CN114698119B - 5G communication/cloud edge computing resource collaborative allocation method for distribution network distributed protection system - Google Patents
5G communication/cloud edge computing resource collaborative allocation method for distribution network distributed protection system Download PDFInfo
- Publication number
- CN114698119B CN114698119B CN202210345566.2A CN202210345566A CN114698119B CN 114698119 B CN114698119 B CN 114698119B CN 202210345566 A CN202210345566 A CN 202210345566A CN 114698119 B CN114698119 B CN 114698119B
- Authority
- CN
- China
- Prior art keywords
- mode
- distributed protection
- communication
- cloud
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004891 communication Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 16
- 238000011156 evaluation Methods 0.000 claims abstract description 44
- 230000002159 abnormal effect Effects 0.000 claims abstract description 30
- 238000012544 monitoring process Methods 0.000 claims abstract description 9
- 238000005457 optimization Methods 0.000 claims abstract description 6
- 239000011159 matrix material Substances 0.000 claims description 40
- 230000005540 biological transmission Effects 0.000 claims description 23
- 230000005856 abnormality Effects 0.000 claims description 16
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000005516 engineering process Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000007405 data analysis Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004870 electrical engineering Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/53—Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/06—Testing, supervising or monitoring using simulated traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W4/00—Services specially adapted for wireless communication networks; Facilities therefor
- H04W4/70—Services for machine-to-machine communication [M2M] or machine type communication [MTC]
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明公开了一种配网分布式保护系统的5G通信/云边计算资源协同分配方法,其步骤包括:一、建立分布式保护装置用于判断自身是否出现异常状态的三种模式;二、建立配网分布式保护监测与智能评估系统的云边计算延时模型和5G通信模型;三、建立流量损耗最小的优化目标函数;四、求解优化目标函数的最优解,利用最优解得到配网系统的5G通信/云边计算资源协同分配最优方案,实现最小化5G通信流量损耗。本发明通过优化配网分布式系统的5G通信/云边计算资源协同分配,解决了配网分布式系统的有时间约束、智能评估计算能力约束的5G通信流量损耗问题。
The present invention discloses a method for collaborative allocation of 5G communication/cloud-edge computing resources of a distribution network distributed protection system, the steps of which include: 1. Establishing three modes of distributed protection devices for judging whether they are in an abnormal state; 2. Establishing a cloud-edge computing delay model and a 5G communication model of a distribution network distributed protection monitoring and intelligent evaluation system; 3. Establishing an optimization objective function with minimal traffic loss; 4. Solving the optimal solution of the optimization objective function, and using the optimal solution to obtain the optimal solution for collaborative allocation of 5G communication/cloud-edge computing resources of the distribution network system, thereby minimizing 5G communication traffic loss. The present invention solves the problem of 5G communication traffic loss in the distribution network distributed system with time constraints and intelligent evaluation computing power constraints by optimizing the collaborative allocation of 5G communication/cloud-edge computing resources of the distribution network distributed system.
Description
技术领域Technical Field
本发明涉及状态数据5G通信/云边计算资源协同分配的方法方法,属于无线通信领域。The present invention relates to a method for collaborative allocation of state data 5G communication/cloud-edge computing resources, and belongs to the field of wireless communications.
背景技术Background Art
近年来,5G通信技术的快速发展为配网保护业务提供了低延时、高可靠的信息通道。随着信息技术的发展和电网多元化需求的增加,提升电网运行的柔性与弹性成为电力系统的迫切需求。其中,5G D2D技术通过允许频谱之间的复用,使得终端用户之间得以进行信息交互,不仅能够大幅度提升频谱利用率,缓解5G基站负载压力,提升电网运行的柔性,还能改善D2D用户的总量,提升配网的通信质量。In recent years, the rapid development of 5G communication technology has provided a low-latency, highly reliable information channel for distribution network protection services. With the development of information technology and the increasing demand for diversified power grids, improving the flexibility and elasticity of power grid operation has become an urgent need for the power system. Among them, 5G D2D technology allows information exchange between end users by allowing spectrum reuse, which can not only greatly improve spectrum utilization, alleviate the load pressure of 5G base stations, and improve the flexibility of power grid operation, but also improve the total number of D2D users and the communication quality of the distribution network.
随着电力物联网技术的深入应用,进一步挖掘设备侧产生的大量数据价值成为发展趋势。这一趋势对设备侧数据存储、处理和传输的要求急剧上升,需在设备侧部署轻量级计算服务处理信息。设备侧轻量级计算融合了网络、存储、计算等资源,可在配网系统设备侧提供数据服务,以提升系统运行效率。但轻量级计算仅适用于实时、短周期的数据分析和本地决策等场景,对配电网的整体分析不足,而主站计算平台适合非实时、长周期数据的大数据分析。因此,协同计算体现出优势。With the in-depth application of power Internet of Things technology, further mining the value of a large amount of data generated on the device side has become a development trend. This trend has dramatically increased the requirements for data storage, processing and transmission on the device side, and it is necessary to deploy lightweight computing services on the device side to process information. Lightweight computing on the device side integrates network, storage, computing and other resources, and can provide data services on the device side of the distribution network system to improve system operation efficiency. However, lightweight computing is only applicable to scenarios such as real-time, short-cycle data analysis and local decision-making, and is insufficient for the overall analysis of the distribution network. The main station computing platform is suitable for big data analysis of non-real-time, long-cycle data. Therefore, collaborative computing has shown its advantages.
当前协同计算的研究主要集中在边缘计算、移动边缘计算和多接入边缘计算。在电力领域,也有研究将云边协同引入能源管理、需求响应、负荷预测、智能运维等业务的应用中,虽然考虑了电力应用场景的需求,但都集中于协同计算的理论本身,而未考虑配网设备海量设备应用情况下,因此将协同计算与配网系统计算资源、通信资源分布以及设备配置的状况相结合,因此进行协同优化成为了研究中的难题。The current research on collaborative computing is mainly focused on edge computing, mobile edge computing and multi-access edge computing. In the power sector, there are also studies that introduce cloud-edge collaboration into applications such as energy management, demand response, load forecasting, and intelligent operation and maintenance. Although the needs of power application scenarios are taken into account, they all focus on the theory of collaborative computing itself, and do not consider the massive application of distribution network equipment. Therefore, the combination of collaborative computing with the distribution network system computing resources, communication resource distribution, and equipment configuration, so collaborative optimization has become a difficult problem in the research.
江西理工大学电气工程与自动化学院的曾志等通过分析影响路径阻抗因素,构建路段阻抗函数,并且提出一种基于改进型的Logit模型的路径分配方法,基于5G通信平台和数据传输系统,对各路径的数据信息进行收集,通过分配方法将计算结果发送给车辆。文章虽然提出一种路径分配方法,但是该分配方法没有利用车辆侧的计算资源以及车辆之间的资源复用,车联网运行的柔性较低。Zeng Zhi and others from the School of Electrical Engineering and Automation at Jiangxi University of Science and Technology analyzed the factors that affect path impedance, constructed a road section impedance function, and proposed a path allocation method based on an improved Logit model. Based on the 5G communication platform and data transmission system, the data information of each path is collected, and the calculation results are sent to the vehicle through the allocation method. Although the article proposes a path allocation method, this allocation method does not utilize the computing resources on the vehicle side and the resource reuse between vehicles, and the flexibility of the vehicle network operation is low.
河南科技学院李瑞华根据实际情况在一定的区域安装一定数量具有感知功能的传感器,完成对输电线路在线检测软硬件电路的设计,通过对输电线路的在线检测,能够在边缘侧实时掌握输电线路的运行状态,能够实现将输电线路的运行信息在上位机界面显示出来,及时掌握输电线路的信息,在减少工作人员工作量的同时还能达到提高效率的目的。文章虽然利用边缘侧处理电路信息,但没有利用云边协同,无法解决云端延迟大的缺点。Li Ruihua from Henan Institute of Science and Technology installed a certain number of sensors with perception functions in a certain area according to the actual situation, and completed the design of the software and hardware circuits for online detection of transmission lines. Through online detection of transmission lines, the operating status of transmission lines can be grasped in real time on the edge side, and the operating information of transmission lines can be displayed on the upper computer interface, so as to grasp the information of transmission lines in time, reduce the workload of staff and improve efficiency. Although the article uses the edge side to process circuit information, it does not use cloud-edge collaboration and cannot solve the disadvantage of large cloud latency.
武汉大学电气与自动化学院白昱阳等对边缘计算的发展背景和关键技术进行了介绍,阐述了云边协同和边边协同的功能与特征,提出利用云边协同、边边协同、边缘智能等技术解决电力系统面临的实时性高、数据周期短、任务复杂等难题。文章虽然考虑了电力应用场景的需求,但都集中于协同计算的理论,未考虑协同计算与配网系统计算资源、通信资源分布以及设备配置的状况相结合。Bai Yuyang and others from the School of Electrical Engineering and Automation of Wuhan University introduced the development background and key technologies of edge computing, explained the functions and characteristics of cloud-edge collaboration and edge-edge collaboration, and proposed using cloud-edge collaboration, edge-edge collaboration, edge intelligence and other technologies to solve the problems faced by power systems, such as high real-time performance, short data cycles, and complex tasks. Although the article takes into account the needs of power application scenarios, it focuses on the theory of collaborative computing and does not consider the combination of collaborative computing with the distribution of computing resources and communication resources in the distribution network system and the status of equipment configuration.
发明内容Summary of the invention
针对现有技术中的上述不足之处,本发明提供一种配网分布式保护系统的5G通信/云边计算资源协同分配方法,以期在满足数据传输时延的约束下,实现通信流量损耗的最小化,从而能提高配网系统的资源利用率,保障配网5G通讯质量和云边协同计算能力。In view of the above-mentioned shortcomings in the prior art, the present invention provides a 5G communication/cloud-edge computing resource collaborative allocation method for a distribution network distributed protection system, in order to minimize the communication traffic loss while meeting the constraints of data transmission delay, thereby improving the resource utilization of the distribution network system and ensuring the 5G communication quality of the distribution network and the cloud-edge collaborative computing capabilities.
本发明为达到上述发明目的,采用如下技术方案:In order to achieve the above-mentioned object of the invention, the present invention adopts the following technical scheme:
本发明一种配网分布式保护系统的5G通信/云边计算资源协同分配方法,所述配网分布式保护监测与智能评估系统中包含N个分布式保护装置、5G基站、云端服务器;每个分布式保护装置含有传感器、5G通信模块、边缘侧嵌入式智能评估模块,并通过传感器监测自身的状态数据;所述云端服务器含有云端智能评估软件模块,其特点在于,包括以下步骤:The present invention discloses a 5G communication/cloud-edge computing resource collaborative allocation method for a distribution network distributed protection system. The distribution network distributed protection monitoring and intelligent evaluation system comprises N distributed protection devices, a 5G base station, and a cloud server; each distributed protection device comprises a sensor, a 5G communication module, and an edge-side embedded intelligent evaluation module, and monitors its own status data through the sensor; the cloud server comprises a cloud-side intelligent evaluation software module, and is characterized in that it comprises the following steps:
步骤一、建立分布式保护装置的三种模式,用于判断自身是否出现异常的状态;Step 1: Establish three modes of the distributed protection device to determine whether it is in an abnormal state;
第1种模式:通过自身运行的边缘侧嵌入式智能评估模块评估自身设备是否出现异常;Mode 1: Use the embedded intelligent evaluation module on the edge to evaluate whether the device itself is abnormal.
第2种模式:通过5G通信模块以5G D2D通信将其自身状态数据传输到相邻的其它分布式保护装置的边缘侧嵌入式智能评估模块以评估其自身是否出现异常;Mode 2: The 5G communication module transmits its own status data to the edge-side embedded intelligent evaluation module of other adjacent distributed protection devices through 5G D2D communication to evaluate whether it has any abnormality.
第3种模式:通过5G通信模块将其自身状态数据传输到云端智能评估软件模块,用于评估其自身是否出现异常;Mode 3: The 5G communication module transmits its own status data to the cloud-based intelligent evaluation software module to evaluate whether it has any abnormalities.
步骤二、建立配网分布式保护监测与智能评估系统的5G通信模型和云边计算延时模型;Step 2: Establish the 5G communication model and cloud-edge computing delay model of the distribution network distributed protection monitoring and intelligent evaluation system;
步骤2.1、根据式(2-1)-式(2-4)建立所述5G通信模型:Step 2.1: Establish the 5G communication model according to formula (2-1) to formula (2-4):
第1种模式: Mode 1:
第2种模式: Mode 2:
第3种模式: Mode 3:
式(2-1)-式(2-4)中,Rn为第n个分布式保护装置评估自身设备的状态数据量,1≤n≤N,为通过第1种模式评估自身的分布式保护装置是否出现异常的状态数据量;为通过第2种模式传输到相邻的其它N-1个分布式保护装置的嵌入式智能评估模块,来评估自身的分布式保护装置是否出现异常的状态数据量;为通过第3种模式传输到云端智能评估软件模块来评估自身的分布式保护装置是否出现异常的状态数据量;In formula (2-1) to formula (2-4), Rn is the amount of status data of the nth distributed protection device evaluating its own equipment, 1≤n≤N, The amount of status data to evaluate whether the distributed protection device itself has abnormal status through the first mode; The amount of state data transmitted to the embedded intelligent evaluation module of other N-1 adjacent distributed protection devices through the second mode to evaluate whether the distributed protection device itself has abnormal status data; The amount of status data transmitted to the cloud intelligent evaluation software module through the third mode to evaluate whether its own distributed protection device has abnormal status;
步骤2.2、利用式(2-5)-式(2-8)构建所述云边计算延时模型:Step 2.2: Use equations (2-5) to (2-8) to construct the cloud-edge computing delay model:
T=max(T1,T2,T3) (2-5)T=max(T 1 , T 2 , T 3 ) (2-5)
式(2-5)-式(2-8)中,T为总的时延时间,T1、T2、T3分别为通过第1种模式、第2种模式、第3种模式评估自身的分布式保护装置是否出现异常的状态数据量所产生的延迟时间;为1024;V为通过第2种模式利用5G D2D通信传输评估自身的分布式保护装置是否出现异常的状态数据的速率;B为信道带宽;v1、v2、v3分别为通过第1种模式、第2种模式、第3种模式评估自身的分布式保护装置是否出现异常的状态数据的计算速率,且v3远大于v1、v2;In formula (2-5) to formula (2-8), T is the total delay time, T 1 , T 2 , and T 3 are the delay times generated by the amount of state data for evaluating whether the distributed protection device itself is abnormal through the first mode, the second mode, and the third mode, respectively; is 1024; V is the rate of status data transmitted by 5G D2D communication to evaluate whether its own distributed protection device has abnormality through the second mode; B is the channel bandwidth; v 1 , v 2 , and v 3 are the calculation rates of status data of evaluating whether its own distributed protection device has abnormality through the first mode, the second mode, and the third mode, respectively, and v 3 is much larger than v 1 and v 2 ;
步骤三、构建配网分布式保护监测与智能评估系统的云边计算资源与5G通信资源协同的流量损耗目标函数Y,根据计算资源、通信资源的限制因素,建立智能评估计算能力的约束条件,并根据智能评估的实时性需求,建立延时约束条件;Step 3: Construct the traffic loss objective function Y of the cloud-edge computing resources and 5G communication resources of the distribution network distributed protection monitoring and intelligent evaluation system. According to the limiting factors of computing resources and communication resources, establish the constraint conditions of the intelligent evaluation computing capacity, and according to the real-time requirements of the intelligent evaluation, establish the delay constraint conditions;
步骤3.1、利用式(3-1)-式(3-3)构建状态数据传输流量损耗的目标函数Y:Step 3.1, use equation (3-1)-equation (3-3) to construct the objective function Y of state data transmission flow loss:
式(3-1)-式(3-2)中,y(s)为状态数据通过第s种模式传输所产生的流量损耗;为第s种模式评估自身的分布式保护装置是否出现异常的状态数据量;θ(s)为第s种模式通过5G基站每传输千字节评估自身的分布式保护装置是否出现异常的状态数据所产生的流量损耗;且θ(1)=0,θ(2)=0;In formula (3-1) and formula (3-2), y(s) is the flow loss caused by the transmission of state data through the sth mode; is the amount of status data for evaluating whether the distributed protection device of the sth mode is abnormal; θ(s) is the traffic loss generated by the sth mode for evaluating whether the distributed protection device of the sth mode is abnormal per kilobyte of status data transmitted through the 5G base station; and θ(1) = 0, θ(2) = 0;
步骤3.2、利用式(3-4)-式(3-5)构建延迟约束条件和智能评估计算能力的约束条件:Step 3.2: Use equations (3-4) to (3-5) to construct delay constraints and intelligent evaluation computing capacity constraints:
T≤Tmin (3-4)T≤T min (3-4)
式(3-4)中,Tmin为最低时延时间;In formula (3-4), T min is the minimum delay time;
步骤四、利用联合改进的匈牙利优化算法求解5G通信资源与云边计算资源协同分配的最优解;Step 4: Use the jointly improved Hungarian optimization algorithm to solve the optimal solution for the coordinated allocation of 5G communication resources and cloud-edge computing resources;
步骤4.1、构建一个N×N的矩阵R,矩阵R中第i行第j列的元素记为Rij,Rij代表第i个传感器通过第1种模式或第2种模式发送给N个边缘侧嵌入式智能评估模块中排序第N-j+1个边缘侧嵌入式智能评估模块,来评估自身的分布式保护装置是否出现异常的状态数据量;i=1,2,…,N,j=1,2,…,N;Step 4.1, construct an N×N matrix R, where the element in the i-th row and the j-th column of the matrix R is recorded as Rij , where Rij represents the amount of state data sent by the i-th sensor to the N-j+1-th edge-side embedded intelligent evaluation module in the N edge-side embedded intelligent evaluation modules through the first mode or the second mode to evaluate whether its distributed protection device has abnormal status; i = 1, 2, ..., N, j = 1, 2, ..., N;
步骤4.2:利用式(4-1)得到矩阵R',使得矩阵R'各行内呈现零元素:Step 4.2: Use formula (4-1) to obtain the matrix R' so that each row of the matrix R' contains zero elements:
式(4-1)中,表示矩阵R中第i行的最小元素;In formula (4-1), Represents the minimum element of the i-th row in the matrix R;
步骤4.3、利用式(4-2)得到矩阵R”,使得矩阵R”各行内呈现零元素:Step 4.3, use formula (4-2) to obtain the matrix R' so that each row of the matrix R' contains zero elements:
式(4-2)中,表示矩阵R'中第j列的最小元素;In formula (4-2), represents the minimum element in the jth column of the matrix R';
步骤4.4、利用式(4-3)得到最小元素再通过交换矩阵R”ij中的第i0行元素和第j行元素,从而实现将矩阵R”ij中的所有最小元素排列在对角线上:Step 4.4: Use formula (4-3) to get the minimum element Then, by exchanging the elements in the ith row and the jth row in the matrix R” ij , all the smallest elements in the matrix R” ij are arranged on the diagonal:
式(4-2)中,表示矩阵R”中的最小元素;In formula (4-2), Represents the smallest element in the matrix R';
步骤4.5、当矩阵R”的对角线元素都为零,即R”ij=0,i=j时,且矩阵R”中对角线以外的元素取到最大值时,获得在第1种模式、第2种模式下,N个传感器在N个边缘侧嵌入式智能评估模块中评估自身的分布式保护装置是否出现异常的最大状态数据量,在最小化状态数据传输5G流量损耗的同时,得到5G通信/云边计算资源协同分配的最优方案。Step 4.5, when the diagonal elements of the matrix R” are all zero, that is, R” ij = 0, i = j, and the elements outside the diagonal of the matrix R” reach the maximum value, the maximum amount of status data is obtained in the first mode and the second mode, when N sensors evaluate their own distributed protection devices in N edge-side embedded intelligent evaluation modules to see whether abnormalities occur. While minimizing the 5G traffic loss of status data transmission, the optimal solution for the collaborative allocation of 5G communication/cloud-edge computing resources is obtained.
与现有技术相比,本发明的有益效果在于:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明设计了三种模式,用于配网系统中分布式保护装置判断自身是否出现异常状态。三种模式的同时运行,更高速高效地处理用于评估自身的分布式保护装置是否出现异常的状态数据量,从而在时延限制和计算能力限制下有效减小了状态数据传输的5G流量损耗,提高了配网系统中的资源利用率和边缘侧嵌入式智能评估模块的工作效率,缓解了5G基站的压力,提升了配网系统的5G通信质量/云边协同计算能力。1. The present invention designs three modes for the distributed protection device in the distribution network system to judge whether it is in an abnormal state. The three modes are run simultaneously to process the state data used to evaluate whether the distributed protection device itself is abnormal at a higher speed and efficiency, thereby effectively reducing the 5G traffic loss of state data transmission under the limitation of delay and computing power, improving the resource utilization rate in the distribution network system and the working efficiency of the edge-side embedded intelligent evaluation module, alleviating the pressure on the 5G base station, and improving the 5G communication quality/cloud-edge collaborative computing capability of the distribution network system.
2.本发明建立了配网系统中三种模式对应的5G通信模型和云边计算延时模型。通过5G通信模型和云边计算延时模型,实现了边缘侧嵌入式智能评估模块和云端智能评估软件模块对计算能力、延时时间更精确的计算与评估,同时为评估自身的分布式保护装置是否出现异常的状态数据量的传输流量损耗提供了更精确的约束条件,提高了状态数据量传输、计算的效率和精度,以及边缘侧嵌入式智能评估模块和云端智能评估软件模块的工作效率和精度。2. The present invention establishes a 5G communication model and a cloud-edge computing delay model corresponding to the three modes in the distribution network system. Through the 5G communication model and the cloud-edge computing delay model, the edge-side embedded intelligent evaluation module and the cloud-side intelligent evaluation software module can more accurately calculate and evaluate the computing power and delay time, and at the same time provide more accurate constraints for evaluating whether the transmission flow loss of abnormal state data volume of its own distributed protection device occurs, thereby improving the efficiency and accuracy of state data volume transmission and calculation, as well as the working efficiency and accuracy of the edge-side embedded intelligent evaluation module and the cloud-side intelligent evaluation software module.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的5G通信/云边计算资源协同分配模型图;FIG1 is a diagram of a 5G communication/cloud-edge computing resource collaborative allocation model of the present invention;
图2为本发明方法步骤流程图。FIG. 2 is a flow chart of the steps of the method of the present invention.
具体实施方式DETAILED DESCRIPTION
本实施例中,如图1所示,一种配网分布式保护系统中包含N个分布式保护装置、5G基站、云端服务器;每个分布式保护装置含有传感器、5G通信模块、边缘侧嵌入式智能评估模块;云端服务器含有云端智能评估软件模块,并有:In this embodiment, as shown in FIG1 , a distribution network distributed protection system includes N distributed protection devices, a 5G base station, and a cloud server; each distributed protection device includes a sensor, a 5G communication module, and an edge-side embedded intelligent evaluation module; the cloud server includes a cloud intelligent evaluation software module, and has:
分布式保护装置:分布式保护装置中,传感器通过监测配网保护装置状态数据和两端的电压\电流数据生成状态数据,状态数据包含但不限于:保护装置工作的电压/电流数据、保护装置的温度/湿度数据、保护装置的电流数据等,状态数据通过5G通信硬件模块将状态数据按照要求智能评估计算能力传输到云端\嵌入式边缘侧,嵌入式边缘侧之间可以通过5GD2D(Device to Device)通信实现分布式保护装置状态数据的共享,由嵌入式边缘侧中的智能评估模块对状态数据进行下载、计算等处理,并将处理结果传送到保护装置模块,实现配网分布式保护装置的保护监测与智能评估;Distributed protection device: In the distributed protection device, the sensor generates status data by monitoring the status data of the distribution network protection device and the voltage and current data at both ends. The status data includes but is not limited to: the voltage/current data of the protection device, the temperature/humidity data of the protection device, the current data of the protection device, etc. The status data is transmitted to the cloud/embedded edge side according to the required intelligent evaluation and computing capabilities through the 5G communication hardware module. The embedded edge sides can share the status data of the distributed protection device through 5GD2D (Device to Device) communication. The intelligent evaluation module in the embedded edge side downloads, calculates and processes the status data, and transmits the processing results to the protection device module to realize the protection monitoring and intelligent evaluation of the distribution network distributed protection device;
本实施例中,如图2所示,一种配网分布式保护系统的5G通信/云边计算资源协同分配方法包括:In this embodiment, as shown in FIG2 , a 5G communication/cloud-edge computing resource collaborative allocation method for a distribution network distributed protection system includes:
步骤一、设置分布式保护装置的三种模式,用于判断自身是否出现异常的状态;Step 1: Set three modes of the distributed protection device to determine whether it is in an abnormal state;
第1种模式:通过自身运行的边缘侧嵌入式智能评估模块评估自身设备是否出现异常;Mode 1: Use the embedded intelligent evaluation module on the edge to evaluate whether the device itself is abnormal.
第2种模式:通过5G通信模块以5G D2D通信将其自身状态数据传输到相邻的其它分布式保护装置的边缘侧嵌入式智能评估模块以评估其自身是否出现异常;Mode 2: The 5G communication module transmits its own status data to the edge-side embedded intelligent evaluation module of other adjacent distributed protection devices through 5G D2D communication to evaluate whether it has any abnormality.
第3种模式:通过5G通信模块将其自身状态数据传输到云端智能评估软件模块,用于评估其自身是否出现异常;Mode 3: The 5G communication module transmits its own status data to the cloud-based intelligent evaluation software module to evaluate whether it has any abnormalities.
其中,边缘侧嵌入式智能评估模块与云端智能评估软件模块具有不同的智能评估计算能力和计算精度;第2种模式和第3种模式中,5G通信传输数据到云端与D2D通信的流量费用也不相同;Among them, the edge-side embedded intelligent evaluation module and the cloud-based intelligent evaluation software module have different intelligent evaluation computing capabilities and calculation accuracy; in the second and third modes, the traffic costs of 5G communication data transmission to the cloud and D2D communication are also different;
步骤二、建立配网分布式保护系统的5G通信模型和云边计算延时模型;Step 2: Establish the 5G communication model and cloud-edge computing delay model of the distribution network distributed protection system;
步骤2.1、根据式(2-1)-式(2-4)建立5G通信模型:Step 2.1: Establish a 5G communication model based on equations (2-1) to (2-4):
第1种模式: Mode 1:
第2种模式: Mode 2:
第3种模式: The third mode:
式(2-1)-式(2-4)中,Rn为第n个分布式保护装置评估自身设备的状态数据量,1≤n≤N,为通过第1种模式评估自身的分布式保护装置是否出现异常的状态数据量;为通过第2种模式传输到相邻的其它N-1个分布式保护装置的嵌入式智能评估模块,来评估自身的分布式保护装置是否出现异常的状态数据量;为通过第3种模式传输到云端智能评估软件模块来评估自身的分布式保护装置是否出现异常的状态数据量;其中,状态数据量的单位为千字节;In formula (2-1) to formula (2-4), Rn is the amount of status data of the nth distributed protection device evaluating its own equipment, 1≤n≤N, The amount of status data to evaluate whether the distributed protection device itself has abnormal status through the first mode; The amount of state data transmitted to the embedded intelligent evaluation module of other N-1 adjacent distributed protection devices through the second mode to evaluate whether the distributed protection device itself has abnormal status data; The amount of status data transmitted to the cloud intelligent evaluation software module through the third mode to evaluate whether its own distributed protection device has abnormalities; the unit of the status data amount is kilobytes;
步骤2.2、利用式(2-5)-式(2-8)构建云边计算延时模型:Step 2.2: Use equations (2-5) to (2-8) to build a cloud-edge computing delay model:
T=max(T1,T2,T3) (2-5)T=max(T 1 , T 2 , T 3 ) (2-5)
式(2-5)-式(2-8)中,T为总的时延时间,T1、T2、T3分别为通过第1种模式、第2种模式、第3种模式评估自身的分布式保护装置是否出现异常的状态数据量所产生的延迟时间,单位秒;θ表示千字节到兆之间单位的换算,数值为1024;V为通过模式2利用5G D2D通信传输评估自身的分布式保护装置是否出现异常的状态数据的速率,单位为千字节/秒;B为信道带宽,单位为兆/秒;v1、v2、v3分别为通过第1种模式、第2种模式、第3种模式评估自身的分布式保护装置是否出现异常的状态数据的计算速率,且v3远大于v1、v2,单位为千字节/秒;In formula (2-5) to formula (2-8), T is the total delay time, T1 , T2 , and T3 are the delay time caused by the amount of status data for evaluating whether the distributed protection device itself has abnormality through the first mode, the second mode, and the third mode, respectively, in seconds; θ represents the conversion between kilobytes and megabytes, and the value is 1024; V is the rate of status data for evaluating whether the distributed protection device itself has abnormality through 5G D2D communication transmission through mode 2, in kilobytes/second; B is the channel bandwidth, in megabytes/second; v1 , v2 , and v3 are the calculation rates of status data for evaluating whether the distributed protection device itself has abnormality through the first mode, the second mode, and the third mode, respectively, and v3 is much larger than v1 and v2 , in kilobytes/second;
步骤三、利用步骤3.3-步骤3.2构建状态数据传输流量损耗最小的目标函数:Step 3: Use steps 3.3 to 3.2 to construct the objective function of minimizing the traffic loss of state data transmission:
步骤3.1、利用式(3-1)-式(3-3)构建状态数据传输流量损耗最小的目标函数Y:Step 3.1, use equation (3-1)-equation (3-3) to construct the objective function Y with the minimum state data transmission flow loss:
式(3-1)-式(3-2)中,y(s)为状态数据通过第s种模型传输所产生的流量损耗,单位为元;为第s种模式评估自身的分布式保护装置是否出现异常的状态数据量;θ(s)为第s种模式每传输千字节通过5G基站传输评估自身的分布式保护装置是否出现异常的状态数据所产生的流量费,单位为元/千字节;由于第1种模式和第2种模式不通过5G基站传输状态数据,因此不产生通过5G基站传输状态数据所生成的流量费,即θ(1)=0,θ(2)=0,通过最大化第1种模式和第2种模式评估自身的分布式保护装置是否出现异常的状态数据量和实现最小化5G流量损耗Y;In formula (3-1) and formula (3-2), y(s) is the flow loss caused by the transmission of state data through the sth model, in yuan; is the amount of status data for evaluating whether the distributed protection device of the sth mode is abnormal; θ(s) is the traffic fee generated by the sth mode for transmitting each kilobyte of status data for evaluating whether the distributed protection device of the sth mode is abnormal through the 5G base station, and the unit is yuan/kilobyte; since the first and second modes do not transmit status data through the 5G base station, no traffic fee generated by transmitting status data through the 5G base station is generated, that is, θ(1) = 0, θ(2) = 0, by maximizing the amount of status data for evaluating whether the distributed protection device of the sth mode is abnormal and Minimize 5G traffic loss Y;
步骤3.2、利用式(3-4)-式(3-5)构建延迟约束和智能评估计算能力约束条件:Step 3.2: Use formula (3-4)-formula (3-5) to construct delay constraints and intelligent evaluation computing capacity constraints:
T≤Tmin (3-4)T≤T min (3-4)
式(3-4)中,Tmin为常数,表示最低时延时间。In formula (3-4), T min is a constant, indicating the minimum delay time.
步骤四、利用联合改进的匈牙利优化算法求解5G通信资源与云边计算资源协同分配的最优解;Step 4: Use the jointly improved Hungarian optimization algorithm to solve the optimal solution for the coordinated allocation of 5G communication resources and cloud-edge computing resources;
步骤4.1、构建一个N×N的矩阵R,矩阵R中第i行第j列的元素记为Rij,Rij代表第i个传感器通过第1种模式或第2种模式发送给第N-j+1个边缘侧嵌入式智能评估模块来评估自身的分布式保护装置是否出现异常的状态数据量;i=1,2,…,N,j=1,2,…,N;Step 4.1, construct an N×N matrix R, where the element in the i-th row and the j-th column of the matrix R is denoted as Rij , where Rij represents the amount of state data sent by the i-th sensor to the N-j+1-th edge-side embedded intelligent evaluation module through the first mode or the second mode to evaluate whether its distributed protection device has abnormal conditions; i = 1, 2, ..., N, j = 1, 2, ..., N;
步骤4.2:利用式(4-1)使得矩阵R各行内呈现零元素,得到矩阵R':Step 4.2: Use formula (4-1) to make each row of matrix R contain zero elements, and obtain matrix R':
式(4-1)中,表示矩阵R中第i行的最小元素;In formula (4-1), Represents the minimum element of the i-th row in the matrix R;
步骤4.3、利用式(4-2)使得矩阵R各行内呈现零元素,得到矩阵R”:Step 4.3: Use formula (4-2) to make each row of matrix R contain zero elements, and obtain matrix R'':
式(4-2)中,表示矩阵R'中第j列的最小元素;In formula (4-2), represents the minimum element in the jth column of the matrix R';
步骤4.4、利用式(4-3)将矩阵R”中的第j列元素分别与每一行元素相比较,从而得到最小元素再通过交换矩阵R”ij中的第i0行元素和第j行元素,从而实现将矩阵R”ij中的所有最小元素排列在对角线上:Step 4.4: Use formula (4-3) to compare the j-th column element in the matrix R' with each row element to obtain the minimum element. Then, by exchanging the elements of the ith row and the jth row in the matrix R” ij , all the smallest elements in the matrix R” ij can be replaced. Arranged on the diagonal:
式(4-2)中,表示矩阵R”中的最小元素;In formula (4-2), Represents the smallest element in the matrix R';
步骤4.5、当矩阵R”的对角线元素都为零,即R”ij=0,i=j时,矩阵R”中对角线以外的元素R”ij取到最大值,即i≠j时,从而获得在第1种模式、第2种模式下,N个传感器在N个边缘侧嵌入式智能评估模块中评估自身的分布式保护装置是否出现异常的最大状态数据量R”ij,并通过(2-4)求出在第3种模式下,每个传感器通过云端智能评估软件模块评估自身的分布式保护装置是否出现异常的最小状态数据量在最大化边缘侧嵌入式智能评估模块通信/计算资源,最小化状态数据传输5G流量损耗的同时,得到5G通信/云边计算资源协同分配的最优方案。Step 4.5, when all diagonal elements of the matrix R” are zero, that is, R” ij = 0, i = j, the elements R” ij outside the diagonal of the matrix R” take the maximum value, that is, when i≠j, so as to obtain the maximum state data volume R” ij for N sensors to evaluate their own distributed protection devices in N edge-side embedded intelligent evaluation modules in the first mode and the second mode, and obtain the minimum state data volume for each sensor to evaluate its own distributed protection device in the third mode through the cloud-based intelligent evaluation software module through (2-4). While maximizing the communication/computing resources of the edge-side embedded intelligent evaluation module and minimizing the 5G traffic loss of state data transmission, the optimal solution for the coordinated allocation of 5G communication/cloud-edge computing resources is obtained.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210345566.2A CN114698119B (en) | 2022-03-31 | 2022-03-31 | 5G communication/cloud edge computing resource collaborative allocation method for distribution network distributed protection system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210345566.2A CN114698119B (en) | 2022-03-31 | 2022-03-31 | 5G communication/cloud edge computing resource collaborative allocation method for distribution network distributed protection system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114698119A CN114698119A (en) | 2022-07-01 |
CN114698119B true CN114698119B (en) | 2024-09-17 |
Family
ID=82140629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210345566.2A Active CN114698119B (en) | 2022-03-31 | 2022-03-31 | 5G communication/cloud edge computing resource collaborative allocation method for distribution network distributed protection system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114698119B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116647052B (en) * | 2023-07-21 | 2023-10-03 | 合肥工业大学 | Intelligent substation automatic control and dispatching method and system based on multilateral cloud collaboration |
CN117177297B (en) * | 2023-08-14 | 2024-12-06 | 国家电网有限公司华东分部 | Method and system for allocating computing network resources, storage medium, and terminal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111182076A (en) * | 2020-01-02 | 2020-05-19 | 合肥工业大学 | Cloud-edge cooperative smart power grid monitoring system and resource allocation and scheduling method thereof |
CN112996056A (en) * | 2021-03-02 | 2021-06-18 | 国网江苏省电力有限公司信息通信分公司 | Method and device for unloading time delay optimized computing task under cloud edge cooperation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111901424B (en) * | 2020-07-28 | 2021-09-07 | 苏州大学 | Cloud-edge collaborative network resource smooth migration and reconstruction method and system |
CN113419867B (en) * | 2021-08-23 | 2022-01-18 | 浙大城市学院 | Energy-saving service supply method in edge-oriented cloud collaborative computing environment |
CN114189892B (en) * | 2021-12-15 | 2024-06-07 | 北京工业大学 | Cloud-edge collaborative Internet of things system resource allocation method based on blockchain and ensemble reinforcement learning |
-
2022
- 2022-03-31 CN CN202210345566.2A patent/CN114698119B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111182076A (en) * | 2020-01-02 | 2020-05-19 | 合肥工业大学 | Cloud-edge cooperative smart power grid monitoring system and resource allocation and scheduling method thereof |
CN112996056A (en) * | 2021-03-02 | 2021-06-18 | 国网江苏省电力有限公司信息通信分公司 | Method and device for unloading time delay optimized computing task under cloud edge cooperation |
Also Published As
Publication number | Publication date |
---|---|
CN114698119A (en) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114698119B (en) | 5G communication/cloud edge computing resource collaborative allocation method for distribution network distributed protection system | |
CN111182076B (en) | Cloud-side collaborative smart grid monitoring system and its resource allocation and scheduling method | |
CN112637806B (en) | Substation monitoring system and resource scheduling method based on deep reinforcement learning | |
CN111600296A (en) | Power load forecasting system and forecasting method based on edge computing | |
CN113836796A (en) | A data monitoring system and scheduling method for power distribution Internet of Things based on cloud-edge collaboration | |
CN109618399A (en) | Distributed energy management optimization method in multi-user mobile edge computing system | |
CN111654067A (en) | Novel control method and device for dispatching power distribution system based on transmission and distribution coordination | |
CN113078675B (en) | Self-organizing communication method and device for distributed adjustable resource clusters in power distribution station | |
CN114448348A (en) | Distributed photovoltaic operation data acquisition system and data processing method | |
CN113890842A (en) | Information transmission delay upper bound calculation method, system, equipment and storage medium | |
CN118739398A (en) | Multi-station distributed photovoltaic collaborative optimization method and system based on edge computing | |
CN118783626A (en) | Intelligent monitoring, management and operation system of power equipment based on cloud computing | |
CN112202845B (en) | Distribution electricity service oriented edge computing gateway load system, analysis method and distribution system thereof | |
CN115689322A (en) | Evaluation method of electric power multi-service 5G application scheme based on fuzzy analytic hierarchy process | |
Luo et al. | Analysis and processing of power distribution data based on edge computing | |
CN114492975A (en) | An edge-side intelligent decision-making system for the distribution Internet of things | |
Luying et al. | Prediction based dynamic resource allocation method for edge computing first networking | |
Li et al. | Application-Driven Data Management Framework for Wind Farms by Cloud-Edge-End Collaboration | |
CN118348891B (en) | Intelligent conference centralized control method and system based on information enhancement | |
CN115528712B (en) | A method and system for balancing energy storage capacity in different areas of source-grid-load reserve | |
Yang et al. | Traffic-aware transmission strategy of fog cell in green industrial internet | |
CN112969164B (en) | Wireless resource allocation method for smart substation communication based on D2D assistance in 5G network | |
Wang et al. | Research on the Application of Machine Learning in the Construction of Power Demand Response Model for Edge Computing | |
Jian et al. | Research on Operation Load Distribution Mechanism and Optimization of Global IOT Intelligent Network in Power System Based on Edge Computing | |
Wang et al. | Review on the Two-layer Coordinated Architecture for Optimal Regulation and Control of Energy Interconnection System in ew-type Towns |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |