CN114612932A - Gait big data retrieval method and system and terminal equipment - Google Patents
Gait big data retrieval method and system and terminal equipment Download PDFInfo
- Publication number
- CN114612932A CN114612932A CN202210225395.XA CN202210225395A CN114612932A CN 114612932 A CN114612932 A CN 114612932A CN 202210225395 A CN202210225395 A CN 202210225395A CN 114612932 A CN114612932 A CN 114612932A
- Authority
- CN
- China
- Prior art keywords
- gait
- target person
- retrieval
- retrieval result
- local
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005021 gait Effects 0.000 title claims abstract description 167
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000012544 monitoring process Methods 0.000 claims abstract description 13
- 230000009471 action Effects 0.000 claims description 11
- 238000004590 computer program Methods 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001303 quality assessment method Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30241—Trajectory
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种步态大数据检索方法及其系统、终端设备,属于步态识别技术领域。The invention relates to a gait big data retrieval method, system and terminal equipment, belonging to the technical field of gait recognition.
背景技术Background technique
在AI时代,越来越多的生物特征可以被提取出来并进行识别,目前市场应用比较多的有人脸识别、指纹识别、声纹识别、虹膜识别、掌静脉识别、步态识别等技术。In the AI era, more and more biometric features can be extracted and identified. At present, there are many technologies such as face recognition, fingerprint recognition, voiceprint recognition, iris recognition, palm vein recognition, and gait recognition in the market.
步态识别是指在通过分析目标人物身体结构及走路的姿态进行身份识别。与其他的生物识别技术相比,步态识别具有非接触远距离和不容易伪装等优点,广泛应用于平安城市、社会治理等领域中失踪儿童的轨迹查询、目标嫌疑人的动态布控、重点人群的动态监控等场景。Gait recognition refers to the identification of the target person by analyzing the body structure and walking posture of the target person. Compared with other biometric technologies, gait recognition has the advantages of non-contact long-distance and not easy to camouflage. It is widely used in the tracking of missing children in safe cities, social governance and other fields, the dynamic deployment of target suspects, and key groups of people. dynamic monitoring and other scenarios.
步态识别作为当下安防行业的一种新生物识别技术,在学术界已达到了较高的识别准确率。然而在实际应用中,很多使用人员在基于步态识别技术进行数据检索时,检索结果大量缺失或者检索结果混入噪声数据,这种因使用人员操作经验不足或操作不规范而引起的检索效果不一致,未取得理想效果的问题随着应用落地的增多而日益严重。As a new biometric technology in the current security industry, gait recognition has achieved a high recognition accuracy rate in academia. However, in practical applications, when many users perform data retrieval based on gait recognition technology, a large number of retrieval results are missing or the retrieval results are mixed with noise data. This kind of retrieval results are inconsistent due to insufficient operating experience or irregular operation of the users. The problem of not achieving the desired effect is becoming more and more serious with the increase of application landing.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种步态大数据检索方法及其系统、终端设备,能够实现使用人员规范正确使用步态检索技术,获取最佳检索效果,从而可以更丰富更精准的基于检索结果绘制目标人物轨迹信息,解决检索效果因人而异的问题。The present invention provides a gait big data retrieval method, system and terminal equipment, which can realize that users can use the gait retrieval technology in a standardized and correct manner, and obtain the best retrieval effect, so that the target person can be drawn based on the retrieval results in a richer and more accurate manner. Track information to solve the problem that the retrieval effect varies from person to person.
一方面,本发明提供了一种步态大数据检索方法,所述方法包括:In one aspect, the present invention provides a gait big data retrieval method, the method comprising:
S1、获取包含目标人物的视频图像,并在所述视频图像中提取出所述目标人物的步态样本,根据所述步态样本构建所述目标人物的步态库;S1, acquiring a video image containing a target person, and extracting a gait sample of the target person in the video image, and constructing a gait library of the target person according to the gait sample;
S2、利用所述步态库在局部区域的监控视频数据中进行检索,得到局部检索结果,并利用所述局部检索结果更新所述步态库,得到更新后的步态库;S2, using the gait database to retrieve the monitoring video data in the local area to obtain a local retrieval result, and using the local retrieval result to update the gait database to obtain an updated gait database;
S3、利用更新后的所述步态库在全域的监控视频数据中进行检索,获得全局检索结果;S3, utilize the updated described gait library to carry out retrieval in the surveillance video data of the whole domain, obtain the global retrieval result;
S4、根据所述局部检索结果和所述全局检索结果生成目标人物的行动轨迹。S4. Generate an action trajectory of the target person according to the local retrieval result and the global retrieval result.
可选的,所述S2具体包括:Optionally, the S2 specifically includes:
S21、获取目标人物出现的初始时间地点作为中心点;S21. Obtain the initial time and place where the target character appears as the center point;
S22、利用所述步态库在所述中心点周围预设范围内的监控视频数据中进行检索,获得局部检索结果;S22, using the gait library to perform retrieval in surveillance video data within a preset range around the center point to obtain a local retrieval result;
S23、利用所述局部检索结果更新所述步态库,得到更新后的步态库;S23, using the local retrieval result to update the gait database to obtain an updated gait database;
S24、将所述局部检索结果中所述目标人物新出现的时间地点作为更新后的中心点;S24, taking the time and place where the target character newly appears in the local retrieval result as the updated center point;
S25、重复执行S22至S24,直至所述局部检索结果中未检索到所述目标人物的新增轨迹信息或检索到所述目标人物离开局部检索区域。S25. Repeat S22 to S24 until no newly added trajectory information of the target person is retrieved in the local retrieval result or it is retrieved that the target person leaves the local retrieval area.
可选的,在S3之后,所述方法还包括:Optionally, after S3, the method further includes:
S5、判断所述全局检索结果中是否检索到所述目标人物的新增轨迹信息;若是,则执行步骤S6,若否,则执行步骤S4;S5, determine whether the newly added trajectory information of the target person is retrieved in the global retrieval result; if so, execute step S6, if not, execute step S4;
S6、将所述全局检索结果中所述目标人物新增轨迹信息中的时间地点作为更新后的中心点,并执行步骤S22。S6. Use the time and place in the newly added trajectory information of the target person in the global retrieval result as the updated center point, and execute step S22.
可选的,所述S23具体包括:Optionally, the S23 specifically includes:
将所述局部检索结果中符合预设规则的步态样本作为优秀步态样本加入所述步态库中,得到更新后的步态库。The gait samples that conform to the preset rules in the local retrieval results are added to the gait database as excellent gait samples to obtain an updated gait database.
可选的,所述中心点周围预设范围内的监控视频数据为以所述中心点为中心,地点向外辐射3公里,时间前后扩展30分钟的范围内的所有监控视频数据。Optionally, the surveillance video data within a preset range around the center point is all surveillance video data within a range of 30 minutes before and after the center point, radiating 3 kilometers outward from the center point.
可选的,所述S22具体为:Optionally, the S22 is specifically:
S221、将所述步态库作为比对对象,与所述中心点周围预设范围内的监控视频数据进行步态比对,获得每段监控视频数据的比对相似度;S221, using the gait library as a comparison object, and performing gait comparison with the monitoring video data within a preset range around the center point to obtain the comparison similarity of each piece of monitoring video data;
S222、将比对相似度大于或等于预设阈值的步态样本及其对应的时间地点作为局部检索结果。S222. Use the gait samples whose comparison similarity is greater than or equal to a preset threshold and their corresponding time and place as the local retrieval result.
可选的,所述S4具体为:Optionally, the S4 is specifically:
将所述局部检索结果和所述全局检索结果中目标人物出现的所有时间地点按时间排序,形成目标人物的行动轨迹。All the time and places where the target person appears in the local retrieval result and the global retrieval result are sorted by time to form the action track of the target person.
另一方面,本发明提供了一种步态大数据检索系统,所述系统包括:In another aspect, the present invention provides a gait big data retrieval system, the system comprising:
步态库构建单元,用于获取包含目标人物的视频图像,并在所述视频图像中提取出所述目标人物的步态样本,根据所述步态样本构建所述目标人物的步态库;A gait library construction unit, configured to acquire a video image containing a target person, extract a gait sample of the target person from the video image, and construct a gait library of the target person according to the gait sample;
局部检索单元,用于利用所述步态库在局部区域的监控视频数据中进行检索,得到局部检索结果,并利用所述局部检索结果更新所述步态库,得到更新后的步态库;a local retrieval unit, configured to use the gait database to retrieve the monitoring video data in a local area to obtain a local retrieval result, and to update the gait database using the local retrieval result to obtain an updated gait database;
全局检索单元,用于利用更新后的所述步态库在全域的监控视频数据中进行检索,获得全局检索结果;a global retrieval unit, used for using the updated gait library to retrieve the surveillance video data of the whole domain to obtain a global retrieval result;
轨迹生成单元,用于根据所述局部检索结果和所述全局检索结果生成目标人物的行动轨迹。A trajectory generation unit, configured to generate an action trajectory of the target person according to the local retrieval result and the global retrieval result.
可选的,所述系统还包括数据查询单元和数据同步单元;Optionally, the system further includes a data query unit and a data synchronization unit;
所述数据查询单元用于根据数据库类型、创建时间、步态样本等级和被采集人员身份信息中的任意一种或任意几种查询所述步态库中的数据;The data query unit is configured to query the data in the gait database according to any one or any of several of the database type, creation time, gait sample level and the identity information of the collected person;
所述数据同步单元用于将所述步态库中的数据按预设同步周期或预设同步策略同步至上级系统或第三方系统。The data synchronization unit is used for synchronizing the data in the gait library to an upper-level system or a third-party system according to a preset synchronization cycle or a preset synchronization strategy.
再一方面,本发明提供了一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序;In yet another aspect, the present invention provides a terminal device, including a memory, a processor, and a computer program stored in the memory and executable on the processor;
所述处理器执行所述计算机程序时实现如上述任一种所述方法的步骤。The processor implements the steps of any of the methods described above when executing the computer program.
本发明能产生的有益效果包括:The beneficial effects that the present invention can produce include:
(1)本发明提供的步态大数据检索方法,可以在步态样本不足的情况下动态建库,丰富目标人物步态样本数量,提升目标人物步态样本质量。例如,当注册的目标人物步态样本像素低、人形轮廓模糊时,可以通过低阈值局部检索快速寻找其他优秀的步态样本。(1) The gait big data retrieval method provided by the present invention can dynamically build a database in the case of insufficient gait samples, enrich the number of target person gait samples, and improve the quality of target person gait samples. For example, when the registered target person's gait sample has low pixels and the human figure outline is blurred, other excellent gait samples can be quickly found through local retrieval with a low threshold.
(2)本发明提供的步态大数据检索方法,通过全局检索可以快速获取更多目标人物出现的时间地点信息,通过局部检索可以避免遗漏的寻找目标人物在局部范围内的轨迹,从而可以精细化绘制大范围的目标人物的行动轨迹。(2) In the gait big data retrieval method provided by the present invention, more time and place information of the appearance of the target person can be quickly obtained through the global retrieval, and the missed trajectory of the target person in the local range can be avoided through the local retrieval, so that the detailed information can be obtained. It can draw a large-scale target character's action trajectory.
附图说明Description of drawings
图1为本发明实施例提供的步态大数据检索方法流程图;1 is a flowchart of a method for retrieving gait big data provided by an embodiment of the present invention;
图2为本发明实施例提供的步态大数据检索方法原理示意图;2 is a schematic diagram of the principle of a gait big data retrieval method provided by an embodiment of the present invention;
图3为本发明另一实施例提供的步态大数据检索方法流程图;3 is a flowchart of a method for retrieving gait big data provided by another embodiment of the present invention;
图4为本发明实施例提供的帮手检索运行过程示意图。FIG. 4 is a schematic diagram of a running process of helper retrieval according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合实施例详述本发明,但本发明并不局限于这些实施例。The present invention will be described in detail below with reference to the examples, but the present invention is not limited to these examples.
本发明实施例提供了一种步态大数据检索方法,如图1和图2所示,所述方法包括:The embodiment of the present invention provides a gait big data retrieval method, as shown in FIG. 1 and FIG. 2 , the method includes:
S1、获取包含目标人物的视频图像,并在视频图像中提取出目标人物的步态样本,根据步态样本构建目标人物的步态库。S1. Acquire a video image containing a target person, extract a gait sample of the target person from the video image, and construct a gait library of the target person according to the gait sample.
其中,步态样本可以为一段或多段包含步态特征的连续步态图像序列;步态库也可称为步态底库;步骤S1的作用是底库注册,具体的,将包含目标人物信息的视频上传到系统,通过步态算法提取目标人物的步态样本形成目标人物的步态库。Among them, the gait sample can be one or more continuous gait image sequences including gait features; the gait database can also be called the gait base library; the function of step S1 is to register the base library, specifically, it will contain target person information The video is uploaded to the system, and the gait samples of the target person are extracted through the gait algorithm to form the gait library of the target person.
S2、利用步态库在局部区域的监控视频数据中进行检索,得到局部检索结果,并利用局部检索结果更新步态库,得到更新后的步态库。S2. Use the gait database to retrieve the surveillance video data in the local area to obtain a local retrieval result, and use the local retrieval result to update the gait database to obtain an updated gait database.
所述S2具体包括:The S2 specifically includes:
S21、获取目标人物出现的初始时间地点作为中心点。其中,目标人物出现的初始时间地点可以是公安人员根据经验推断出的目标人物大概率出现的时间地点,也可以是根据一些相关证据材料推断出的时间地点。本发明实施例对此不做限定。S21. Obtain the initial time and place where the target character appears as a center point. The initial time and place where the target person appears may be the time and place where the target person appears with a high probability inferred by the public security personnel based on experience, or the time and place inferred from some relevant evidence materials. This embodiment of the present invention does not limit this.
S22、利用步态库在中心点周围预设范围内的监控视频数据中进行检索,获得局部检索结果。S22. Use the gait library to search the surveillance video data within a preset range around the center point to obtain a local search result.
所述S22具体包括:The S22 specifically includes:
S221、将步态库作为比对对象,与中心点周围预设范围内的监控视频数据进行步态比对,获得每段监控视频数据的比对相似度。S221. Using the gait library as a comparison object, perform gait comparison with surveillance video data within a preset range around the center point to obtain the comparison similarity of each piece of surveillance video data.
S222、将比对相似度大于或等于预设阈值的步态样本及其对应的时间地点作为局部检索结果。S222. Use the gait samples whose comparison similarity is greater than or equal to a preset threshold and their corresponding time and place as the local retrieval result.
其中,预设阈值是本领域技术人员根据实际情况预先设定的值,本发明实施例对此不做限定,示例的,可以为80%、85%、90%等。The preset threshold is a value preset by a person skilled in the art according to an actual situation, which is not limited in this embodiment of the present invention, and may be 80%, 85%, 90%, etc. in an example.
预设范围是预先设定的时长和地域范围,本领域技术人员或用户可以根据实际情况进行设定,本发明实施例对此亦不做限定。示例的,所述中心点周围预设范围内的监控视频数据可以为以该中心点为中心,地点向外辐射3公里,时间前后扩展30分钟的范围内的所有监控视频数据。The preset range is a preset time length and geographic range, which can be set by a person skilled in the art or a user according to an actual situation, which is not limited in this embodiment of the present invention. For example, the surveillance video data within a preset range around the center point may be all surveillance video data within a range of 30 minutes before and after the center point radiates 3 kilometers from the center point.
在实际应用中,步骤S22也可称为帮手检索;以目标人物大概率出现过的时间地点为中心点,地点向外辐射3公里,时间前后扩展30分钟选取相关监控视频数据,将目标人物步态库作为比对对象,将步态比对阈值设定为80%,将比对结果设定按步态比对相似度从高到低进行排序,在上述参数配置下进行步态检索。可以将上述功能固定在软件系统中,实现一键检索。In practical applications, step S22 can also be called helper retrieval; take the time and place where the target person has a high probability of appearing as the center point, the location radiates 3 kilometers outward, and expands 30 minutes before and after the time to select the relevant monitoring video data, and the target person step by step The gait database is used as the comparison object, the threshold of gait comparison is set to 80%, the comparison results are set to be sorted from high to low by gait comparison similarity, and gait retrieval is performed under the above parameter configuration. The above functions can be fixed in the software system to realize one-key retrieval.
S23、利用局部检索结果更新步态库,得到更新后的步态库。S23, updating the gait database by using the local retrieval result to obtain the updated gait database.
具体的:将局部检索结果中符合预设规则的步态样本作为优秀步态样本加入步态库中,得到更新后的步态库。Specifically: adding the gait samples that conform to the preset rules in the local retrieval results as excellent gait samples into the gait database to obtain the updated gait database.
其中,预设规则是预先设定的判定规则,本领域技术人员可以根据实际情况进行设定,本发明实施例对此不做限定。示例的,选取优秀步态样本的预设规则可以是步态样本展现完整人形自然行走状态,步态样本像素大于等于60*100,步态样本帧数大于等于15张,步态样本包含2个以上步态周期,步态样本中人形轮廓边界清晰The preset rule is a preset determination rule, which can be set by those skilled in the art according to actual conditions, which is not limited in this embodiment of the present invention. For example, the preset rules for selecting excellent gait samples may be that the gait samples show the natural walking state of a complete humanoid, the pixels of the gait samples are greater than or equal to 60*100, the number of frames of the gait samples is greater than or equal to 15, and the gait samples include 2 The above gait cycle, the humanoid outline in the gait sample has a clear boundary
S24、将局部检索结果中目标人物新出现的时间地点作为更新后的中心点。S24. Use the time and place where the target person newly appears in the partial retrieval result as the updated center point.
S25、重复执行S22至S24,直至局部检索结果中未检索到目标人物的新增轨迹信息或检索到目标人物离开局部检索区域。S25. Repeat S22 to S24 until no newly added trajectory information of the target person is retrieved in the local retrieval result or until the target person leaves the local retrieval area.
以目标人物大概率出现过的时间地点为中心点选取所有相关监控视频数据进行帮手检索,从检索结果选取优秀的步态样本加入目标人物的步态库,将检索结果目标人物新出现的时间地点作为新的中心点,将更新的目标人物步态库作为新的目标比对对象,再次选取所有相关监控视频数据进行帮手检索。当通过帮手检索局部区域内无新增检索结果(即无新增轨迹信息)或通过检索结果发现目标人物乘交通工具离开确定为局部检索结束。Take the time and place where the target person has a high probability of appearing as the center point to select all relevant surveillance video data for helper retrieval, select excellent gait samples from the retrieval results and add them to the gait database of the target person, and add the time and place of the new appearance of the target person in the retrieval result. As a new center point, the updated target person gait library is used as a new target comparison object, and all relevant surveillance video data are selected again for helper retrieval. When there is no new search result (that is, no new track information) in the local area through the helper search, or the target person is found to leave by means of a vehicle through the search result, it is determined that the partial search is over.
S3、利用更新后的步态库在全域的监控视频数据中进行检索,获得全局检索结果;其中,全域的监控视频数据为全量选取所有相关监控视频数据。S3. Use the updated gait database to perform retrieval in the surveillance video data of the whole domain to obtain a global retrieval result; wherein, the surveillance video data of the whole domain is to select all relevant surveillance video data in full.
进一步的,在S3之后,所述方法还包括:Further, after S3, the method further includes:
S5、判断全局检索结果中是否检索到目标人物的新增轨迹信息;若是,则执行步骤S6,若否,则执行步骤S4。S5. Determine whether the newly added trajectory information of the target person is retrieved in the global retrieval result; if yes, execute step S6, if not, execute step S4.
S6、将全局检索结果中目标人物新增轨迹信息中的时间地点作为更新后的中心点,并执行步骤S22。S6. Use the time and place in the newly added trajectory information of the target person in the global retrieval result as the updated center point, and execute step S22.
将更新后的步态库作为目标比对对象,全量选取所有相关监控视频数据进行步态检索,将检索结果目标人物出现的新时间地点作为进一步局部检索的切入点。Taking the updated gait database as the target comparison object, all relevant surveillance video data are selected for gait retrieval, and the new time and place where the target person appears in the retrieval result is used as the entry point for further local retrieval.
S4、根据局部检索结果和全局检索结果生成目标人物的行动轨迹。S4. Generate an action trajectory of the target person according to the local retrieval result and the global retrieval result.
具体得:将局部检索结果和全局检索结果中目标人物出现的所有时间地点按时间排序,形成目标人物的行动轨迹。Specifically: sort all the times and places where the target person appears in the local retrieval result and the global retrieval result in chronological order to form the action trajectory of the target person.
本发明另一实施例提供了一种步态大数据检索方法,如图3和图4所示,所述方法包括:Another embodiment of the present invention provides a gait big data retrieval method, as shown in FIG. 3 and FIG. 4 , the method includes:
S301、获取包含目标人物的视频图像,并在视频图像中提取出目标人物的步态样本,根据步态样本构建目标人物的步态库。S301. Acquire a video image containing a target person, extract a gait sample of the target person from the video image, and construct a gait library of the target person according to the gait sample.
S302、获取目标人物出现的初始时间地点作为中心点。S302: Obtain the initial time and place where the target character appears as the center point.
S303、利用步态库在中心点周围预设范围内的监控视频数据中进行检索,获得局部检索结果。S303 , using the gait library to search the surveillance video data within a preset range around the center point to obtain a local search result.
S304、将局部检索结果中符合预设规则的步态样本作为优秀步态样本加入步态库中,得到更新后的步态库。S304 , adding the gait samples conforming to the preset rules in the local retrieval results as excellent gait samples into the gait database to obtain an updated gait database.
S305、判断局部检索结果中是否包含目标人物新出现的时间地点;若是,则执行步骤306;若否,则执行步骤307。S305: Determine whether the local retrieval result includes the time and place where the target person newly appears; if so, go to step 306; if not, go to step 307.
S306、将局部检索结果中目标人物新出现的时间地点作为更新后的中心点,并执行步骤303。S306 , take the time and place where the target person newly appears in the partial retrieval result as the updated center point, and execute step 303 .
S307、利用更新后的步态库在全域的监控视频数据中进行检索,获得全局检索结果。S307 , using the updated gait database to perform retrieval in the surveillance video data of the whole domain to obtain a global retrieval result.
S308、判断全局检索结果中是否包含目标人物新出现的时间地点;若是,则执行步骤309;若否,则执行步骤310。S308: Determine whether the global retrieval result includes the time and place where the target person newly appears; if yes, go to step 309; if not, go to step 310.
S309、将全局检索结果中目标人物新出现的时间地点作为更新后的中心点,并执行步骤303。S309 , take the time and place where the target person newly appears in the global retrieval result as the updated center point, and execute step 303 .
S310、将局部检索结果和全局检索结果中目标人物出现的所有时间地点按时间排序,形成目标人物的行动轨迹。S310: Sort all the times and places where the target person appears in the local retrieval result and the global retrieval result by time to form an action track of the target person.
本发明可以在步态样本不足的情况下动态建库,丰富目标人物步态样本数量,提升目标人物步态样本质量。例如,当注册的目标人物步态样本像素低、人形轮廓模糊时,可以通过低阈值局部检索快速寻找其他优秀的步态样本。同时,通过全局检索可以快速获取更多目标人物出现的时间地点信息,通过局部检索可以避免遗漏的寻找目标人物在局部范围内的轨迹,从而可以精细化绘制大范围的目标人物的行动轨迹。The present invention can dynamically build a database in the case of insufficient gait samples, enrich the quantity of target person's gait samples, and improve the quality of target person's gait samples. For example, when the registered target person's gait sample has low pixels and the human figure outline is blurred, other excellent gait samples can be quickly found through local retrieval with a low threshold. At the same time, more time and place information of the target person's appearance can be quickly obtained through global retrieval, and the missed trajectory of the target person in the local range can be avoided through local retrieval, so that the movement trajectory of a large-scale target person can be refined and drawn.
本发明又一实施例提供一种步态大数据检索系统,所述系统包括:Another embodiment of the present invention provides a gait big data retrieval system, the system includes:
步态库构建单元,用于获取包含目标人物的视频图像,并在视频图像中提取出目标人物的步态样本,根据步态样本构建目标人物的步态库。The gait library construction unit is used to obtain a video image containing a target person, extract a gait sample of the target person from the video image, and construct a gait library of the target person according to the gait sample.
局部检索单元,用于利用步态库在局部区域的监控视频数据中进行检索,得到局部检索结果,并利用局部检索结果更新步态库,得到更新后的步态库。The local retrieval unit is used to use the gait database to retrieve the surveillance video data in the local area to obtain the local retrieval result, and use the local retrieval result to update the gait database to obtain the updated gait database.
全局检索单元,用于利用更新后的步态库在全域的监控视频数据中进行检索,获得全局检索结果。The global retrieval unit is used to retrieve the global surveillance video data by using the updated gait library to obtain the global retrieval result.
轨迹生成单元,用于根据局部检索结果和全局检索结果生成目标人物的行动轨迹。The trajectory generation unit is used to generate the action trajectory of the target person according to the local retrieval result and the global retrieval result.
进一步的,所述系统还包括数据查询单元和数据同步单元;Further, the system also includes a data query unit and a data synchronization unit;
数据查询单元用于根据数据库类型、创建时间、步态样本等级和被采集人员身份信息中的任意一种或任意几种查询步态库中的数据,以浏览底库人员身份、步态样本等信息。The data query unit is used to query the data in the gait database according to any one or several of the database type, creation time, gait sample level and the identity information of the collected person, so as to browse the identity of the personnel in the base library, gait samples, etc. information.
数据同步单元用于将步态库中的数据按预设同步周期或预设同步策略同步至上级系统或第三方系统。The data synchronization unit is used to synchronize the data in the gait library to the upper-level system or the third-party system according to the preset synchronization cycle or the preset synchronization strategy.
本发明实施例所提供的的检索系统具备帮手检索、步态检索、步态比对、检索结果汇总、轨迹绘制、步态底库质量评估等功能。The retrieval system provided by the embodiment of the present invention has functions such as helper retrieval, gait retrieval, gait comparison, retrieval result summary, trajectory drawing, and gait base library quality assessment.
本发明实施例所提供的检索系统具备用户管理、角色管理、组织管理功能;具有普通用户、管理员的不同使用权限管理功能,在步态登记、删除、查询等操作中具有相关的授权机制。同时,本发明的检索系统还具备日志管理功能,对于每个事件,日志记录应包括事件发生时间、事件类型、用户、事件执行结果或失败原因,日志有效时间等。The retrieval system provided by the embodiment of the present invention has the functions of user management, role management, and organization management; has different use rights management functions of ordinary users and administrators, and has a relevant authorization mechanism in operations such as gait registration, deletion, and query. At the same time, the retrieval system of the present invention also has a log management function. For each event, the log record should include event occurrence time, event type, user, event execution result or failure reason, log valid time, and the like.
本发明再一实施例提供一种终端设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行所述计算机程序时实现如上述任一种所述方法的步骤。Yet another embodiment of the present invention provides a terminal device, including a memory, a processor, and a computer program stored in the memory and running on the processor, where the processor implements any of the above methods when executing the computer program A step of.
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。The above are only a few embodiments of the present application, and are not intended to limit the present application in any form. Although the present application is disclosed as above with preferred embodiments, it is not intended to limit the present application. Without departing from the scope of the technical solution of the present application, any changes or modifications made by using the technical content disclosed above are equivalent to equivalent implementation cases and fall within the scope of the technical solution.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210225395.XA CN114612932B (en) | 2022-03-07 | 2022-03-07 | A gait big data retrieval method and its system and terminal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210225395.XA CN114612932B (en) | 2022-03-07 | 2022-03-07 | A gait big data retrieval method and its system and terminal device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114612932A true CN114612932A (en) | 2022-06-10 |
CN114612932B CN114612932B (en) | 2024-12-06 |
Family
ID=81861917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210225395.XA Active CN114612932B (en) | 2022-03-07 | 2022-03-07 | A gait big data retrieval method and its system and terminal device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114612932B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108875548A (en) * | 2018-04-18 | 2018-11-23 | 科大讯飞股份有限公司 | Character track generation method and device, storage medium and electronic equipment |
CN109446991A (en) * | 2018-10-30 | 2019-03-08 | 北京交通大学 | Gait recognition method based on global and local Fusion Features |
CN110139075A (en) * | 2019-05-10 | 2019-08-16 | 银河水滴科技(北京)有限公司 | Video data handling procedure, device, computer equipment and storage medium |
CN110532923A (en) * | 2019-08-21 | 2019-12-03 | 深圳供电局有限公司 | Figure track retrieval method and system |
CN111539320A (en) * | 2020-04-22 | 2020-08-14 | 山东大学 | Multi-view gait recognition method and system based on mutual learning network strategy |
CN112784740A (en) * | 2021-01-21 | 2021-05-11 | 上海市公安局刑事侦查总队 | Gait data acquisition and labeling method and application |
US20210224524A1 (en) * | 2020-01-22 | 2021-07-22 | Board Of Trustees Of Michigan State University | Systems And Methods For Gait Recognition Via Disentangled Representation Learning |
CN113963399A (en) * | 2021-09-09 | 2022-01-21 | 武汉众智数字技术有限公司 | Personnel trajectory retrieval method and device based on multi-algorithm fusion application |
-
2022
- 2022-03-07 CN CN202210225395.XA patent/CN114612932B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108875548A (en) * | 2018-04-18 | 2018-11-23 | 科大讯飞股份有限公司 | Character track generation method and device, storage medium and electronic equipment |
CN109446991A (en) * | 2018-10-30 | 2019-03-08 | 北京交通大学 | Gait recognition method based on global and local Fusion Features |
CN110139075A (en) * | 2019-05-10 | 2019-08-16 | 银河水滴科技(北京)有限公司 | Video data handling procedure, device, computer equipment and storage medium |
CN110532923A (en) * | 2019-08-21 | 2019-12-03 | 深圳供电局有限公司 | Figure track retrieval method and system |
US20210224524A1 (en) * | 2020-01-22 | 2021-07-22 | Board Of Trustees Of Michigan State University | Systems And Methods For Gait Recognition Via Disentangled Representation Learning |
CN111539320A (en) * | 2020-04-22 | 2020-08-14 | 山东大学 | Multi-view gait recognition method and system based on mutual learning network strategy |
CN112784740A (en) * | 2021-01-21 | 2021-05-11 | 上海市公安局刑事侦查总队 | Gait data acquisition and labeling method and application |
CN113963399A (en) * | 2021-09-09 | 2022-01-21 | 武汉众智数字技术有限公司 | Personnel trajectory retrieval method and device based on multi-algorithm fusion application |
Non-Patent Citations (1)
Title |
---|
廖嘉城;梁艳;王冰冰;潘家辉;: "视频监控场景下基于单视角步态的人体身份及属性识别系统", 计算机系统应用, no. 08, 15 August 2020 (2020-08-15) * |
Also Published As
Publication number | Publication date |
---|---|
CN114612932B (en) | 2024-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5602135B2 (en) | Method and system for automatic personal annotation of video content | |
CN110598543B (en) | Model training method based on attribute mining and reasoning and pedestrian re-identification method | |
CN108268539A (en) | Video matching system based on text analyzing | |
US20070025593A1 (en) | Automated searching for probable matches in a video surveillance system | |
CN102945366A (en) | Method and device for face recognition | |
CN109118766A (en) | A kind of colleague's vehicle discriminating method and device based on traffic block port | |
JP2022082493A (en) | Pedestrian re-identification method for random shielding recovery based on noise channels | |
CN109871673B (en) | Continuous identity authentication method and system based on different context environments | |
CN109858354A (en) | A kind of face identity library, the foundation of track table and face track querying method and system | |
CN104820711A (en) | Video retrieval method for figure target in complex scene | |
CN114218348A (en) | Method, device, equipment and medium for acquiring live broadcast segments based on question and answer text | |
Sudhish et al. | Adaptive fusion of biometric and biographic information for identity de-duplication | |
CN114612932A (en) | Gait big data retrieval method and system and terminal equipment | |
Elsawy et al. | Tweetmogaz v2: Identifying news stories in social media | |
CN109784422B (en) | User track abnormity detection method for mobile terminal equipment of Internet of things | |
CN111767880A (en) | Living body identity recognition method and device based on facial features and storage medium | |
Nguyen et al. | Unsupervised inference of significant locations from wifi data for understanding human dynamics | |
CN115114627B (en) | Malicious software detection method and device | |
CN114286198B (en) | Video association method, device, electronic equipment and storage medium | |
CN117037061A (en) | Intelligent security method and system | |
CN113157946B (en) | Entity linking method, device, electronic equipment and storage medium | |
CN112364714B (en) | Face recognition method, device, computer equipment and storage medium | |
CN112633063B (en) | Figure action tracking system and method thereof | |
CN113032567A (en) | Position embedding interpretation method and device, computer equipment and storage medium | |
CN105069045B (en) | Update the data the method and system of relation data non-permanent in library |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |