CN114642744A - 一种筛选缓解吗啡耐受药物的方法 - Google Patents
一种筛选缓解吗啡耐受药物的方法 Download PDFInfo
- Publication number
- CN114642744A CN114642744A CN202210121632.8A CN202210121632A CN114642744A CN 114642744 A CN114642744 A CN 114642744A CN 202210121632 A CN202210121632 A CN 202210121632A CN 114642744 A CN114642744 A CN 114642744A
- Authority
- CN
- China
- Prior art keywords
- morphine
- trpc5
- tolerance
- agonist
- opioid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/0004—Screening or testing of compounds for diagnosis of disorders, assessment of conditions, e.g. renal clearance, gastric emptying, testing for diabetes, allergy, rheuma, pancreas functions
- A61K49/0008—Screening agents using (non-human) animal models or transgenic animal models or chimeric hosts, e.g. Alzheimer disease animal model, transgenic model for heart failure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/41—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
- A61K31/425—Thiazoles
- A61K31/428—Thiazoles condensed with carbocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/47—Quinolines; Isoquinolines
- A61K31/485—Morphinan derivatives, e.g. morphine, codeine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2800/00—Detection or diagnosis of diseases
- G01N2800/28—Neurological disorders
- G01N2800/2842—Pain, e.g. neuropathic pain, psychogenic pain
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Neurosurgery (AREA)
- Cell Biology (AREA)
- Neurology (AREA)
- Pain & Pain Management (AREA)
- Toxicology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Rheumatology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Endocrinology (AREA)
- Diabetes (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
Abstract
本发明公开了一种筛选缓解吗啡耐受药物的方法,采用TRPC5蛋白靶点作为筛选条件,筛选获得TRPC5激动剂作为缓解吗啡耐受药物。本发明确认了TRPC5蛋白靶点与阿片类药物耐受的直接关联,利用TRPC5蛋白激动剂有效缓解吗啡耐受,开创了阿片类药物耐受治疗的新靶点,TRPC5蛋白靶点与吗啡耐受的强关联也为筛选缓解吗啡耐受药物提供了便利。TRPC5蛋白激动剂与吗啡共给药可以缓解吗啡耐受提示TRPC5蛋白激动剂可与阿片类药物共同制剂形成镇痛组合物,解决传统阿片类镇痛药物的耐受问题。
Description
技术领域
本发明涉及药物筛选技术领域,特别涉及一种筛选缓解吗啡耐受药物的方法。
背景技术
吗啡作为阿片类药物的代表药物具有强大的镇痛作用,是治疗剧烈、围手术期和慢性疼痛的主要药物(1,2)。随着疼痛的盛行,吗啡在疼痛管理中的使用在过去几十年显著增加。然而,吗啡的大量、频繁使用会带来严重的副作用,例如耐受性,即随着药物的重复使用,药效降低,需要加大用药剂量或者缩短给药间隔,才能维持原有药效。吗啡耐受是目前临床面临的极具挑战的问题。目前有大量关于吗啡耐受机制的报道,主要包括阿片受体数量下调(3)、抑制性神经元的变化(4)以及神经炎症(5)等。越来越多的研究表明,吗啡耐受是一种包含多重行为和细胞适应性的现象,其中包括中枢神经系统中的细胞、突触和网络水平的神经元可塑性的改变。尽管吗啡镇痛作用是通过与疼痛神经回路中的μ受体的结合和信号传导产生的,但是介导耐受性的具体细胞类型和受体仍然备受争议。长期给予吗啡能够通过影响受体的磷酸化、信号传导以及多聚化来调节神经元上μ受体的功能(6)。此外,已有另外一些研究表明,胶质细胞尤其是小胶质细胞是吗啡耐受重要的驱动力,吗啡通过与小胶质细胞所表达的μ受体结合激活小胶质细胞进而参与吗啡耐受。然而,与之相悖的研究称,小胶质细胞中缺乏μ受体,吗啡通过结合并激活小胶质细胞表面TLR4-MD2信号参与吗啡耐受,更令人困惑的是,吗啡耐受并没有因为TLR4的敲除而得到改善(7)。因此,神经元和胶质细胞在促发吗啡耐受中的贡献和分子机制仍然未得到解决,在基础研究中,缓解吗啡耐受的药物主要有二甲双胍(8)、利多卡因(9)、文拉法辛(10)以及雷帕霉素(10)等。但是目前在临床上,并没有公认的治疗吗啡耐受的特效药。因此寻找一个安全有效的药物缓解吗啡耐受成为亟待解决的问题。
伤害感受是初级传入神经纤维的伤害感受器传递疼痛信号的过程,这些神经纤维对伤害性刺激特异反应。疼痛的调控是一个非常复杂的过程,一般认为,谷氨酸(Glu)和神经肽类物质如P物质(SP)是伤害性感觉传入神经末梢的主要递质,两者同时释放,作用于突触后膜的NMDA受体和AMPA受体从而将痛觉传递给下一级神经元。吗啡作为外源性的镇痛物质,通过结合阿片受体引起神经细胞膜上的离子通道受到抑制或者激活,引起离子的跨膜转运,发挥镇痛作用。吗啡作用于μ受体通过兴奋电压门控钾离子通道,增强钾离子的外流,使细胞膜发生超极化,降低细胞兴奋性,使神经末梢神经递质如谷氨酸等兴奋性神经递质释放减少,从而发挥镇痛作用。GABA是重要的中枢神经系统抑制性神经递质,在神经元中合成,在钙离子的作用下以囊泡的形式出胞并释,GABAB受体存在于神经元的突触前及突触后部位,介导抑制性效应,在脑内参与许多的生理活动和病理变化,包括认知损害、癫痫、痉挛以及药物成瘾等。位于突触前的GABAB受体被激活后,主要通过偶联Gi/o-型蛋白而阻滞钙通道,减少钙内流,抑制兴奋性神经递质Glu的释放;位于突出后膜的GABAB受体被激活后,通过G蛋白偶联钾电导,增加钾外流,进而起到镇痛作用。此外,环磷酸腺苷(cAMP)是触发细胞和神经元长期变化的关键细胞内第二信使,这种长期变化被认为对学习和记忆等生理功能和包括慢性疼痛在内的病理过程很重要。目前已有研究表明(4),阿片类药物能够抑制腹外侧导水管周围灰质(vIPAG)中突触前GABA的释放,从而抑制下行抗伤害感受通路的激活,参与阿片类药物的耐受性;而这种耐受性正是与cAMP的上调密切相关。
瞬时受体电位(Transient receptor potential,TRP)阳离子通道被描述为细胞感受器(11),所有trp基因产物都是内在膜蛋白,具有六个假定的跨膜跨度(S1-S6),在S5-S6之间具有阳离子渗透的孔区域。TRPs共有6个亚家族(如图1所示),其中包括规范瞬时受体电位通道(Canonical transient receptor potential,TRPC)、辣椒素瞬时受体电位通道(Vanilloid transient receptor potential,TRPV)、褪黑素瞬时受体电位通道(Melastatin transient receptor potential,TRPM)、多囊瞬时受体电位通道(polycystin transient receptor potential,TRPP)、黏蛋白瞬时受体电位通道(Mucolipin transient receptor potential,TRML)以及锚蛋白瞬时受体电位通道(Ankyrin transient receptor potential,TRPA)。TRP离子通道已经成为进化上保守的配体门控离子通道,可作为物理刺激的分子检测器。研究表明,TRPV1-4、TRPM8和TRPA1作为热、化学和机械刺激的信号传感器,在病理痛觉的产生和发展中发挥着至关重要的的作用。1997年,Caterina等人首次报道,TRPV1作为具有高钙渗透性的非选择性阳离子通道在人体广泛表达,并且在第一个感觉突触处参与疼痛的传递(12)。其表达主要与P物质和降钙素基因相关肽(CGRP)。TRPV1不仅能够被辣椒素激活,还能够被有害热量激活(≥43℃)和其他外源性和内源性物质激活(13)。有趣的是,TRPA1与TRPV1在小直径伤害感受器中高度表达,TRPA1作为一种非选择性阳离子通道,可以被多种刺激激活,如化学、热(≤18℃)、机械和渗透刺激,引起急性疼痛的烧灼感或刺痛感。在TRPA1基因敲除小鼠中,伤害感受大大减少或者消除(14,15)。
TRPC通道在人类病理生理学中的新兴作用引起了人们对其药理学靶向作用的极大兴趣。TRPC通道的下游信号传导较为复杂,涉及Ca2+的升高以调节细胞特定的功能。TRPC的不同亚型已经成为血管张力和血流压力的重要调节剂,有助于在内皮细胞和血管平滑肌细胞中由广泛的化学和物理刺激引起的Ca2+内流。其中TRPC5是一种Ca2+可渗透的阳离子通道,主要在中枢神经系统中表达,包括小脑、海马、杏仁核、感觉神经元和视网膜。在外周表现出更受限的表达,尤其表达在肾脏和心血管系统,TRPC5通道有一系列的激动剂,例如一氧化氮、溶血磷脂、1-磷酸鞘氨醇、还原硫氧还蛋白、质子、镧系元素和钙等。然而,目前并没有关于TRPC5在疼痛以及吗啡耐受中的研究。
基于以上已有研究以及实验验证,我们提出TRPC5在吗啡耐受中具有重要地位,TRPC5激动剂能够显著缓解吗啡耐受。
参考文献:
1.Carroll IR,Angst MS,and Clark JD.Management of perioperative painin patients chronically consuming opioids.Reg Anesth Pain Med.2004;29(6):576-91.
2.Kalso E,Edwards JE,Moore AR,and McQuay HJ.Opioids in chronic non-cancer pain:systematic review of efficacy and safety.Pain.2004;112(3):372-80.
3.Cahill CM,Walwyn W,Taylor AMW,Pradhan AAA,and Evans CJ.AllostaticMechanisms of Opioid Tolerance Beyond Desensitization andDownregulation.Trends Pharmacol Sci.2016;37(11):963-76.
4.Bobeck EN,Chen Q,Morgan MM,and Ingram SL.Contribution of adenylylcyclase modulation of pre-and postsynaptic GABA neurotransmission to morphineantinociception and tolerance.Neuropsychopharmacology.2014;39(9):2142-52.
5.Mélik Parsadaniantz S,Rivat C,Rostène W,and Réaux-Le GoazigoA.Opioid and chemokine receptor crosstalk:a promising target for paintherapy?Nat Rev Neurosci.2015;16(2):69-78.
6.Christie MJ.Cellular neuroadaptations to chronic opioids:tolerance,withdrawal and addiction.Br J Pharmacol.2008;154(2):384-96.
7.Fukagawa H,Koyama T,Kakuyama M,and Fukuda K.Microglial activationinvolved in morphine tolerance is not mediated by toll-like receptor 4.JAnesth.2013;27(1):93-7.
8.Pan Y,Sun X,Jiang L,Hu L,Kong H,Han Y,et al.Metformin reducesmorphine tolerance by inhibiting microglial-mediated neuroinflammation.JNeuroinflammation.2016;13(1):294.
9.Zhang Y,Tao GJ,Hu L,Qu J,Han Y,Zhang G,et al.Lidocaine alleviatesmorphine tolerance via AMPK-SOCS3-dependent neuroinflammation suppression inthe spinal cord.J Neuroinflammation.2017;14(1):211.
10.Mansouri MT,Naghizadeh B,Ghorbanzadeh B,Alboghobeish S,HoushmandG,and Amirgholami N.Venlafaxine Attenuates the Development of MorphineTolerance and Dependence:Role of L-Arginine/Nitric Oxide/cGMP Pathway.EndocrMetab Immune Disord Drug Targets.2018;18(4):362-70.
11.Gees M,Owsianik G,Nilius B,and Voets T.TRP channels.ComprPhysiol.2012;2(1):563-608.
12.Caterina MJ,Schumacher MA,Tominaga M,Rosen TA,Levine JD,and JuliusD.The capsaicin receptor:a heat-activated ion channel in the painpathway.Nature.1997;389(6653):816-24.
13.Dai Y.TRPs and pain.Semin Immunopathol.2016;38(3):277-91.
14.Macpherson LJ,Dubin AE,Evans MJ,Marr F,Schultz PG,Cravatt BF,etal.Noxious compounds activate TRPA1 ion channels through covalentmodification of cysteines.Nature.2007;445(7127):541-5.
15.McNamara CR,Mandel-Brehm J,Bautista DM,Siemens J,Deranian KL,ZhaoM,et al.TRPA1 mediates formalin-induced pain.Proc Natl Acad Sci U S A.2007;104(33):13525-30.
发明内容
本发明所要解决的技术问题:目前临床上没有治疗或缓解吗啡耐受的特效药,本发明旨在阐明TRPC5可能成为治疗吗啡耐受的靶分子。
为解决上述技术问题,本发明提供以下的技术方案:
一种筛选缓解吗啡耐受药物的方法,以TRPC5蛋白为靶点,利用体外细胞实验及小鼠动物模型筛选激动剂获得TRPC5激动剂,所述TRPC5激动剂应用于制备缓解吗啡耐受的药物。
一种缓解吗啡耐受的药物,由上述TRPC5激动剂和其他药学可接受的辅料组成。
优选地,所述TRPC5激动剂为盐酸利鲁唑或BTD。
一种阿片类药物,包含上述TRPC5激动剂和阿片类镇痛药物。
优选地,所述TRPC5激动剂为盐酸利鲁唑或BTD。
优选地,所述阿片类镇痛药物为吗啡。
本发明获得的有益效果:
本发明确认了TRPC5蛋白靶点与阿片类药物耐受的直接关联,利用TRPC5蛋白激动剂有效缓解吗啡耐受,开创了阿片类药物耐受治疗的新靶点,TRPC5蛋白靶点与吗啡耐受的强关联也为筛选缓解吗啡耐受药物提供了便利。TRPC5蛋白激动剂与吗啡共给药可以缓解吗啡耐受提示TRPC5蛋白激动剂可与阿片类药物共同制剂形成镇痛组合物,解决传统阿片类镇痛药物的耐受问题。
附图说明
图1为哺乳动物TRPs蛋白家族的组成图;
图2为小鼠吗啡耐受模型中TRPC5蛋白在脊髓中的表达量变化;
图3为TRPC5蛋白在体外细胞实验中的表达量变化;
图4为盐酸利鲁唑改善小鼠吗啡耐受的行为学实验结果;其中,c图为盐酸利鲁唑对于急性吗啡镇痛行为学的影响,d图为盐酸利鲁唑对于慢性吗啡给药引起的耐受性行为学影响;
图5为BTD改善小鼠吗啡耐受的实验结果;其中,e图为BTD对于急性吗啡镇痛行为学的影响,f图为BTD对于慢性吗啡给药引起的耐受性行为学影响;
图6为TRPC5抑制剂促进小鼠吗啡耐受的行为学实验结果;
图7为TRPC5激动剂(盐酸利鲁唑)显著改善吗啡引起的胞内钙离子的降低的实验结果;
图8为TRPC5激动剂(盐酸利鲁唑)显著改善吗啡引起的GABA释放减少的实验结果;
图9为TRPC5激动剂(盐酸利鲁唑、BTD)和TRPC5抑制剂并未引起TRPC5的蛋白水平变化的实验结果。
具体实施方式
下面通过对实施例的描述,对本发明的具体实施方式作进一步详细的说明,以帮助本领域的技术人员对本发明的发明构思、技术方案有更完整、准确和深入的理解。
实施例1:TRPC5蛋白在吗啡耐受形成中的表达量测定(本发明中的western blot实验均参照《精编分子生物学实验指南》进行):
体内实验:ICR小鼠随机分组,每组10只,各组连续7天分别每天鞘内注射10μg(给药量)/10μl(给药体积)吗啡后,取小鼠脊髓腰骶膨大处(L4-L5),通过蛋白质免疫印迹(western blot)检测TRPC5的蛋白表达,实验结果表明,吗啡能够显著下调TRPC5的蛋白水平(n=6),**p<0.01versus saline group.(如图2所示)。
体外实验:在神经元细胞系(SH-SY5Y)中,给予200μM终浓度吗啡刺激14h后,通过蛋白质免疫印迹(western blot)检测TRPC5的蛋白表达,实验结果表明,吗啡能够显著下调神经元细胞中TRPC5的蛋白水平(n=6),**p<0.01versus control group。(如图3所示)。
实施例2:以TRPC5蛋白为靶点,检测TRPC5激动剂(盐酸利鲁唑,Riluzolehydrochoride)对吗啡耐受的改善作用,实施例1分别从体内外阐明了吗啡能够下调TRPC5蛋白水平,TRPC5激动剂通过使TRPC5通道开放,促进钙离子内流,进而增强GABA的外排,达到提高吗啡的镇痛效果。
盐酸利鲁唑粉末购自MCE,其在DMSO(二甲基亚砜)的溶解度为100mg/ml,将50mg的粉末溶于500μl DMSO中,得到100mg/ml母液。将10mg/ml的吗啡母液用生理盐水稀释10倍得到10mg/10ml吗啡(溶液1)。组别设置为对照组(生理盐水,saline)、吗啡组、吗啡和TRPC5激动剂(盐酸利鲁唑,Riluzole hydrochoride)共给药组、TRPC5激动剂(盐酸利鲁唑,Riluzole hydrochoride)组。其中,将100mg/ml的盐酸利鲁唑母液溶于10mg/10ml吗啡,得到10μg/10μl吗啡中含有2μg/10μl TRPC5激动剂(盐酸利鲁唑,Riluzole hydrochoride)的溶液(溶液2)。
ICR小鼠随机分组,每组10只,各组连续7天分别每天鞘内注射10μl生理盐水、10μl溶液1、10μl溶液2、10μl TRPC5激动剂(2μg/10μl,盐酸利鲁唑,Riluzole hydrochoride)30min后,通过甩尾试验(tail-flick trail)以最大镇痛效应百分率(MPE%)衡量小鼠对疼痛的敏感性。行为学数据表明,TRPC5激动剂对急性吗啡的镇痛作用没有影响,能够显著缓解慢性吗啡给药引起的耐受性。*p<0.05,***p<0.001versus saline-treated group;###p<0.001versus morphine-treated group.(如图4所示)。
实施例3:以TRPC5蛋白为靶点,检测TRPC5激动剂(BTD,6-甲基-N-[3-(三环[3.3.1.13,7]癸氧基)丙基]-4H-1,2,4-苯并噻二嗪-3-丙酰胺-1,1-二氧化氮)对吗啡耐受的改善作用。BTD粉末购于TOCRIS,将10mg粉末溶于217.58μl DMSO,配制成浓度为100mM,即46μg/μl的BTD母液。组别设置为对照组(生理盐水,saline)、吗啡组、吗啡和TRPC5激动剂(BTD)共给药组、TRPC5激动剂(BTD)组。其中,将46μg/μl的BTD母液溶于10mg/10ml吗啡,即得到10μg/10μl吗啡中含有2μg/10μl TRPC5激动剂(BTD)的溶液(溶液3)。
ICR小鼠随机分组,每组10只,各组连续7天分别每天鞘内注射10μl生理盐水、10μl溶液1、10μl溶液3、10μl TRPC5激动剂(2μg/10μl,BTD)30min后,通过甩尾试验(tail-flicktrail)以最大镇痛效应百分率(MPE%)衡量各组小鼠对疼痛的敏感性。行为学数据表明,TRPC5激动剂(BTD)能够改善急性吗啡的镇痛作用,并能够显著缓解慢性吗啡给药引起的耐受性,*p<0.05,***p<0.001versus saline-treated group;##p<0.01versus morphine-treated group,###p<0.001versus morphine-treated group.(如图5所示)。
实施例4:以TRPC5蛋白为靶点,检测TRPC5抑制剂(N-(2-呋喃基甲基)-1-(苯基甲基)-1H-苯并咪唑-2-胺)对吗啡耐受的促进作用,ICR小鼠随机分组,每组10只,各组连续7天分别每天鞘内注射10μg/10μl吗啡或者10μg/10μl吗啡与1μg/10μl TRPC5抑制剂共给药后,空白对照组同实施例3给药,通过甩尾试验(tail-flick trail)以最大镇痛效应百分率(MPE%)衡量小鼠对疼痛的敏感性。行为学数据表明,TRPC5抑制剂能够加速吗啡耐受的进程,##p<0.01versus morphine-treated group,###p<0.001versus morphine-treatedgroup.(如图6所示)。
实施例5:在实施例1、2、3、4中分别说明了,在ICR小鼠以及神经元SH-SY5Y细胞给予吗啡处理后,TRPC5蛋白水平显著下调;在ICR小鼠中,TRPC5激动剂显著缓解吗啡耐受,并且TRPC5抑制剂能够加快吗啡耐受的进程。
在此实验中,我们将说明吗啡通过下调TRPC5的蛋白水平,抑制TRPC5的通道功能,从而抑制钙离子内流,进而导致抑制性神经递质GABA的释放减少,参与吗啡耐受。在SH-SY5Y细胞中,分组为对照组、吗啡组、吗啡和TRPC5激动剂(盐酸利鲁唑,Riluzolehydrochoride)组、TRPC5激动剂(盐酸利鲁唑,Riluzole hydrochoride)组。给予终浓度200μM吗啡刺激14h后,给予50μM TRPC5激动剂(盐酸利鲁唑,Riluzole hydrochoride)1h后,检测细胞内钙离子浓度(如图7所示),检测上清GABA含量(如图8所示)。图7和图8为两个独立的实验。我们旨在通过利用TRPC5激动剂后(盐酸利鲁唑,Riluzole hydrochoride)促进钙离子内流,增加GABA的释放。
实施例6:在SH-SY5Y细胞中,分别给予两种终浓度50μM TRPC5激动剂,包括盐酸利鲁唑(图9中简称RZ)、BTD,以及一种TRPC5抑制剂(终浓度为50μM)(图9中简称inhibitor)刺激30min后,检测TRPC5蛋白水平(如图9所示)并没有发生变化。
目前没有关于TRPC通道在疼痛和以及吗啡耐受中的研究,临床上亦没有治疗吗啡耐受的特效药,我们发现能够改善吗啡耐受的全新靶分子TRPC5,为基础研究吗啡耐受的全新机制和临床治疗吗啡耐受提供了全新的方向。实施例2~4表明TRPC5蛋白可以作为一个灵敏的药物筛选靶点,激动或者抑制TRPC5蛋白能够对吗啡耐受产生较好的响应,提示利用小鼠吗啡耐受模型通过TRPC5蛋白靶点可进行吗啡耐受治疗药物的筛选。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。
Claims (6)
1.一种筛选缓解吗啡耐受药物的方法,其特征在于,以TRPC5蛋白为靶点,利用体外细胞实验及小鼠动物模型筛选激动剂获得TRPC5激动剂,所述TRPC5激动剂应用于制备缓解吗啡耐受的药物。
2.一种缓解吗啡耐受的药物,其特征在于:由权利要求1中所述TRPC5激动剂和其他药学可接受的辅料组成。
3.据权利要求2中所述缓解吗啡耐受的药物,其特征在于:所述TRPC5激动剂为盐酸利鲁唑或BTD。
4.一种阿片类药物,其特征在于:包含权利要求1中所述TRPC5激动剂和阿片类镇痛药物。
5.根据权利要求4中所述的一种阿片类药物,其特征在于:所述TRPC5激动剂为盐酸利鲁唑或BTD。
6.根据权利要求4中所述的一种阿片类药物,其特征在于:所述阿片类镇痛药物为吗啡。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210121632.8A CN114642744B (zh) | 2022-02-09 | 2022-02-09 | 一种筛选缓解吗啡耐受药物的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210121632.8A CN114642744B (zh) | 2022-02-09 | 2022-02-09 | 一种筛选缓解吗啡耐受药物的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114642744A true CN114642744A (zh) | 2022-06-21 |
CN114642744B CN114642744B (zh) | 2023-05-23 |
Family
ID=81994183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210121632.8A Active CN114642744B (zh) | 2022-02-09 | 2022-02-09 | 一种筛选缓解吗啡耐受药物的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114642744B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1309562A (zh) * | 1998-07-16 | 2001-08-22 | 纪念斯隆-凯特林癌症中心 | 包括一种阿片样物质镇痛剂和一种nmda拮抗剂的局部给药组合物 |
US20040220203A1 (en) * | 2003-02-10 | 2004-11-04 | Zaijie Wang | Method and composition for potentiating an opiate analgesic |
WO2005004896A1 (en) * | 2003-07-01 | 2005-01-20 | Ufpeptides S.R.L. | Nop receptor antagonists for the treatment of parkinson’s disease |
US20120148604A1 (en) * | 2009-08-20 | 2012-06-14 | Transposagen Biopharmaceuticals, Inc. | Trp inhibitors and uses thereof |
US20180214442A1 (en) * | 2017-01-17 | 2018-08-02 | The Board Of Trustees Of The Leland Stanford Junior University | METHODS FOR ATTENUATING OR PREVENTING MU(μ)-OPIOID RECEPTOR MEDIATED TOLERANCE AND OPIOID-INDUCED HYPERALGESIA |
-
2022
- 2022-02-09 CN CN202210121632.8A patent/CN114642744B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1309562A (zh) * | 1998-07-16 | 2001-08-22 | 纪念斯隆-凯特林癌症中心 | 包括一种阿片样物质镇痛剂和一种nmda拮抗剂的局部给药组合物 |
US20040220203A1 (en) * | 2003-02-10 | 2004-11-04 | Zaijie Wang | Method and composition for potentiating an opiate analgesic |
WO2005004896A1 (en) * | 2003-07-01 | 2005-01-20 | Ufpeptides S.R.L. | Nop receptor antagonists for the treatment of parkinson’s disease |
US20120148604A1 (en) * | 2009-08-20 | 2012-06-14 | Transposagen Biopharmaceuticals, Inc. | Trp inhibitors and uses thereof |
US20180214442A1 (en) * | 2017-01-17 | 2018-08-02 | The Board Of Trustees Of The Leland Stanford Junior University | METHODS FOR ATTENUATING OR PREVENTING MU(μ)-OPIOID RECEPTOR MEDIATED TOLERANCE AND OPIOID-INDUCED HYPERALGESIA |
Non-Patent Citations (5)
Title |
---|
BOHLOOL HABIBI-ASL ET AL: "Central administration of minocycline and riluzole prevents morphine-introduced tolerance in rats", 《INTERNATIONAL ANESTHESIA RESEARCH SOCIETY》 * |
CHU W-G ET AL: "TRPC1/4/5 TRPC1/4/5 channels contribute to morphine-introduced analgesic tolerance and hyperalgesia by enhancing spinal synaptic potentiation and structural plasticity", 《THE FASEB JOURNAL》 * |
HOLGER BECKMANN ET AL: "A benzothiadiazine derivative and methylprednisolone are novel and selective activators of transient receptor potential canonical 5(TRPC5) channels", 《CELL CALCIUM》 * |
SREEKANTH NAMA ET AL: "An improved stability-indicating HPLC method for Riluzole hydrochloride in bulk and pharmaceutical dosage forms", 《INT J PHARM BIOMED RES》 * |
李海亮等: "利鲁唑药理学作用研究进展", 《中国药学杂志》 * |
Also Published As
Publication number | Publication date |
---|---|
CN114642744B (zh) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Baltaci et al. | Molecular mechanisms of early and late LTP | |
Qu et al. | Blocking ATP-sensitive potassium channel alleviates morphine tolerance by inhibiting HSP70-TLR4-NLRP3-mediated neuroinflammation | |
Rivat et al. | The dark side of opioids in pain management: basic science explains clinical observation | |
MacDermott et al. | Presynaptic ionotropic receptors and the control of transmitter release | |
Cai et al. | Procyanidins alleviates morphine tolerance by inhibiting activation of NLRP3 inflammasome in microglia | |
Zhou et al. | Molecular mechanisms of opioid tolerance: From opioid receptors to inflammatory mediators | |
Stein | Opioid receptors | |
Fowler et al. | Chronic itch management: therapies beyond those targeting the immune system | |
de Groat et al. | Pharmacology of the lower urinary tract | |
Wu et al. | Autocrine interleukin-10 mediates glucagon-like peptide-1 receptor-induced spinal microglial β-endorphin expression | |
Fan et al. | The non‐peptide GLP‐1 receptor agonist WB 4‐24 blocks inflammatory nociception by stimulating β‐endorphin release from spinal microglia | |
Mantsch et al. | Neurobiological mechanisms that contribute to stress-related cocaine use | |
Hauser et al. | Opiate drugs with abuse liability hijack the endogenous opioid system to disrupt neuronal and glial maturation in the central nervous system | |
Li et al. | Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin | |
Sun et al. | Intrathecal injection of JWH015 attenuates remifentanil-induced postoperative hyperalgesia by inhibiting activation of spinal glia in a rat model | |
Park et al. | Treadmill exercise enhances NMDA receptor expression in schizophrenia mice | |
Xu et al. | Evidence for suppression of spinal glial activation by dexmedetomidine in a rat model of monoarthritis | |
Wei et al. | Peripheral sensitization | |
Dai et al. | Selective blockade of spinal D2DR by levo-corydalmine attenuates morphine tolerance via suppressing PI3K/Akt-MAPK signaling in a MOR-dependent manner | |
Cai et al. | Interleukin-22 receptor 1-mediated stimulation of T-type Ca2+ channels enhances sensory neuronal excitability through the tyrosine-protein kinase Lyn-dependent PKA pathway | |
Jiang et al. | Exogenous sodium hydrosulfide can attenuate naloxone-precipitated withdrawal syndromes and affect cAMP signaling pathway in heroin-dependent rat's nucleus accumbens. | |
Gu et al. | Mechanisms of eosinophil major basic protein-induced hyperexcitability of vagal pulmonary chemosensitive neurons | |
CN114642744B (zh) | 一种筛选缓解吗啡耐受药物的方法 | |
Xiao et al. | Activation of P2X7 receptors in the midbrain periaqueductal gray of rats facilitates morphine tolerance | |
WeiWei et al. | The cellular mechanism by which the rostral ventromedial medulla acts on the spinal cord during chronic pain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |