CN114682275A - 一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法 - Google Patents
一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法 Download PDFInfo
- Publication number
- CN114682275A CN114682275A CN202210359126.2A CN202210359126A CN114682275A CN 114682275 A CN114682275 A CN 114682275A CN 202210359126 A CN202210359126 A CN 202210359126A CN 114682275 A CN114682275 A CN 114682275A
- Authority
- CN
- China
- Prior art keywords
- mgsi
- photocatalyst
- type
- solution
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 229910017623 MgSi2 Inorganic materials 0.000 claims abstract description 150
- 229910000161 silver phosphate Inorganic materials 0.000 claims abstract description 128
- 239000011941 photocatalyst Substances 0.000 claims abstract description 66
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 28
- 239000001257 hydrogen Substances 0.000 claims abstract description 28
- 239000000843 powder Substances 0.000 claims abstract description 18
- 238000003756 stirring Methods 0.000 claims abstract description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000001035 drying Methods 0.000 claims abstract description 6
- 238000005406 washing Methods 0.000 claims abstract description 6
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims abstract description 5
- 229910000397 disodium phosphate Inorganic materials 0.000 claims abstract description 5
- 239000012153 distilled water Substances 0.000 claims abstract description 3
- 239000000725 suspension Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 5
- 101710134784 Agnoprotein Proteins 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Inorganic materials [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 4
- 238000001354 calcination Methods 0.000 claims description 3
- 230000000593 degrading effect Effects 0.000 claims description 3
- 239000003242 anti bacterial agent Substances 0.000 claims description 2
- 229940088710 antibiotic agent Drugs 0.000 claims description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 235000019441 ethanol Nutrition 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 14
- GSDSWSVVBLHKDQ-JTQLQIEISA-N Levofloxacin Chemical compound C([C@@H](N1C2=C(C(C(C(O)=O)=C1)=O)C=C1F)C)OC2=C1N1CCN(C)CC1 GSDSWSVVBLHKDQ-JTQLQIEISA-N 0.000 abstract description 12
- 229960003376 levofloxacin Drugs 0.000 abstract description 12
- 239000002105 nanoparticle Substances 0.000 abstract description 5
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(I) nitrate Inorganic materials [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005286 illumination Methods 0.000 abstract description 4
- 238000007146 photocatalysis Methods 0.000 abstract description 3
- 238000003980 solgel method Methods 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 24
- 239000000243 solution Substances 0.000 description 17
- 239000002131 composite material Substances 0.000 description 8
- 238000006731 degradation reaction Methods 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000013032 photocatalytic reaction Methods 0.000 description 5
- 238000000628 photoluminescence spectroscopy Methods 0.000 description 5
- 229910001868 water Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 4
- 238000005424 photoluminescence Methods 0.000 description 4
- 238000000634 powder X-ray diffraction Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002957 persistent organic pollutant Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000004627 transmission electron microscopy Methods 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000002144 chemical decomposition reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000001055 reflectance spectroscopy Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000007281 self degradation Effects 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/14—Phosphorus; Compounds thereof
- B01J27/182—Phosphorus; Compounds thereof with silicon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/04—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
- C01B3/042—Decomposition of water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/36—Organic compounds containing halogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Abstract
本发明属于光催化技术领域,具体涉及一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法。将AgNO3和Na2HPO4·12H2O粉末分别置于蒸馏水中,在室温下持续搅拌50‑60min,将两种溶液混合后搅拌,洗涤干燥,得Ag3PO4粉末;采用溶胶凝胶法制备Sr2MgSi2O7:Eu2+,Dy3+粉末;在避光条件下,将Ag3PO4粉末与Sr2MgSi2O7:Eu2+,Dy3+分别加入到无水乙醇中,搅拌分散,将两种溶液混合,搅拌,洗涤,干燥,得Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4纳米粒子。本发明中,Sr2MgSi2O7:Eu2+,Dy3+纳米粒子在太阳光光照条件下,能够降解左氧氟沙星同时产生氢气。
Description
技术领域
本发明属于光催化技术领域,具体涉及一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法。
背景技术
随着社会工业化水平的不断提高,能源短缺和环境污染问题已经成为现代社会亟需解决的问题。因此,开发一种清洁的可持续能源成为解决上述问题的方法之一。氢气是目前发现的最清洁的能源,具有较高的能量密度,是生产生活中最理想的一种燃料。工业制氢方面主要采用天然气制氢和电解水制氢。其中,化石燃料制氢,成本低,但会引发环境污染问题,不是一个理想的制氢途径。而电解水制氢不会产生二氧化碳,制氢方法绿色环保,但成本较高,从而限制了它的发展。因此,寻找一种新型技术,既可以满足环境保护的要求,又可以持久高效的生产氢气,将为人类社会的可持续发展做出重大的贡献。
光催化反应制氢不仅可以实现利用廉价太阳能进行水裂解制氢的目的,同时,在制氢过程中,利用有机污染物作为牺牲剂,解决了一部分环境污染的问题,具有高效经济等优点,是缓解能源危机和解决环境问题的重要途径。然而,光催化剂的使用必须依赖于光源的存在,仅能在白天光照足够时进行一系列光催化制氢和降解反应,限制了光催化剂的使用,成为光催化反应急需解决的问题。因此,设计一种新型的光催化体系,实现光催化反应的昼夜连续进行是十分有必要的。
发明内容
本发明的目的是提供一种余辉发光驱动的Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,显著提高了半导体光催化剂的光催化活性。通过长余辉材料独特的发光性能和催化性能,实现光催化剂的全天候利用,并提高电子和空穴的分离效率。
本发明采用的技术方案是:一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,制备方法包括如下步骤:
1)Ag3PO4的制备:将AgNO3和Na2HPO4·12H2O粉末分别置于蒸馏水中,在室温下持续搅拌50-60min,得溶液A和溶液B;将溶液A和溶液B混合,搅拌3.0h,离心洗涤,干燥,得Ag3PO4粉末;
2)Sr2MgSi2O7:Eu2+,Dy3+的制备:将Sr(NO3)2、Eu(NO3)2、Dy(NO3)2、Mg(NO3)2和H3BO3溶液混合搅拌40min。然后,向混合液中滴加Si(OC2H5)4的乙醇溶液,并继续搅拌2.0h。将所得溶胶干燥得到白色粉末。最后,在还原气氛下,高温煅烧2.0h,得到Sr2MgSi2O7:Eu2+,Dy3+粉末。
3)Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的制备:在避光条件下,将Ag3PO4粉末与Sr2MgSi2O7:Eu2+,Dy3+分别加入到无水乙醇中,搅拌分散30-40min,得到悬浮液C和悬浮液D;将悬浮液C和悬浮液D混合,搅拌4.0h,离心洗涤,干燥,得Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4粉末。
优选地,上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,步骤1)中,按摩尔比,AgNO3:Na2HPO4·12H2O=3:1。
优选地,上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,步骤1)中,所述溶液A与溶液B混合是,将溶液B逐滴加入至溶液A中。
优选地,上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,步骤2)中,按摩尔比,Sr(NO3)2:Eu(NO3)2:Dy(NO3)2:Mg(NO3)2:H3BO3=200:1:2:100:30。
优选地,上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,步骤2)中,按体积比,还原气氛中,H2:N2=5:95。
优选地,上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,步骤3)中,按质量比,Sr2MgSi2O7:Eu2+,Dy3+:Ag3PO4=15:1。
优选地,上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,步骤3)中,按固液比,Sr2MgSi2O7:Eu2+,Dy3+:无水乙醇=1g:50mL。
优选地,上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,步骤3)中,按固液比,Ag3PO4:无水乙醇=1g:50mL。
上述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂在太阳光下降解抗生素同时产氢中的应用。
优选地,上述的应用,方法如下:在含有左氧氟沙星的溶液中,加入上述的Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,于太阳光下照射。
本发明的有益效果是:
本发明,采用共沉淀法和溶剂法设计了一种余辉发光驱动的Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂。该催化剂不仅具备传统的光催化剂的特点,而且通过两个具有合适带隙的半导体结合拓宽了光响应范围。更有价值的是,由于Sr2MgSi2O7:Eu2+,Dy3+的特殊光学性能,在黑暗条件下,可作为光催化体系的光源,实现在黑暗条件下仍可继续进行光催化反应的目的。同时,Sr2MgSi2O7:Eu2+,Dy3+和Ag3PO4构建的Z型光催化系统,有效促进电子的转移,提高了光生电子和空穴对的分离效率。
本发明的光催化剂具有全天候反应、新颖、高效、性质稳定等特点,可广泛应用于水体净化、废水治理等环保领域,前景广阔。
附图说明
图1a是Sr2MgSi2O7:Eu2+,Dy3+的X射线粉末衍射(XRD)图。
图1b是Ag3PO4的X射线粉末衍射(XRD)图。
图1c是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的不同质量比的X射线粉末衍射(XRD)图。
图2a是Sr2MgSi2O7:Eu2+,Dy3+的扫描电子显微镜(SEM)图。
图2b是Ag3PO4的扫描电子显微镜(SEM)图。
图2c是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的扫描电子显微镜(SEM)图。
图3a是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的透射电子显微镜(TEM)图。
图3b是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的高倍透射电子显微镜(HRTEM)图。
图4是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的X射线能量色散光谱(EDX)图。
图5是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的总X射线光电子能谱分析(XPS)图。
图6a是Sr2MgSi2O7:Eu2+,Dy3+、Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的固体紫外图。
图6b是Sr2MgSi2O7:Eu2+,Dy3+的固体实测紫外图。
图6c是Ag3PO4的固体实测紫外图。
图6d是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的固体实测紫外图。
图7a是Sr2MgSi2O7:Eu2+,Dy3+和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的光致发光(PL)图。
图7b是Sr2MgSi2O7:Eu2+,Dy3+和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的光致发光(PL)图。
图8是Sr2MgSi2O7:Eu2+,Dy3+、Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化降解效果图。
图9a是太阳光照射下Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4产氢效果图。
图9b是黑暗条件下Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4产氢效果图。
图10是Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂光催化降解左氧氟沙星同时产氢的机理图。
具体实施方式
实施例1一种新型Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂
(一)制备方法
(1)Ag3PO4的制备
首先,分别量取150mL去离子水于250mL烧杯A和烧杯B中。按照化学计量,称取2.541g AgNO3固体加入烧杯A中,搅拌1.0h使其完全溶解得到A溶液。称取1.7907gNa2HPO4·12H2O固体加入烧杯B中,搅拌1.0h使其完全溶解得到B溶液。将B溶液逐滴加入至A溶液中,搅拌3.0h使其充分反应。静置后去除透明上清液,将反应得到黄色沉淀,通过离心收集,并用去离子水反复冲洗数次。然后,将所得样品置于真空干燥箱中,60℃干燥12.0h。
(2)Sr2MgSi2O7:Eu2+,Dy3+的制备
将10mL浓度为1.0mol/L的Sr(NO3)2、0.5mL浓度为0.1mol/L的Eu(NO3)2、1.0mL浓度为0.1mol/L的Dy(NO3)2、5.0mL浓度为1.0mol/L的Mg(NO3)2和1.5mL浓度为1.0ml/L的H3BO3溶液混合搅拌40min。然后,向混合液中滴加Si(OC2H5)4的乙醇溶液,并继续搅拌2.0h。将所得溶胶干燥得到白色粉末。最后,在H2与N2体积比为5:95的还原气氛下,高温煅烧2.0h,得到Sr2MgSi2O7:Eu2+,Dy3+粉末。
(3)Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂的制备
采用溶剂法制备Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4纳米粒子。首先,在避光条件下,将0.5g Ag3PO4与7.5g Sr2MgSi2O7:Eu2+,Dy3+分别分散于25mL和50mL无水乙醇中,随后将两悬浊液完全混合,在黑暗避光条件下磁力搅拌4.0h。静置3.0h后,去除上清液,将得到的沉淀,通过离心收集,并用去离子水对固体混合物反复冲洗数次,并用砂芯漏斗进行抽滤。将所得样品置于真空干燥箱中,60℃干燥12.0h。
(二)检测
1、图1a-图1c是Sr2MgSi2O7:Eu2+,Dy3+,Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4在不同质量比的X射线粉末衍射(XRD)图。
图1a显示了Sr2MgSi2O7:Eu2+,Dy3+的一些主要衍射峰出现在2θ=36.52°,42.42°和61.52°处,这与Sr2MgSi2O7(JCPDS Card NO:75-1736)的(201),(211)和(212)晶面相符。如图1b所示,Ag3PO4在2θ=20.88°、29.69°、33.29°、36.58°、47.79°、55.02°、61.64°和71.89°处显示出衍射峰,它们分别对应于Ag3PO4(JCPDS Card NO:06-0505)的(110)、(200)、(210)、(211)、(310)、(320)、(400)和(421)晶面。图1c显示了Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂的XRD图谱。可以同时找到Sr2MgSi2O7:Eu2+,Dy3+和Ag3PO4的特征峰,说明该复合材料是由Sr2MgSi2O7:Eu2+,Dy3+和Ag3PO4组成的。同时,Sr2MgSi2O7:Eu2+,Dy3+的衍射峰强度随着Sr2MgSi2O7:Eu2+,Dy3+的质量比的增加而逐渐增强。通过上述分析可知Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂被成功制备。
2、图2a-图2c是Sr2MgSi2O7:Eu2+,Dy3+,Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4在不同质量比的扫描电子显微镜(SEM)图。
从图2a可以看出,Sr2MgSi2O7:Eu2+,Dy3+样品为直径200-300nm的球形纳米颗粒,表面光滑,分散程度较好。如图2b所示,Ag3PO4是一种形状欠规则,表面光滑的颗粒,平均粒径在1μm左右。图2c是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的复合材料的SEM图。如图所示,小尺寸的Sr2MgSi2O7:Eu2+,Dy3+纳米颗粒可以紧密的附着在Ag3PO4的表面。以上结果说明Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4复合光催化剂被成功制备。
3、图3a-图3b是Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的透射镜图(TEM)和高倍透射电子显微镜图(HRTEM)。
用TEM和HRTEM对制备的Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4样品的微观结构进行了表征。图3a是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的TEM图,从图3a可以看出,黑色粒子分散在灰色粒子的表面,彼此之间紧密接触。根据Sr2MgSi2O7:Eu2+,Dy3+和Ag3PO4的形貌特征,可以推断黑色粒子应为Sr2MgSi2O7:Eu2+,Dy3+,灰色粒子为Ag3PO4。图3b是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的HRTEM图,HRTEM图像进一步说明了Sr2MgSi2O7:Eu2+,Dy3+和Ag3PO4颗粒是相互接触的。从图3b可以看出,测量得到的晶格条纹为0.181nm和0.284nm,分别与Sr2MgSi2O7:Eu2+,Dy3+的(112)晶面和(220)晶面匹配良好。测量的到的晶格条纹为0.268nm和0.244nm,分别与Ag3PO4的(210)晶面和(211)晶面匹配良好。总之,通过TEM和HRTEM图像可以确定制备的样品为Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4复合光催化剂。
4、图4是Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的X射线能量色散光谱(EDX)图。
为了确定所制得的Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4样品的元素组成和相对含量,进行了能谱色散X射线能谱(EDX)分析。如图4所示,在光谱中可以观察到Sr、Mg、Si、Eu、Dy、Ag、P和O的特征峰,证明制备的样品中含有Sr、Mg、Si、Eu、Dy、Ag、P和O元素。此外,制备样品中所含元素的原子比与Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4复合物经计算得到的理论原子比相接近。根据以上分析结果可以进一步证明成功制备了Z型的Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4复合光催化剂。
5、图5是Z型的Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的X射线光电子能谱(XPS)谱图。
利用X射线光电子能谱(XPS)对Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂的元素组成和价键结构进行了表征,所得结果如图5所示。从图5中可以看出,Z型Sr2MgSi2O7:Eu2+,Dy3 +/Ag3PO4样品中含有Sr、Mg、Si、Eu、Dy、Ag、P和O元素,并且样品中每个峰都很清晰。结果表明,Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4复合材料作为Z型光催化剂被成功制备。
6、图6a-图6d是Sr2MgSi2O7:Eu2+,Dy3+,Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的UV-vis漫反射(DRS)光谱分析以及估算的Sr2MgSi2O7:Eu2+,Dy3+,Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的带隙。
采用UV-vis漫反射光谱(DRS)研究了制备的Sr2MgSi2O7:Eu2+,Dy3+,Ag3PO4和Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4样品的带隙结构和光学性质。从图6a中可以观察到,制备的Sr2MgSi2O7:Eu2+,Dy3+和Ag3PO4分别在480nm和520nm处有吸收边,说明它们可见光区有较强的吸收。与单一半导体相比,Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4复合光催化剂的光吸收范围更宽,吸收强度更高。制备样品的光学带隙可由下式计算:αhν=A(hν-Ebg)1/2其中α、h、ν、Ebg、A分别代表吸收系数、普朗克常数、光频率、带隙、常数。如图6b-图6d所示,计算得到的Sr2MgSi2O7:Eu2+,Dy3+,Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的带隙分别为2.76eV、2.42eV和2.39eV,与文献中报道的数值基本一致.
7、图7a-图7b是Sr2MgSi2O7:Eu2+,Dy3+和Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的光致发光(PL)光谱。
利用光致发光光谱(PL)对Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂的光学性质进行了表征,所得结果如图7所示。从图7a中可以看出,Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂在被365nm的光激发后,可以在480nm附近发射可见光。从图7a中可以看出,Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂在被365nm的光激发后,可以保持相当长时间的余辉发光强度。结果表明,Sr2MgSi2O7:Eu2+,Dy3+可以作为Z型光催化剂在黑暗条件下的辅助光源。
实施例2 Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂在光催化降解左氧氟沙星同时产氢的应用
(一)Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂光催化降解左氧氟沙星的影响
实验方法:将0.1g Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂置于100mL30mg/L的左氧氟沙星溶液中。在25-28℃条件下,用太阳光照射1.0h,每隔为30min取一次样。并在光照结束后,黑暗条件下继续保持3.0h,并每隔为30min取一次样。结果如图8。
在太阳光照射前,将各悬浮液在黑暗中放置30min,以达到吸附/解吸平衡。从暗实验中可以看出,在光催化剂存在的情况下,30min内左氧氟沙星浓度都有轻微的下降,说明所制备的光催化剂对左氧氟沙星均有轻微的吸附作用。空白对照实验表明,在没有光催化剂存在的情况下,左氧氟沙星在光照下的自降解能力较弱,证实了左氧氟沙星在光照下是相对稳定的。当悬浮液被太阳光照射时,Sr2MgSi2O7:Eu2+,Dy3+单体对左氧氟沙星的降解能力很弱,Ag3PO4单体存在一定的降解能力,而Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂表现出最高的降解率,表明其具有最高的光催化性能。Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂在太阳光照射1.0h后,对左氧氟沙星的降解率达到84.51%。当光源被移除时,黑暗条件下,Sr2MgSi2O7:Eu2+,Dy3+和Ag3PO4对左氧氟沙星几乎没有降解能力。而Z型Sr2MgSi2O7:Eu2+,Dy3 +/Ag3PO4光催化剂仍可以保持一定的降解效果,说明长余辉材料Sr2MgSi2O7:Eu2+,Dy3+的存在,在一定程度上可以作为光催化体系在黑暗条件下的光源,使整个光催化体系保持一定的光催化活性。
(二)Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂产氢的影响
通过制备样品的产氢量可以评价光催化剂的光催化性能。图9a显示了Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂在太阳光下照射1.0h的产氢量,分别为290.17μmol/g,491.07μmol/g和401.78μmol/g。结果表明,Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂具有较好的光催化产氢活性。当光源被移除时,黑暗条件下,Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂仍可保持一定的产氢量,如图9b所示,这表明长余辉材料Sr2MgSi2O7:Eu2+,Dy3+的存在,在一定程度上解决了黑暗条件下缺少光源无法进行光催化反应的问题,辅助光催化剂继续保持一定的光催化活性。其中Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4复合物的质量比为15:1时,在黑暗条件下的产氢量是最高的。
(三)Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂降解有机污染物同时产氢的机理
基于以上结果,提出了Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂光催化降解有机污染物同时产氢的机理,如图10所示。
当Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂被太阳光激发时,Sr2MgSi2O7:Eu2+,Dy3 +和Ag3PO4分别在各自的导带(CB)和价带(VB)上产生光生电子(e-)和空穴(h+)。由于Sr2MgSi2O7:Eu2+,Dy3+(ΔEbg=2.76eV,ECB=-1.57eV和EVB=+1.48eV)和Ag3PO4(ΔEbg=2.42eV,ECB=+0.24eV和EVB=+2.66eV)具有相对匹配的导带和价带电位值,因此,Ag3PO4的CB上的电子可以迅速的转移至Sr2MgSi2O7:Eu2+,Dy3+的VB,并与VB上的空穴重新复合,形成Z型电子转移路径。这种电子转移方式能够很好的将Sr2MgSi2O7:Eu2+,Dy3+相对负的导带和Ag3PO4相对正的价带同时保留,使得复合物光催化剂具有很强的氧化还原能力。抗生素废水在Ag3PO4相对正的价带上发生氧化反应,能够被转化成CO2、H2O和一些无毒无害的无机离子。H+能够在Sr2MgSi2O7:Eu2+,Dy3+相对负的导带上得到电子,转化成H2。
当光源被移除时,Sr2MgSi2O7:Eu2+,Dy3+发射波长约480nm的可见光。Ag3PO4与Sr2MgSi2O7:Eu2+,Dy3+的吸光范围和Sr2MgSi2O7:Eu2+,Dy3+的光致发光范围有相当大的重叠。因此,由Sr2MgSi2O7:Eu2+,Dy3+发出的蓝光可以被Ag3PO4和Sr2MgSi2O7:Eu2+,Dy3+充分吸收。这样,Sr2MgSi2O7:Eu2+,Dy3+可作为Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂的光源,从而继续进行制氢反应和降解反应。
Claims (10)
1.一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,制备方法包括如下步骤:
1)Ag3PO4的制备:将AgNO3和Na2HPO4·12H2O粉末分别置于蒸馏水中,在室温下持续搅拌50-60min,得溶液A和溶液B;将溶液A和溶液B混合,搅拌3.0h,离心洗涤,干燥,得Ag3PO4粉末;
2)Sr2MgSi2O7:Eu2+,Dy3+的制备:将Sr(NO3)2、Eu(NO3)2、Dy(NO3)2、Mg(NO3)2和H3BO3溶液混合搅拌40min。然后,向混合液中滴加Si(OC2H5)4的乙醇溶液,并继续搅拌2.0h。将所得溶胶干燥得到白色粉末。最后,在还原气氛下,高温煅烧2.0h,得到Sr2MgSi2O7:Eu2+,Dy3+粉末。
3)Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4的制备:在避光条件下,将Ag3PO4粉末与Sr2MgSi2O7:Eu2+,Dy3+分别加入到无水乙醇中,搅拌分散30-40min,得到悬浮液C和悬浮液D;将悬浮液C和悬浮液D混合,搅拌4.0h,离心洗涤,干燥,得Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4粉末。
2.根据权利要求1所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,步骤1)中,按摩尔比,AgNO3:Na2HPO4·12H2O=3:1。
3.根据权利要求2所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,步骤2)中,按摩尔比,Sr(NO3)2:Eu(NO3)2:Dy(NO3)2:Mg(NO3)2:H3BO3=200:1:2:100:30。
4.根据权利要求3所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,步骤2)中,按体积比,还原气氛中,H2:N2=5:95。
5.根据权利要求4所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,步骤1)中,所述溶液A与溶液B混合是,将溶液B逐滴加入至溶液A中。
6.根据权利要求5所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,步骤2)中,按质量比,Sr2MgSi2O7:Eu2+,Dy3+:Ag3PO4=15:1。
7.根据权利要求6所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,步骤2)中,按固液比,Sr2MgSi2O7:Eu2+,Dy3+:无水乙醇=1g:50mL。
8.根据权利要求7所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,其特征在于,步骤2)中,按固液比,Ag3PO4:无水乙醇=1g:50mL。
9.权利要求1所述的一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂在太阳光下降解抗生素同时产氢中的应用。
10.根据权利要求9所述的应用,其特征在于,方法如下:在含有左氧氟沙星的溶液中,加入权利要求1所述的Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂,于太阳光下照射。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210359126.2A CN114682275A (zh) | 2022-04-07 | 2022-04-07 | 一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210359126.2A CN114682275A (zh) | 2022-04-07 | 2022-04-07 | 一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114682275A true CN114682275A (zh) | 2022-07-01 |
Family
ID=82142589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210359126.2A Pending CN114682275A (zh) | 2022-04-07 | 2022-04-07 | 一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114682275A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775985A (zh) * | 2012-07-07 | 2012-11-14 | 河北联合大学 | 一种具有长余辉发光功能的Sr2MgSi2O7:Eu2+,Dy3+纳米线的合成方法 |
CN102965103A (zh) * | 2012-12-10 | 2013-03-13 | 江南大学 | 一种超细稀土硅酸镁锶发光粉体及其制备技术 |
CN104741109A (zh) * | 2015-03-07 | 2015-07-01 | 河北联合大学 | 一种多孔Sr2MgSi2O7:Eu2+,Dy3+@ BiVO4储能自催化复合材料 |
CN113262773A (zh) * | 2021-05-28 | 2021-08-17 | 杭州电子科技大学 | 富含氧空位的长余辉光催化材料在全天候光催化co2还原上的应用 |
-
2022
- 2022-04-07 CN CN202210359126.2A patent/CN114682275A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775985A (zh) * | 2012-07-07 | 2012-11-14 | 河北联合大学 | 一种具有长余辉发光功能的Sr2MgSi2O7:Eu2+,Dy3+纳米线的合成方法 |
CN102965103A (zh) * | 2012-12-10 | 2013-03-13 | 江南大学 | 一种超细稀土硅酸镁锶发光粉体及其制备技术 |
CN104741109A (zh) * | 2015-03-07 | 2015-07-01 | 河北联合大学 | 一种多孔Sr2MgSi2O7:Eu2+,Dy3+@ BiVO4储能自催化复合材料 |
CN113262773A (zh) * | 2021-05-28 | 2021-08-17 | 杭州电子科技大学 | 富含氧空位的长余辉光催化材料在全天候光催化co2还原上的应用 |
Non-Patent Citations (2)
Title |
---|
JIANHE TANG ET AL.: ""Novel Z-scheme Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4 photocatalyst for round-the-clock efficient degradation of organic pollutants and hydrogen production"", 《CHEMICAL ENGINEERING JOURNAL》 * |
姜琳: ""长余辉与二氧化钛协同作用光催化材料的研究"", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication | |
CN103480399B (zh) | 一种微纳结构磷酸银基复合可见光催化材料及其制备方法 | |
CN110152711B (zh) | 一种CeO2@MoS2/g-C3N4三元复合光催化剂及其制备方法 | |
CN108435194B (zh) | 铁酸铋/钨酸铋异质结光催化材料及其制备方法 | |
CN113663693B (zh) | 一种硫化铟锌-二氧化钛复合材料的制备方法及其在生产双氧水用于废水治理中的应用 | |
CN106964339B (zh) | 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法 | |
CN107008467B (zh) | 一种异质结光催化剂的制备方法和用途 | |
Zhang et al. | Fabrication and characterization of high efficient Z-scheme photocatalyst Bi2MoO6/reduced graphene oxide/BiOBr for the degradation of organic dye and antibiotic under visible-light irradiation | |
Deng et al. | Rare metal doping of the hexahydroxy strontium stannate with enhanced photocatalytic performance for organic pollutants | |
Yu et al. | Construction of CoS/CeO2 heterostructure nanocages with enhanced photocatalytic performance under visible light | |
Lin et al. | Synthesis of a carbon-loaded Bi2O2CO3/TiO2 photocatalyst with improved photocatalytic degradation of methyl orange dye | |
Tavakoli-Azar et al. | Enhanced photocatalytic activity of ZrO2-CdZrO3-S nanocomposites for degradation of Crystal Violet dye under sunlight | |
Yu et al. | Facile fabrication of CuPp–TiO2 mesoporous composite: an excellent and robust heterostructure photocatalyst for 4-nitrophenol degradation | |
Liu et al. | Cu 2 O NPs decorated BiPO 4 photo-catalyst for enhanced organic contaminant degradation under visible light irradiation | |
Zhai et al. | Enhanced photocatalytic degradation of tetracycline over magnetic La0. 7Sr0. 3MnO3/g-C3N4 p–n heterojunction arising from the synergistic effects of oxygen vacancy defects and high-potential photogenerated electrons | |
Meena et al. | Synthesis of g-C3N4/ZnO nanostructures via mechano-thermal method for photocatalytic degradation of methylene blue dye | |
Chen et al. | Photocatalytic performance of Z-scheme SrCO 3-SrTiO 3/Ag 3 PO 4 heterojunction for tetracycline hydrochloride degradation | |
Jin et al. | Preparation of flower-like Bi 2 WO 6/ZnO heterojunction photocatalyst with improved photocatalytic performance | |
Zhang et al. | A rapid microwave synthesis of nanoscale BiVO4/Bi2O3@ SiO2 with large specific surface area and excellent visible-light-driven activity | |
CN111203245B (zh) | 一种高效降解环丙沙星的复合光催化剂及其制备方法和应用 | |
CN114682275A (zh) | 一种Z型Sr2MgSi2O7:Eu2+,Dy3+/Ag3PO4光催化剂及制备方法 | |
Sun et al. | Enhanced photocatalytic activity of carbon nitride nanosheets via alkali metal ion doping | |
CN113769735B (zh) | CeO2/MnO2复合光催化剂及其制备方法和应用 | |
Jiang et al. | Enhanced visible-light utilization with ZnCo 2 O 4–BiErWO 6 heterojunctions towards photocatalytic degradation of antibiotics | |
CN109701518B (zh) | 一种复合光催化剂及其制备方法和该催化剂在降解有机染料中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220701 |