaatg gcgggaggcg 1080
tcggctaagg cactggcgac gattaccctc actcagcggg cgacgccgtt tatttatcag 1140
ggttcagagc tgggaatgac taattatccc ttcaggcaac tcaacgaatt tgacgacatc 1200
gaggtcaaag gtttctggca ggattatgtc cagagtggaa aagtcacggc cacagagttt 1260
ctcgataatg tgcgcctgac gagccgcgat aacagcagaa cacctttcca gtggaatgac 1320
accctgaatg ctggttttac tcgcggaaag ccgtggtttc acatcaaccc aaactatgtg 1380
gagatcaacg ccgaacgcga agaaacccgc gaagattcag tgctgaatta ctataaaaaa 1440
atgattcagc tacgccacca tatccctgct ctggtatatg gcgcctatca ggatcttaat 1500
ccacaggaca ataccgttta tgcctatacc cgaacgctgg gtaacgagcg ttatctggtc 1560
gtggtgaact ttaaggagta cccggtccgc tatactctcc cggctaatga tgccatcgag 1620
gaagtggtca ttgatactca gcagcaggcg gctgcgccgc acagcacatc cctgtcattg 1680
agcccctggc aggcaggtgt gtataagctg cgg 1713
<210> 6
<211> 153
<212> DNA
<213> coiled coil Domain (Tdot)
<400> 6
atgatcatta acgaaactgc cgatgacatc gtttatcgcc tgacagtcat tatcgatgat 60
cgctacgaat cgctgaaaaa cctgattacc ttacgtgcag atcgcttgga gatgatcatc 120
aatgacaatg tgtccaccat tctcgcgagc att 153
<210> 7
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 7
cgcggatccg caccatcctt gaatcaggat attcacg 37
<210> 8
<211> 37
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 8
cgcggatccg caccatcctt gaatcaggat attcacg 37
<210> 9
<211> 55
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 9
caggcaggtg tgtataagct gcggggatcc atcatcatta acgaaactgc cgatg 55
<210> 10
<211> 46
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 10
tcagtggtgg tggtggtggt gttaaatgct cgcgagaatg gtggac 46
<210> 11
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 11
taatacgact cactataggg 20
<210> 12
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 12
gctagttatt gctcagcgg 19
<210> 13
<211> 6968
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 13
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660
actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720
gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840
agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280
tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340
caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400
ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460
gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520
gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580
gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640
aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700
ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760
acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820
ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880
tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940
tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000
cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060
gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120
ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180
catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240
ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300
gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360
gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420
ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480
atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780
atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960
tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 4020
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080
gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140
ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200
catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260
tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320
tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380
gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500
tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560
catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680
tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg 4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980
aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040
ttttgtttaa ctttaagaag gagatataca tatgcatcat catcatcatc acgcaccatc 5100
cttgaatcag gatattcacg ttcaaaagga aagtgaatat cctgcatggt ggaaagaagc 5160
tgttttttat cagatctatc ctcgctcatt taaagacacc aatgatgatg gcattggcga 5220
tattcgcggt attattgaaa agctggacta tctgaaatcg ctcggtattg acgctatctg 5280
gatcaatccc cattacgact ctccgaacac cgataacggc tatgacatca gtaattatcg 5340
tcagataatg aaagagtatg gcacaatgga ggattttgat agccttgttg ccgaaatgaa 5400
aaaacgaaat atgcgcttaa tgatcgacgt ggtcattaac cataccagtg atcaacaccc 5460
gtggtttatt cagagtaaaa gcgataaaaa caacccttat cgtgactatt atttctggcg 5520
tgacggaaaa gataatcagc cacctaataa ttacccctca tttttcggcg gctcggcatg 5580
gcaaaaagat gcaaagtcag gacagtacta tttacactat tttgccagac agcaacctga 5640
tctcaactgg gataacccga aagtacgtga ggatctttac gcaatgctcc gcttctggct 5700
ggataaaggc gtttcaggca tgcgatttga tacggtggca acttattcca aaatcccggg 5760
atttcccaat ctgacacctg aacaacagaa aaattttgct gaacaataca ccatggggcc 5820
taatattcat cgatacattc aggaaatgaa ccggaaagtt ctgtcccggt atgatgtggc 5880
caccgcgggt gaaatttttg gcgtcccgct ggatcgttcg tcgcagtttt ttgatcgccg 5940
ccgacatgag ctgaatatgg cgtttatgtt tgacctcatt cgtctcgatc gcgacagcaa 6000
tgaacgctgg cgtcacaagt cgtggtcgct ctctcagttc cgccagatca tcagcaaaat 6060
ggatgtcacg gtcggaaagt atggctggaa cacgttcttc ttagataacc atgacaaccc 6120
ccgtgcggta tctcacttcg gggatgacag gccgcaatgg cgggaggcgt cggctaaggc 6180
actggcgacg attaccctca ctcagcgggc gacgccgttt atttatcagg gttcagagct 6240
gggaatgact aattatccct tcaggcaact caacgaattt gacgacatcg aggtcaaagg 6300
tttctggcag gattatgtcc agagtggaaa agtcacggcc acagagtttc tcgataatgt 6360
gcgcctgacg agccgcgata acagcagaac acctttccag tggaatgaca ccctgaatgc 6420
tggttttact cgcggaaagc cgtggtttca catcaaccca aactatgtgg agatcaacgc 6480
cgaacgcgaa gaaacccgcg aagattcagt gctgaattac tataaaaaaa tgattcagct 6540
acgccaccat atccctgctc tggtatatgg cgcctatcag gatcttaatc cacaggacaa 6600
taccgtttat gcctataccc gaacgctggg taacgagcgt tatctggtcg tggtgaactt 6660
taaggagtac ccggtccgct atactctccc ggctaatgat gccatcgagg aagtggtcat 6720
tgatactcag cagcaggcgg ctgcgccgca cagcacatcc ctgtcattga gcccctggca 6780
ggcaggtgtg tataagctgc ggtaactcga gcaccaccac caccaccact gagatccggc 6840
tgctaacaaa gcccgaaagg aagctgagtt ggctgctgcc accgctgagc aataactagc 6900
ataacccctt ggggcctcta aacgggtctt gaggggtttt ttgctgaaag gaggaactat 6960
atccggat 6968
<210> 14
<211> 6947
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 14
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg aattaattct tagaaaaact catcgagcat caaatgaaac tgcaatttat 600
tcatatcagg attatcaata ccatattttt gaaaaagccg tttctgtaat gaaggagaaa 660
actcaccgag gcagttccat aggatggcaa gatcctggta tcggtctgcg attccgactc 720
gtccaacatc aatacaacct attaatttcc cctcgtcaaa aataaggtta tcaagtgaga 780
aatcaccatg agtgacgact gaatccggtg agaatggcaa aagtttatgc atttctttcc 840
agacttgttc aacaggccag ccattacgct cgtcatcaaa atcactcgca tcaaccaaac 900
cgttattcat tcgtgattgc gcctgagcga gacgaaatac gcgatcgctg ttaaaaggac 960
aattacaaac aggaatcgaa tgcaaccggc gcaggaacac tgccagcgca tcaacaatat 1020
tttcacctga atcaggatat tcttctaata cctggaatgc tgttttcccg gggatcgcag 1080
tggtgagtaa ccatgcatca tcaggagtac ggataaaatg cttgatggtc ggaagaggca 1140
taaattccgt cagccagttt agtctgacca tctcatctgt aacatcattg gcaacgctac 1200
ctttgccatg tttcagaaac aactctggcg catcgggctt cccatacaat cgatagattg 1260
tcgcacctga ttgcccgaca ttatcgcgag cccatttata cccatataaa tcagcatcca 1320
tgttggaatt taatcgcggc ctagagcaag acgtttcccg ttgaatatgg ctcataacac 1380
cccttgtatt actgtttatg taagcagaca gttttattgt tcatgaccaa aatcccttaa 1440
cgtgagtttt cgttccactg agcgtcagac cccgtagaaa agatcaaagg atcttcttga 1500
gatccttttt ttctgcgcgt aatctgctgc ttgcaaacaa aaaaaccacc gctaccagcg 1560
gtggtttgtt tgccggatca agagctacca actctttttc cgaaggtaac tggcttcagc 1620
agagcgcaga taccaaatac tgtccttcta gtgtagccgt agttaggcca ccacttcaag 1680
aactctgtag caccgcctac atacctcgct ctgctaatcc tgttaccagt ggctgctgcc 1740
agtggcgata agtcgtgtct taccgggttg gactcaagac gatagttacc ggataaggcg 1800
cagcggtcgg gctgaacggg gggttcgtgc acacagccca gcttggagcg aacgacctac 1860
accgaactga gatacctaca gcgtgagcta tgagaaagcg ccacgcttcc cgaagggaga 1920
aaggcggaca ggtatccggt aagcggcagg gtcggaacag gagagcgcac gagggagctt 1980
ccagggggaa acgcctggta tctttatagt cctgtcgggt ttcgccacct ctgacttgag 2040
cgtcgatttt tgtgatgctc gtcagggggg cggagcctat ggaaaaacgc cagcaacgcg 2100
gcctttttac ggttcctggc cttttgctgg ccttttgctc acatgttctt tcctgcgtta 2160
tcccctgatt ctgtggataa ccgtattacc gcctttgagt gagctgatac cgctcgccgc 2220
agccgaacga ccgagcgcag cgagtcagtg agcgaggaag cggaagagcg cctgatgcgg 2280
tattttctcc ttacgcatct gtgcggtatt tcacaccgca tatatggtgc actctcagta 2340
caatctgctc tgatgccgca tagttaagcc agtatacact ccgctatcgc tacgtgactg 2400
ggtcatggct gcgccccgac acccgccaac acccgctgac gcgccctgac gggcttgtct 2460
gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca tgtgtcagag 2520
gttttcaccg tcatcaccga aacgcgcgag gcagctgcgg taaagctcat cagcgtggtc 2580
gtgaagcgat tcacagatgt ctgcctgttc atccgcgtcc agctcgttga gtttctccag 2640
aagcgttaat gtctggcttc tgataaagcg ggccatgtta agggcggttt tttcctgttt 2700
ggtcactgat gcctccgtgt aagggggatt tctgttcatg ggggtaatga taccgatgaa 2760
acgagagagg atgctcacga tacgggttac tgatgatgaa catgcccggt tactggaacg 2820
ttgtgagggt aaacaactgg cggtatggat gcggcgggac cagagaaaaa tcactcaggg 2880
tcaatgccag cgcttcgtta atacagatgt aggtgttcca cagggtagcc agcagcatcc 2940
tgcgatgcag atccggaaca taatggtgca gggcgctgac ttccgcgttt ccagacttta 3000
cgaaacacgg aaaccgaaga ccattcatgt tgttgctcag gtcgcagacg ttttgcagca 3060
gcagtcgctt cacgttcgct cgcgtatcgg tgattcattc tgctaaccag taaggcaacc 3120
ccgccagcct agccgggtcc tcaacgacag gagcacgatc atgcgcaccc gtggggccgc 3180
catgccggcg ataatggcct gcttctcgcc gaaacgtttg gtggcgggac cagtgacgaa 3240
ggcttgagcg agggcgtgca agattccgaa taccgcaagc gacaggccga tcatcgtcgc 3300
gctccagcga aagcggtcct cgccgaaaat gacccagagc gctgccggca cctgtcctac 3360
gagttgcatg ataaagaaga cagtcataag tgcggcgacg atagtcatgc cccgcgccca 3420
ccggaaggag ctgactgggt tgaaggctct caagggcatc ggtcgagatc ccggtgccta 3480
atgagtgagc taacttacat taattgcgtt gcgctcactg cccgctttcc agtcgggaaa 3540
cctgtcgtgc cagctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat 3600
tgggcgccag ggtggttttt cttttcacca gtgagacggg caacagctga ttgcccttca 3660
ccgcctggcc ctgagagagt tgcagcaagc ggtccacgct ggtttgcccc agcaggcgaa 3720
aatcctgttt gatggtggtt aacggcggga tataacatga gctgtcttcg gtatcgtcgt 3780
atcccactac cgagatatcc gcaccaacgc gcagcccgga ctcggtaatg gcgcgcattg 3840
cgcccagcgc catctgatcg ttggcaacca gcatcgcagt gggaacgatg ccctcattca 3900
gcatttgcat ggtttgttga aaaccggaca tggcactcca gtcgccttcc cgttccgcta 3960
tcggctgaat ttgattgcga gtgagatatt tatgccagcc agccagacgc agacgcgccg 4020
agacagaact taatgggccc gctaacagcg cgatttgctg gtgacccaat gcgaccagat 4080
gctccacgcc cagtcgcgta ccgtcttcat gggagaaaat aatactgttg atgggtgtct 4140
ggtcagagac atcaagaaat aacgccggaa cattagtgca ggcagcttcc acagcaatgg 4200
catcctggtc atccagcgga tagttaatga tcagcccact gacgcgttgc gcgagaagat 4260
tgtgcaccgc cgctttacag gcttcgacgc cgcttcgttc taccatcgac accaccacgc 4320
tggcacccag ttgatcggcg cgagatttaa tcgccgcgac aatttgcgac ggcgcgtgca 4380
gggccagact ggaggtggca acgccaatca gcaacgactg tttgcccgcc agttgttgtg 4440
ccacgcggtt gggaatgtaa ttcagctccg ccatcgccgc ttccactttt tcccgcgttt 4500
tcgcagaaac gtggctggcc tggttcacca cgcgggaaac ggtctgataa gagacaccgg 4560
catactctgc gacatcgtat aacgttactg gtttcacatt caccaccctg aattgactct 4620
cttccgggcg ctatcatgcc ataccgcgaa aggttttgcg ccattcgatg gtgtccggga 4680
tctcgacgct ctcccttatg cgactcctgc attaggaagc agcccagtag taggttgagg 4740
ccgttgagca ccgccgccgc aaggaatggt gcatgcaagg agatggcgcc caacagtccc 4800
ccggccacgg ggcctgccac catacccacg ccgaaacaag cgctcatgag cccgaagtgg 4860
cgagcccgat cttccccatc ggtgatgtcg gcgatatagg cgccagcaac cgcacctgtg 4920
gcgccggtga tgccggccac gatgcgtccg gcgtagagga tcgagatctc gatcccgcga 4980
aattaatacg actcactata ggggaattgt gagcggataa caattcccct ctagaaataa 5040
ttttgtttaa ctttaagaag gagatataca tatggcacca tccttgaatc aggatattca 5100
cgttcaaaag gaaagtgaat atcctgcatg gtggaaagaa gctgtttttt atcagatcta 5160
tcctcgctca tttaaagaca ccaatgatga tggcattggc gatattcgcg gtattattga 5220
aaagctggac tatctgaaat cgctcggtat tgacgctatc tggatcaatc cccattacga 5280
ctctccgaac accgataacg gctatgacat cagtaattat cgtcagataa tgaaagagta 5340
tggcacaatg gaggattttg atagccttgt tgccgaaatg aaaaaacgaa atatgcgctt 5400
aatgatcgac gtggtcatta accataccag tgatcaacac ccgtggttta ttcagagtaa 5460
aagcgataaa aacaaccctt atcgtgacta ttatttctgg cgtgacggaa aagataatca 5520
gccacctaat aattacccct catttttcgg cggctcggca tggcaaaaag atgcaaagtc 5580
aggacagtac tatttacact attttgccag acagcaacct gatctcaact gggataaccc 5640
gaaagtacgt gaggatcttt acgcaatgct ccgcttctgg ctggataaag gcgtttcagg 5700
catgcgattt gatacggtgg caacttattc caaaatcccg ggatttccca atctgacacc 5760
tgaacaacag aaaaattttg ctgaacaata caccatgggg cctaatattc atcgatacat 5820
tcaggaaatg aaccggaaag ttctgtcccg gtatgatgtg gccaccgcgg gtgaaatttt 5880
tggcgtcccg ctggatcgtt cgtcgcagtt ttttgatcgc cgccgacatg agctgaatat 5940
ggcgtttatg tttgacctca ttcgtctcga tcgcgacagc aatgaacgct ggcgtcacaa 6000
gtcgtggtcg ctctctcagt tccgccagat catcagcaaa atggatgtca cggtcggaaa 6060
gtatggctgg aacacgttct tcttagataa ccatgacaac ccccgtgcgg tatctcactt 6120
cggggatgac aggccgcaat ggcgggaggc gtcggctaag gcactggcga cgattaccct 6180
cactcagcgg gcgacgccgt ttatttatca gggttcagag ctgggaatga ctaattatcc 6240
cttcaggcaa ctcaacgaat ttgacgacat cgaggtcaaa ggtttctggc aggattatgt 6300
ccagagtgga aaagtcacgg ccacagagtt tctcgataat gtgcgcctga cgagccgcga 6360
taacagcaga acacctttcc agtggaatga caccctgaat gctggtttta ctcgcggaaa 6420
gccgtggttt cacatcaacc caaactatgt ggagatcaac gccgaacgcg aagaaacccg 6480
cgaagattca gtgctgaatt actataaaaa aatgattcag ctacgccacc atatccctgc 6540
tctggtatat ggcgcctatc aggatcttaa tccacaggac aataccgttt atgcctatac 6600
ccgaacgctg ggtaacgagc gttatctggt cgtggtgaac tttaaggagt acccggtccg 6660
ctatactctc ccggctaatg atgccatcga ggaagtggtc attgatactc agcagcaggc 6720
ggctgcgccg cacagcacat ccctgtcatt gagcccctgg caggcaggtg tgtataagct 6780
gcggctcgag caccaccacc accaccactg agatccggct gctaacaaag cccgaaagga 6840
agctgagttg gctgctgcca ccgctgagca ataactagca taaccccttg gggcctctaa 6900
acgggtcttg aggggttttt tgctgaaagg aggaactata tccggat 6947

Claims (9)

1. A gene is characterized in that the nucleotide sequence is shown as SEQ ID NO. 1.
2. A gene is characterized in that the nucleotide sequence is shown as SEQ ID NO. 2.
3. The fusion protein encoded by the gene of claim 1 and comprising TdoT-SI, wherein the amino acid sequence is set forth in SEQ ID No. 3.
4. The fusion protein encoded by the gene of claim 2 and comprising SI-Tdot, wherein the amino acid sequence is set forth in SEQ ID No. 4.
5. A recombinant engineered bacterium containing the gene of claim 1.
6. A recombinant engineered bacterium containing the gene of claim 2.
7. An inclusion body of sucrose isomerase activity, which is obtained by inducing the expression of fusion protein by the recombinant engineering bacteria of claim 5 or 6, breaking, separating and purifying the bacteria.
8. Use of an inclusion body of sucrose isomerase activity for catalysing the conversion of sucrose to isomaltulose.
9. The use according to claim 8, wherein the sucrose isomerase activity comprises a sucrose isomerase activity that catalyzes the conversion of sucrose into isomaltulose at a pH of 4.5 to 6.5 and a temperature of 30 to 45 ℃.
CN202210142279.1A 2022-02-16 2022-02-16 Sucrose isomerase activity inclusion body fused with coiled coil structure domain Pending CN114703211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210142279.1A CN114703211A (en) 2022-02-16 2022-02-16 Sucrose isomerase activity inclusion body fused with coiled coil structure domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210142279.1A CN114703211A (en) 2022-02-16 2022-02-16 Sucrose isomerase activity inclusion body fused with coiled coil structure domain

Publications (1)

Publication Number Publication Date
CN114703211A true CN114703211A (en) 2022-07-05

Family

ID=82166834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210142279.1A Pending CN114703211A (en) 2022-02-16 2022-02-16 Sucrose isomerase activity inclusion body fused with coiled coil structure domain

Country Status (1)

Country Link
CN (1) CN114703211A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501637A (en) * 2011-05-05 2014-01-08 赢创工业集团股份有限公司 Process for preparing isomaltulose from plant juices
CN109477113A (en) * 2015-07-24 2019-03-15 爱沃克斯技术有限责任公司 Catalytically active protein aggregates and method for the production thereof
CN113789338A (en) * 2021-09-15 2021-12-14 李宪臻 Catalase activity inclusion body and application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103501637A (en) * 2011-05-05 2014-01-08 赢创工业集团股份有限公司 Process for preparing isomaltulose from plant juices
CN109477113A (en) * 2015-07-24 2019-03-15 爱沃克斯技术有限责任公司 Catalytically active protein aggregates and method for the production thereof
CN113789338A (en) * 2021-09-15 2021-12-14 李宪臻 Catalase activity inclusion body and application

Similar Documents

Publication Publication Date Title
CN111454978B (en) Surface display engineering bacterium for specifically adsorbing heavy metal lead and construction method and application thereof
CN106676051B (en) It is a kind of to prepare the method and its application for efficiently synthesizing pantothenic acid genetic engineering bacterium
CN111304232B (en) Method for purifying protein based on membrane surface fusion expression strategy and application thereof
CN111850007B (en) Cellulosobody docking protein combination mutant 36864 applicable to low calcium ion concentration and application
CN114774452B (en) Construction method and application of engineering escherichia coli for adsorbing mercury ions in solution
CN110257356B (en) Enzyme capable of being used for synthesizing carnosine and coding gene thereof
CN111848758B (en) Cellulosome docking protein mutant suitable for low calcium ion concentration and application
CN112481280A (en) Method for preparing rare ginsenoside CK by gene combination transformation and application
CN114875004B (en) High-stereoselectivity R-transketolase mutant and encoding gene and application thereof
CN112592877B (en) Recombinant escherichia coli for over-expressing lsrC gene and construction method and application thereof
CN112481282B (en) Carbohydrate binding module CBM6B protein capable of specifically recognizing xanthan gum side chain and application thereof
CN113151214B (en) Protein PnlipA with lipase activity and gene and application thereof
CN111848757B (en) Cellulosome docking protein combined mutant 36862 suitable for low calcium ion concentration and application
CN114703211A (en) Sucrose isomerase activity inclusion body fused with coiled coil structure domain
CN113755460B (en) Flavone reductase for preparing dihydroquercetin
CN113122561B (en) Expression vector of membrane protein SohB and expression and purification method thereof
CN113122558B (en) Expression vector of membrane protein AmpG and expression and purification method thereof
CN114591985B (en) Mutant pectin lyase and application thereof
CN113337491B (en) Structural domain for improving high-temperature resistance stability of keratinase and application thereof
CN112410361B (en) Method for producing candida antarctica lipase B and specific DNA molecule used by method
CN111850006B (en) Cellulosome docking protein combined mutant 36865 suitable for low calcium ion concentration and application
CN111850004B (en) Cellulosomal dockerin mutant 36740 with improved activity and application thereof
CN113355304B (en) Protein CpoC with zearalenone degrading enzyme activity and gene and application thereof
CN111848759B (en) Cellulosomal dockerin mutant 36741 with improved activity and application thereof
CN113122557A (en) Expression vector of membrane protein AmtB and expression purification method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination