CN114696443A - Power supply device for fuel cell and power supply method thereof - Google Patents
Power supply device for fuel cell and power supply method thereof Download PDFInfo
- Publication number
- CN114696443A CN114696443A CN202011607880.0A CN202011607880A CN114696443A CN 114696443 A CN114696443 A CN 114696443A CN 202011607880 A CN202011607880 A CN 202011607880A CN 114696443 A CN114696443 A CN 114696443A
- Authority
- CN
- China
- Prior art keywords
- fuel cell
- aircraft
- transformer
- output
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 183
- 238000000034 method Methods 0.000 title claims abstract description 58
- 238000012423 maintenance Methods 0.000 claims description 65
- 230000002159 abnormal effect Effects 0.000 claims description 11
- 238000010586 diagram Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 3
- 239000013589 supplement Substances 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
- H02J9/061—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/40—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D27/00—Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
- B64D27/02—Aircraft characterised by the type or position of power plants
- B64D27/24—Aircraft characterised by the type or position of power plants using steam or spring force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U50/00—Propulsion; Power supply
- B64U50/10—Propulsion
- B64U50/19—Propulsion using electrically powered motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/10—Air crafts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域technical field
本公开涉及一种用于燃料电池的供电装置及其供电方法。The present disclosure relates to a power supply device for a fuel cell and a power supply method thereof.
背景技术Background technique
一般无人机通常以二次电池(例如锂电池)提供飞行期间所需要的电力。然而,在有限的空间与重量下,二次电池所能提供的电力仅足以提供数十分钟的飞行时间,因此近年来,在无人机上配置燃料电池及二次电池的混合电力架构,能提供长时间飞行所需的电能。General drones usually use secondary batteries (eg, lithium batteries) to provide power required during flight. However, under the limited space and weight, the power provided by the secondary battery is only enough to provide tens of minutes of flight time. Therefore, in recent years, the hybrid power architecture of fuel cells and secondary batteries has been deployed on UAVs, which can provide Electricity required for long flights.
然而,燃料电池的供电能力下降或进行自维护时可能造成负载电压瞬间大幅变化,使得供电质量劣化。此外,当负载电力需求过高造成二次电池的供电失效或超出变压器的额定功率时,也会使得供电质量劣化。However, when the power supply capacity of the fuel cell is reduced or the self-maintenance is performed, the load voltage may change instantaneously and greatly, resulting in the deterioration of the power supply quality. In addition, when the power demand of the load is too high, the power supply of the secondary battery fails or the rated power of the transformer is exceeded, and the quality of the power supply is also deteriorated.
发明内容SUMMARY OF THE INVENTION
本公开涉及一种供电装置及其供电方法,可维持负载电压在预定的范围内,避免负载电压大幅度变化。The present disclosure relates to a power supply device and a power supply method thereof, which can maintain the load voltage within a predetermined range and avoid large changes in the load voltage.
根据本公开的一方面,提出一种供电装置,配置于一飞行器上,飞行器具有一平均所需功率值。供电装置包括一二次电池、一变压器、一燃料电池以及一旁路开关。变压器电性连接于二次电池与飞行器之间。燃料电池电性连接于飞行器,且适于提供一第一输出电流给飞行器。旁路开关电性连接于二次电池的一输出端与燃料电池的一输出端之间,且旁路开关与变压器并联。变压器具有一第一输出电压设定值。当燃料电池的一第一输出端电压低于第一输出电压设定值时,且旁路开关处于不导通状态,二次电池的一第二输出电流经由变压器提供给飞行器;当燃料电池的第一输出端电压低于第一输出电压设定值时,且旁路开关处于导通状态,二次电池的第二输出电流经由旁路开关提供给飞行器,其中,第一输出电压设定值介于燃料电池的特性曲线的一最大功率值与飞行器的平均所需功率值之间的范围内的任一功率所对应的电压值。According to an aspect of the present disclosure, a power supply device is provided, which is configured on an aircraft, and the aircraft has an average required power value. The power supply device includes a secondary battery, a transformer, a fuel cell and a bypass switch. The transformer is electrically connected between the secondary battery and the aircraft. The fuel cell is electrically connected to the aircraft and is adapted to provide a first output current to the aircraft. The bypass switch is electrically connected between an output terminal of the secondary battery and an output terminal of the fuel cell, and the bypass switch is connected in parallel with the transformer. The transformer has a first output voltage setting. When the voltage of a first output terminal of the fuel cell is lower than the set value of the first output voltage and the bypass switch is in a non-conducting state, a second output current of the secondary battery is supplied to the aircraft through the transformer; When the voltage of the first output terminal is lower than the set value of the first output voltage, and the bypass switch is in a conducting state, the second output current of the secondary battery is provided to the aircraft through the bypass switch, wherein the set value of the first output voltage is The voltage value corresponding to any power in the range between a maximum power value of the characteristic curve of the fuel cell and the average required power value of the aircraft.
根据本公开的一方面,提出一种供电装置,配置于一飞行器上,飞行器具有一平均所需功率值。供电装置包括一二次电池、一变压器、一燃料电池以及一自维护开关。变压器电性连接于二次电池与飞行器之间。燃料电池电性连接于飞行器,且适于提供一第一输出电流给飞行器。自维护开关电性连接该燃料电池与该飞行器,该自维护开关适于关闭一部分燃料电池堆的电力,使该燃料电池进行自维护程序。变压器具有一第一输出电压设定值以及一第二输出电压设定值,第二输出电压设定值大于第一输出电压设定值。当燃料电池的一第一输出端电压低于第一输出电压设定值时,二次电池的一第二输出电流经由变压器提供给飞行器。当预期燃料电池的第一输出端电压即将降低时,动态调整第一输出电压设定值至第二输出电压设定值,二次电池的第二输出电流经由变压器提供给飞行器。第一输出电压设定值介于燃料电池的特性曲线的一最大功率值与飞行器的平均所需功率值之间的范围内的任二功率所对应的电压值。According to an aspect of the present disclosure, a power supply device is provided, which is configured on an aircraft, and the aircraft has an average required power value. The power supply device includes a secondary battery, a transformer, a fuel cell and a self-maintenance switch. The transformer is electrically connected between the secondary battery and the aircraft. The fuel cell is electrically connected to the aircraft and is adapted to provide a first output current to the aircraft. The self-maintenance switch is electrically connected to the fuel cell and the aircraft, and the self-maintenance switch is adapted to turn off the power of a part of the fuel cell stack, so that the fuel cell can perform a self-maintenance procedure. The transformer has a first output voltage setting value and a second output voltage setting value, and the second output voltage setting value is greater than the first output voltage setting value. When the voltage of a first output terminal of the fuel cell is lower than the set value of the first output voltage, a second output current of the secondary battery is supplied to the aircraft through the transformer. When it is expected that the voltage of the first output terminal of the fuel cell is about to decrease, the first output voltage setting value is dynamically adjusted to the second output voltage setting value, and the second output current of the secondary battery is provided to the aircraft through the transformer. The first output voltage setting value is a voltage value corresponding to any two powers within a range between a maximum power value of the characteristic curve of the fuel cell and an average required power value of the aircraft.
根据本公开的一方面,提出一种供电装置的供电方法。供电装置配置在一飞行器上,该供电装置包括一二次电池、一变压器、一燃料电池及一旁路开关,该变压器电性连接于该二次电池与该飞行器之间,该燃料电池电性连接于该飞行器,该旁路开关电性连接于该二次电池与该燃料电池之间,且该旁路开关与该变压器并联,该变压器具有一第一输出电压设定值。该供电方法包括以下步骤:该燃料电池提供一第一输出电流给该飞行器。当该燃料电池的一第一输出端电压低于该第一输出电压设定值时,该变压器将该二次电池的一第二输出电流提供给该飞行器。在一特定条件下,控制该旁路开关导通,使该二次电池的该第二输出电流经由旁路开关至该飞行器,而不经由该变压器提供该第二输出电流。其中,该特定条件为该变压器的一输出额定功率不足以供应该飞行器所需电能、该变压器的状态异常或是该燃料电池进行自维护期间。According to an aspect of the present disclosure, a power supply method of a power supply device is provided. The power supply device is configured on an aircraft, the power supply device includes a secondary battery, a transformer, a fuel cell and a bypass switch, the transformer is electrically connected between the secondary battery and the aircraft, and the fuel cell is electrically connected In the aircraft, the bypass switch is electrically connected between the secondary battery and the fuel cell, and the bypass switch is connected in parallel with the transformer, and the transformer has a first output voltage setting value. The power supply method includes the following steps: the fuel cell provides a first output current to the aircraft. When the voltage of a first output terminal of the fuel cell is lower than the set value of the first output voltage, the transformer provides a second output current of the secondary battery to the aircraft. Under a specific condition, the bypass switch is controlled to be turned on, so that the second output current of the secondary battery is supplied to the aircraft through the bypass switch without supplying the second output current through the transformer. Wherein, the specific condition is that an output rated power of the transformer is insufficient to supply the electric power required by the aircraft, the state of the transformer is abnormal, or the fuel cell is in self-maintenance period.
根据本公开的一方面,提出一种供电装置的供电方法。供电装置配置于一飞行器上。供电装置包括一二次电池、一变压器、一燃料电池及一自维护开关。变压器电性连接于二次电池与飞行器之间,该燃料电池电性连接于该飞行器,自维护开关电性连接于该燃料电池与该飞行器,该自维护开关适于关闭一部分燃料电池堆的电力,使该燃料电池进行自维护程序,变压器具有一第一输出电压设定值以及一第二输出电压设定值,第二输出电压设定值大于第一输出电压设定值。供电方法包括以下步骤。燃料电池提供一第一输出电流给飞行器。当燃料电池的一第一输出端电压低于第一输出电压设定值时,变压器将二次电池的一第二输出电流提供给飞行器。当预期燃料电池的第一输出端电压即将降低时,动态调整变压器由第一输出电压设定值至第二输出电压设定值,二次电池的第二输出电流经由变压器提供给飞行器。第一输出电压设定值介于燃料电池的特性曲线的一最大功率值与飞行器的平均所需功率值之间的范围内的任二功率所对应的电压值。According to an aspect of the present disclosure, a power supply method of a power supply device is provided. The power supply device is configured on an aircraft. The power supply device includes a secondary battery, a transformer, a fuel cell and a self-maintenance switch. The transformer is electrically connected between the secondary battery and the aircraft, the fuel cell is electrically connected to the aircraft, and a self-maintenance switch is electrically connected to the fuel cell and the aircraft, and the self-maintenance switch is suitable for turning off a part of the power of the fuel cell stack , to make the fuel cell perform a self-maintenance procedure, the transformer has a first output voltage setting value and a second output voltage setting value, and the second output voltage setting value is greater than the first output voltage setting value. The power supply method includes the following steps. The fuel cell provides a first output current to the aircraft. When the voltage of a first output terminal of the fuel cell is lower than the set value of the first output voltage, the transformer provides a second output current of the secondary battery to the aircraft. When the voltage of the first output terminal of the fuel cell is expected to decrease, the transformer is dynamically adjusted from the first output voltage setting value to the second output voltage setting value, and the second output current of the secondary battery is supplied to the aircraft through the transformer. The first output voltage setting value is a voltage value corresponding to any two powers within a range between a maximum power value of the characteristic curve of the fuel cell and an average required power value of the aircraft.
为了对本公开的上述及其他方面有更佳的了解,下文特举实施例,并配合附图详细说明如下:In order to have a better understanding of the above-mentioned and other aspects of the present disclosure, the following specific embodiments are given and described in detail with the accompanying drawings as follows:
附图说明Description of drawings
图1A绘示依照本公开一实施例的供电装置的示意图;FIG. 1A is a schematic diagram of a power supply device according to an embodiment of the present disclosure;
图1B绘示图1A的飞行器飞行时的时间与所需功率的关系图;FIG. 1B is a graph showing the relationship between time and required power when the aircraft of FIG. 1A is in flight;
图1C绘示燃料电池的特性曲线;及FIG. 1C depicts a characteristic curve of a fuel cell; and
图1D绘示依照本公开另一实施例的供电装置的示意图;1D is a schematic diagram of a power supply device according to another embodiment of the present disclosure;
图2A绘示依照本公开一实施例的供电装置的示意图;2A is a schematic diagram of a power supply device according to an embodiment of the present disclosure;
图2B绘示图2A的燃料电池的特性曲线的示意图;FIG. 2B is a schematic diagram illustrating a characteristic curve of the fuel cell of FIG. 2A;
图2C绘示依照本公开另一实施例的供电装置的示意图;2C is a schematic diagram of a power supply device according to another embodiment of the present disclosure;
图3绘示在燃料电池堆暂时停止输出或降低输出电力期间对于输出点电压的电压变化图。FIG. 3 is a graph showing the voltage change of the output point voltage during the period when the fuel cell stack temporarily stops outputting or reduces the output power.
【符号说明】【Symbol Description】
10:飞行器10: Aircraft
100-103:供电装置100-103: Power supply unit
110:燃料电池110: Fuel Cells
110a、120a:输出端110a, 120a: output terminal
115:二极管115: Diode
120:二次电池120: Secondary battery
130:变压器130: Transformer
140:控制器140: Controller
c:节点c:node
C1:曲线C1: Curve
I1:第一输出电流I 1 : the first output current
I2:第二输出电流I 2 : The second output current
R1:旁路开关R1: Bypass switch
R2:自维护开关R2: Self-maintenance switch
VS1:第一输出电压设定值V S1 : The first output voltage setting value
VS2:第二输入电压设定值V S2 : The second input voltage setting value
Va:第一输出端电压Va: the voltage of the first output terminal
Vb:第二输出端电压Vb: The second output terminal voltage
ΔP:范围ΔP: range
T:一段时间T: for a while
Vc:节点电压Vc: node voltage
Pav:平均所需功率值P av : Average required power value
Pmax:最大功率值P max : maximum power value
PS1:功率值P S1 : Power value
PU:最高所需功率值P U : Maximum required power value
具体实施方式Detailed ways
以下提出实施例进行详细说明,实施例仅用以作为范例说明,并非用以限缩本公开欲保护的范围。以下是以相同/类似的符号表示相同/类似的元件做说明。以下实施例中所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考附图的方向。因此,使用的方向用语是用来说明并非用来限制本公开。The following examples are provided for detailed description, and the examples are only used as examples, and are not intended to limit the scope of protection of the present disclosure. In the following, the same/similar symbols are used to represent the same/similar elements for description. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or rear, etc., are only referring to the directions of the drawings. Accordingly, the directional terms used are illustrative and not limiting of the present disclosure.
第一实施例first embodiment
请参照图1A及1B,其中图1A绘示依照本公开一实施例的供电装置的示意图,图1B绘示图1A的飞行器10飞行时的时间与所需功率的关系图。供电装置100例如配置于飞行器10上,以供电给飞行器10。飞行器10例如是无人机。Please refer to FIGS. 1A and 1B , wherein FIG. 1A is a schematic diagram of a power supply device according to an embodiment of the present disclosure, and FIG. 1B is a diagram illustrating the relationship between flight time and required power of the
依照本公开的一实施例,供电装置100包括燃料电池110、二极管115、二次电池120、变压器130、控制器140以及旁路开关R1。变压器130电性连接于二次电池120与飞行器10之间。燃料电池110电性连接于飞行器10,可提供第一输出电流I1给飞行器10。飞行器10具有平均所需功率值Pav,平均所需功率值Pav依据飞行器10的飞行模式而定,本实施例不加以限定。According to an embodiment of the present disclosure, the
请参照图1A,变压器130具有第一输出电压设定值VS1。当燃料电池110的输出端110a的第一输出端电压Va低于第一输出电压设定值VS1时,且旁路开关R1处于不导通状态,此时二次电池120的第二输出电流I2会经由变压器130提供给飞行器10。此外,当燃料电池110的输出端110a的第一输出端电压Va低于第一输出电压设定值VS1时,且旁路开关R1处于导通状态,将二次电池120的第二输出电流I2经由导通的旁路开关R1提供给飞行器10,此时,变压器130处于关闭状态(即第二输出电流I2未经由变压器130提供给飞行器10)。Referring to FIG. 1A , the
控制器140电性连接燃料电池110的输出端110a及二次电池120的输出端120a,以检测第一输出端电压Va及第二输出端电压Vb。此外,控制器140电性连接旁路开关R1,适于控制旁路开关R1的导通状况(导通或不导通)。另外,控制器140电性连接变压器130,适于检测变压器130的状态,并设定变压器130的第一输出电压设定值VS1。The
此外,二极管115电性连接燃料电池110与旁路开关R1之间,二极管115的阳极连接燃料电池110,阴极连接旁路开关R1,可阻挡二次电池120的第二输出电流I2回流至燃料电池110。In addition, the
在一实施例中,二次电池120的输出端120a所能提供最大的第二输出端电压Vb高于燃料电池110的输出端110a所能提供最大的第一输出端电压Va,而变压器130例如是降压器。如此,当二次电池120的第二输出端电压Vb高于第一输出电压设定值VS1时,第一变压器130可将二次电池120的第二输出端电压Vb降压至第一输出电压设定值VS1。变压器130例如是直流转直流(DC/DC)型变压器。In one embodiment, the maximum second output terminal voltage Vb that the
在一实施例中,旁路开关R1例如为晶体管或其他继电器开关。旁路开关R1与变压器130并联连接,且旁路开关R1电性连接于燃料电池110的输出端110a与二次电池120的输出端120a之间。当燃料电池110的第一输出端电压Va低于第一输出电压设定值VS1时,且旁路开关R1为导通状态,此时二次电池120的第二输出电流I2提供给飞行器10,且旁路开关R1导通之后形成一旁通路径,故二次电池120的第二输出电流I2不会流经变压器130。In one embodiment, the bypass switch R1 is, for example, a transistor or other relay switch. The bypass switch R1 is connected in parallel with the
也由于旁路开关R1导通之后,二次电池120能提供较大的第二输出电流I2,不受限于变压器130的额定输出功率,因此可尽快填补燃料电池110造成的供电不足,达到稳定供电的目的。Also, after the bypass switch R1 is turned on, the
请参照图1A,变压器130可检测燃料电池110与飞行器10之间连线的节点c的节点电压Vc。由于燃料电池110的输出端110a与节点c之间的压损可忽略不计,因此变压器130所检测到的节点电压Vc大致上等于燃料电池110的输出端110a的第一输出端电压Va。换句话说,当变压器130所检测到的节点电压Vc低于第一输出电压设定值VS1,意即等同于燃料电池110的第一输出端电压Va低于第一输出电压设定值VS1时,二次电池120的第二输出电流I2经由变压器130或旁路开关R1以提供给飞行器10。Referring to FIG. 1A , the
由于在燃料电池110的第一输出端电压Va低于第一输出电压设定值VS1的情况下,二次电池120才经过变压器130或是旁路开关R1提供第二输出电流I2给飞行器10,而当燃料电池110的第一输出端电压Va高于或等于第一输出电压设定值VS1时,直接由燃料电池110供电,二次电池120便不提供电流给飞行器10,因此可减少电流经过变压器130的损耗量,也可以减少二次电池120的耗电量。Since the first output terminal voltage Va of the
请参照图1B,曲线C1表示飞行器10运作(如起飞过程、在空中飞行过程、下降过程)的时间与功率的关系曲线,其中Pav表示平均所需功率值,而PU表示最高所需功率值。在飞行器10运作的一段时间T内,平均所需功率值Pav由燃料电池110提供,而平均所需功率值Pav与最高所需功率值PU之间的瞬间功率需求则由二次电池120提供。换句话说,二次电池120补足了飞行器10所需的瞬间大功率(如飞行器转弯或抵抗阵风来袭等需要高功率的情况)。Please refer to FIG. 1B , the curve C1 represents the relationship between time and power during the operation of the aircraft 10 (such as the take-off process, the flight process in the air, the descent process), wherein P av represents the average required power value, and PU represents the highest required power value. During a period T of operation of the
由于燃料电池110具有高能量密度的优点,故可作为主要供电者,提供基础负载的供电需求,但是燃料电池110具有无法瞬间拉高功率供电的缺点,当负载需求瞬间增加时,则由具有高功率密度的二次电池120提供额外的电力需求。Because the
图1C绘示燃料电池110的特性曲线,其包含电流与电压的关系(如电压曲线所示)及功率曲线。如图1C所示,第一输出电压设定值VS1为特性曲线中电压曲线的其中一点数值。第一输出电压设定值VS1例如是介于燃料电池110的特性曲线的最大功率值Pmax与飞行器10的平均所需功率值Pav之间的范围ΔP内的任一功率PS1所对应的电压值。FIG. 1C shows a characteristic curve of the
以下说明供电装置100的供电方法:当飞行器10开始运转,可由二次电池120经由变压器130提供第二输出电流I2给飞行器10,以供飞行器10运转初期(如开始转动叶片等)的所需电能(负载),此时飞行器10的输入端的节点电压Vc接近于第一输出电压设定值VS1。当燃料电池110的第一输出端电压Va持续上升至大于或等于第一输出电压设定值VS1时,变压器130停止对飞行器10提供第二输出电流I2,以停止二次电池120对飞行器10的电流输出。此时,燃料电池110即作为主要的供电来源提供第一输出电流I1至飞行器10,燃料电池110的第一输出端电压Va可依据飞行器10的所需电能的高低变化而改变。当飞行器10的所需电能增加(如上升,因此叶片快速转动),使燃料电池110提供给飞行器10的第一输出电流I1增加,进而导致燃料电池110的第一输出端电压Va下降。当燃料电池110的第一输出端电压Va低于第一输出电压设定值VS1时,变压器130将二次电池120的第二输出电流I2提供给飞行器,作为辅助的供电来源。但在某一特定条件下,例如是:变压器130输出额定功率不足以供应飞行器10所需电能、变压器130状态异常或是燃料电池110进行自维护期间(容后详述),可控制旁路开关R1导通,以使二次电池120经由旁路开关R1提供超出变压器130的输出额定功率至飞行器10。在本实施例中,为在变压器130的输出额定功率不足以补足飞行器10所需的辅助电能的条件下,控制器140可控制旁路开关R1导通,使二次电池120可以提供超出变压器130的输出额定功率至飞行器10,此时二次电池120并不经由变压器130提供第二输出电流I2。The power supply method of the
在另一实施例中,当控制器140检测到变压器130的状态异常,例如变压器130的内部温度达到一预定值或输出功率达到一预定值,使变压器130无法提供飞行器10所需的辅助电能时,控制器140也可控制旁路开关R1导通,使二次电池120可以提供超出变压器130的输出额定功率至飞行器10。In another embodiment, when the
请参照图1D,其绘示依照本公开另一实施例的供电装置101的示意图。本实施例的供电装置101与图1A的供电装置100相似,但要注意的是:供电装置101还包括自维护开关R2,自维护开关R2电性连接燃料电池110与飞行器10。自维护开关R2适于关闭一部分燃料电池堆的电力,使燃料电池110进行自维护程序,例如,燃料电池110每隔一段时间(例如10秒钟)必须停止部分燃料电池堆的电力输出,大约停止0.05秒~0.5秒,以进行内部润湿操作。详细来说,燃料电池110具有一个或一个以上的电池电堆并接输出,且具有个别的自维护开关R2以便于关闭部分或全部电池电堆的输出。在本实施例中,当燃料电池110准备进行自维护程序前,控制器140先导通旁路开关R1,使二次电池110的第二输出电流I2经由旁路开关R1提供给飞行器10,接着再断开自维护开关R2,以让燃料电池110进入自维护程序中。如此,可避免燃料电池110在进行自维护程序期间飞行器10的电压突然下降的情形。等到自维护程序结束之后,控制器140导通自维护开关R2使燃料电池110的第一输出端电压Va恢复正常,再断开旁路开关R1,改由当燃料电池110的第一输出端电压Va低于第一输出电压设定值VS1时,二次电池120的第二输出电流I2经由变压器130提供给飞行器10的方式。Please refer to FIG. 1D , which is a schematic diagram of a
第二实施例Second Embodiment
请参照图2A,其绘示依照本公开另一实施例的供电装置102的示意图,供电装置102例如配置于飞行器10上,以供电给飞行器10。飞行器10例如是无人机。Please refer to FIG. 2A , which is a schematic diagram of a
供电装置102包括燃料电池110、二极管115、二次电池120、变压器130、控制器140以及自维护开关R2。变压器130具有第一输出电压设定值VS1及第二输出电压设定值VS2,第二输出电压设定值VS2大于第一输出电压设定值VS1,且第二输出电压设定值VS2近似但略小于燃料电池110输出端110a的第一输出端电压Va(或节点电压Vc)。供电装置102的供电方法基本上与供电装置101相似,但要注意的是:当燃料电池110的第一输出端电压Va低于第一输出电压设定值VS1时,由二次电池120的第二输出电流I2经由变压器130提供给飞行器10;当预期燃料电池110的输出端110a的第一输出端电压Va即将降低时,例如是:燃料电池110自维护阶段或是燃料电池110需要关闭部分燃料电池堆的电力输出等,此时控制器140可动态调整变压器130由第一输出电压设定值VS1至数值较大的第二输出电压设定值VS2来降低由二次电池120辅助供电的阈值,使得在燃料电池110的输出端110a的第一输出端电压Va在停止输出或降低输出第一输出电流I1的期间,二次电池120的第二输出电流I2经由变电器130提供给飞行器10,以避免因为第一输出端电压Va停止输出或降低输出第一输出电流I1造成负载端功率的大幅变动而引起飞行器10操控的问题。等到燃料电池110的输出端110a的第一输出端电压Va重新高于第二输出电压设定值VS2时,再将变压器130调整至数值较小的第一输出电压设定值VS1,使燃料电池110的输出端110a的第一输出端电压Va恢复输出第一输出电流I1。The
控制器140电性连接燃料电池110的输出端110a及二次电池120的输出端120a,以检测第一输出端电压Va及第二输出端电压Vb。此外,控制器140电性连接变压器130,适于检测变压器130的状态,并设定变压器130的输出电压设定值,使变压器130具有动态调整的第一输出电压设定值VS1或第二输出电压设定值VS2。The
此外,二极管115电性连接燃料电池110与变压器130之间,可阻挡二次电池120的第二输出电流I2回流至燃料电池110。In addition, the
自维护开关R2电性连接燃料电池110与飞行器10。自维护开关R2适于关闭一部分燃料电池堆的电力,使燃料电池110进行自维护程序。控制器140适于控制自维护开关R2的导通状况(导通或断开)。The self-maintenance switch R2 is electrically connected to the
详细来说,在燃料电池110进行自维护程序前,控制器140取得节点电压Vc,并根据节点电压Vc将变压器130调整为第二输出电压设定值VS2。当进行自维护程序时,自维护开关R2断开,此时由变压器130维持飞行器10的电压在预期的第二输出电压设定值VS2,并提供二次电池120的第二输出电流I2给飞行器10,如此,可避免燃料电池110在进行自维护程序期间,因供电不足而造成飞行器10的电压突然下降的情形。等到自维护程序结束,导通自维护开关R2并将变压器130的输出设定由第二输出电压设定值VS2改回至第一输出电压设定值VS1,使燃料电池110的第一输出端电压Va恢复供电至飞行器10。Specifically, before the
在一实施例中,燃料电池110例如是由72个燃料电池单元所串联而成,每个燃料电池单元的操作电压介于0.608V~0.692V之间。因此,燃料电池110可提供介于43.8V~49.8V之间的操作电压,但本公开不以此为限。在一实施例中,第一输出电压设定值VS1及第二输出电压设定值VS2例如位于燃料电池110的操作电压的范围内。第一输出电压设定值VS1例如为43.8V,第二输出电压设定值VS1例如为46.8V。In one embodiment, the
此外,二次电池120例如是由12个二次电池单元所串联而成,每个二次电池单元的操作电压介于3.65V~4.15V之间。因此,二次电池120可提供介于43.8V~49.8V之间的操作电压,但本公开不以此为限。In addition, the
图2B绘示图2A的燃料电池110的特性曲线,其包含电流与电压的关系(如电压曲线所示)及功率曲线。如图2B所示,第一输出电压设定值VS1及第二输出电压设定值VS2为特性曲线中电压曲线的其中二点数值。第一输出电压设定值VS1及第二输出电压设定值VS2例如是介于燃料电池110的特性曲线的最大功率值Pmax与飞行器10的平均所需功率值Pav之间的范围ΔP内的任二功率所对应的电压值。但在其他实施例中,第二输出电压设定值VS2不必然需要低于飞行器10的平均功率值Pav所对应的电压值,第二输出电压设定值VS2仅需要高于第一输出电压设定值VS1即可。在一实施例中,第一输出电压设定值VS1例如为燃料电池110的特性曲线的最大功率值Pmax所对应的电压值,第二输出电压设定值VS2例如为飞行器10的平均所需功率值Pav所对应的电压值。FIG. 2B shows a characteristic curve of the
在本实施例中,当预期燃料电池110的第一输出端电压Va将大幅下降或预期飞行器10所需的电能大幅增加,可动态调整第一输出电压设定值VS1至第二输出电压设定值VS2,来降低由二次电池120辅助供电的阈值,让二次电池120所产生的第二输出电流I2能提早提供给飞行器10使用,以预防燃料电池110可能造成的供电不足。In this embodiment, when the voltage Va of the first output terminal of the
也就是说,在本实施例中,变压器130的输出设定可以依据燃料电池110的第一输出端电压Va动态调整到适当的第一输出电压设定值VS1或第二输出电压设定值VS2,使得飞行器10所需的电压不会因为燃料电池110的输出功率的下降或第一输出电流I1的变动而造成飞行器10所需的电压的大幅变动。第二输出电压设定值VS2(例如46.8V)可设定为接近自维护程序前的第一输出端电压Va(例如47V),使得在进入自维护操作时,燃料电池110停止第一输出电流I1的输出,由变压器130提供第二输出电压设定值VS2,以维持飞行器10的电压不会产生大幅的变动。That is to say, in this embodiment, the output setting of the
上述第一实施例与第二实施例中,第一实施例的旁路开关R1及第二实施例的动态调整变压器130的输出电压设定值的方式也可合并使用。请参考图2C,其绘示依照本公开另一实施例的供电装置103的示意图。亦即,燃料电池110在进行自维护程序前,若预期燃料电池110的第一输出端电压Va即将降低时,例如是:燃料电池110自维护阶段或是燃料电池110需要关闭部分燃料电池堆的电力输出等,此时控制器140可动态调整变压器130由第一输出电压设定值VS1至数值较大的第二输出电压设定值VS2来降低由二次电池120辅助供电的阈值,使得在燃料电池110停止输出或降低输出第一输出电流I1的期间,将由二次电池120的第二输出电流I2经由变压器130提供给飞行器10。等到自维护程序结束,导通自维护开关R2并将变压器130的输出设定由第二输出电压设定值VS2改回至第一输出电压设定值VS1,使燃料电池110的第一输出端电压Va恢复供电至飞行器10,以避免飞行器10的电压大幅变动。在一实施例中,也可经由旁路开关R1将二次电池120的第二输出电流I2提供给飞行器10,即在进行自维护程序前,先导通旁路开关R1,二次电池120的第二输出电流I2经由旁路开关R1提供给飞行器10,等到自维护程序结束之后,再断开旁路开关R1,以恢复由燃料电池110输出第一输出电流I1的供电情形。此外,若控制器140检测到变压器130的状态异常,例如变压器130的内部温度达到一预定值或输出功率达到一预定值,使变压器130无法提供飞行器10所需的辅助电能时,控制器140可控制旁路开关R1导通,使二次电池120可以直接经由旁路驱动负载,可提供超出变压器130的输出额定功率至飞行器10,避免因变压器130的额定限制或失效异常造成提供负载的电力失效。In the above-mentioned first embodiment and the second embodiment, the bypass switch R1 of the first embodiment and the method of dynamically adjusting the output voltage setting value of the
请参照图3,其绘示在燃料电池堆暂时停止输出或降低输出电力期间对于输出点电压(即节点电压Vc)的电压变化图。要注意的是,在一般使用情形下,燃料电池110作为主要的供电者,因此节点电压曲线基本上与燃料电池的电压曲线相同,故图3中并未绘示出燃料电池的电压曲线。图中第一模式为在固定输出电压设定值的情形下,在燃料电池堆暂时停止输出或降低输出电力期间,受到飞行器10持续拉载所需的电能的影响,燃料电池110的电压可能瞬间下降至变压器130设定的固定输出电压设定值(例如43.8V),因此可看到在第一模式中节点电压曲线骤降的情形发生;第二模式为采用如前述图1D实施例导通旁路开关R1的方式,在燃料电池110堆暂时停止输出或降低输出的电力期间,经由二次电池120直接供电,因此使得节点电压曲线突然跳到接近二次电池120的电压(例如49V),显示如果二次电池120比当时的节点电压高许多,将使负载点电压产生瞬间突升的状况;第三模式为采用如前述图2A中动态调整输出电压设定值的方式,显示在燃料电池110堆停止输出或降低输出电力前,变压器130的输出设定动态调整至接近当时输出点电压(例如47V),使得当燃料电池堆暂时停止输出或降低输出电力期间,输出点电压可以保持在第二输出电池设定值(例如46.8V),而不会有突降或突升的状况,能提供负载端具有稳定的节点电压。Please refer to FIG. 3 , which shows a voltage change diagram for the output point voltage (ie, the node voltage Vc) during the period when the fuel cell stack temporarily stops outputting or reduces the output power. It should be noted that, in general use, the
综上所述,虽然本公开已以实施例公开如上,然其并非用以限定本公开。本公开所属技术领域的技术人员在不脱离本公开的精神和范围内,当可作各种的更动与润饰。因此,本公开的保护范围当视所附权利要求书界定范围为准。To sum up, although the present disclosure has been disclosed above with examples, it is not intended to limit the present disclosure. Those skilled in the art to which the present disclosure pertains can make various changes and modifications without departing from the spirit and scope of the present disclosure. Therefore, the scope of protection of the present disclosure should be determined by the scope defined by the appended claims.
Claims (22)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011607880.0A CN114696443A (en) | 2020-12-30 | 2020-12-30 | Power supply device for fuel cell and power supply method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011607880.0A CN114696443A (en) | 2020-12-30 | 2020-12-30 | Power supply device for fuel cell and power supply method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114696443A true CN114696443A (en) | 2022-07-01 |
Family
ID=82131810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011607880.0A Pending CN114696443A (en) | 2020-12-30 | 2020-12-30 | Power supply device for fuel cell and power supply method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114696443A (en) |
-
2020
- 2020-12-30 CN CN202011607880.0A patent/CN114696443A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6721661B2 (en) | Fuel cell assembly and method of adjusting a fuel cell assembly | |
US7855467B2 (en) | Hybrid power generation of wind-power generator and battery energy storage system | |
CN110877741B (en) | Power supply device, flight tool applying same and power supply method thereof | |
CA2663708C (en) | Fuel cell system | |
JP3960337B2 (en) | Fuel cell system having a secondary battery | |
JP2018110518A (en) | Droop compensation using current feedback | |
CN106058285B (en) | A kind of unmanned plane activation of fuel cell control system and control method | |
CN111009703A (en) | Heating control device and heating control method for battery | |
US9537310B2 (en) | Method of controlling the operation of a hybrid system | |
KR102038201B1 (en) | Fuel cell power pack, and power supply control method thereof | |
WO2013065132A1 (en) | Fuel cell output control apparatus | |
US20110089909A1 (en) | Electric energy storage module control device | |
PT2530780E (en) | Method for managing the operation of a hybrid system | |
CN114696443A (en) | Power supply device for fuel cell and power supply method thereof | |
TWI792133B (en) | Power supply device and method thereof for fuel cell | |
CN103078354A (en) | Backup battery protection system | |
CN109193885B (en) | Control system of photovoltaic energy storage inverter | |
JP5336791B2 (en) | Power supply | |
US11811114B2 (en) | Power supply device and method thereof for fuel cell | |
CN106849332B (en) | Charging control method of uninterruptible power supply | |
CN113224743B (en) | A hybrid energy storage DC power supply system off-grid transient control method | |
TWI793489B (en) | Control system and method of fuel cell stacks | |
WO2020219994A1 (en) | Aircraft power bus architecture and power bus stabilization | |
CN104701943B (en) | Battery system, stacks of cells, battery control system and method | |
CN117183769A (en) | Hydrogen fuel cell system and hydrogen fuel cell automobile |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |