CN114585064B - Uplink transmission processing method, device and equipment - Google Patents
Uplink transmission processing method, device and equipment Download PDFInfo
- Publication number
- CN114585064B CN114585064B CN202011297040.9A CN202011297040A CN114585064B CN 114585064 B CN114585064 B CN 114585064B CN 202011297040 A CN202011297040 A CN 202011297040A CN 114585064 B CN114585064 B CN 114585064B
- Authority
- CN
- China
- Prior art keywords
- uplink channel
- power spectrum
- information
- spectrum density
- compensation value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 114
- 238000003672 processing method Methods 0.000 title claims abstract description 15
- 238000001228 spectrum Methods 0.000 claims abstract description 93
- 238000000034 method Methods 0.000 claims abstract description 48
- 230000003595 spectral effect Effects 0.000 claims abstract description 24
- 238000012545 processing Methods 0.000 claims description 24
- 230000011664 signaling Effects 0.000 claims description 22
- 101100346525 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MSG5 gene Proteins 0.000 claims description 12
- 102100039292 Cbp/p300-interacting transactivator 1 Human genes 0.000 claims description 11
- 101000888413 Homo sapiens Cbp/p300-interacting transactivator 1 Proteins 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 8
- 238000004891 communication Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101150096310 SIB1 gene Proteins 0.000 description 2
- 101150039363 SIB2 gene Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/08—Non-scheduled access, e.g. ALOHA
- H04W74/0833—Random access procedures, e.g. with 4-step access
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及通信技术领域,特别是指一种上行传输处理方法、装置及设备。The present invention relates to the field of communication technology, and in particular to an uplink transmission processing method, device and equipment.
背景技术Background Art
通信系统中,不同的数据或信令往往具有对应的信道进行传输,以保证数据传输的质量。In a communication system, different data or signaling often has corresponding channels for transmission to ensure the quality of data transmission.
然而,在上行传输中,由于不同上行信道的传输具有独立的功控机制,一次上行传输完成后,下一次上行传输仍然需要独立的确定新的上行功率。如此,再次进行的上行传输将存在较大传输失败的风险。However, in uplink transmission, since different uplink channels have independent power control mechanisms, after one uplink transmission is completed, the next uplink transmission still needs to independently determine a new uplink power, so the next uplink transmission will have a greater risk of transmission failure.
发明内容Summary of the invention
本发明的目的是提供一种上行传输处理方法、装置及设备,以达到降低上行信道的传输失败风险的目的。The object of the present invention is to provide an uplink transmission processing method, device and equipment to reduce the risk of transmission failure in an uplink channel.
为达到上述目的,本发明的实施例提供一种上行传输处理方法,应用于用户设备,包括:To achieve the above object, an embodiment of the present invention provides an uplink transmission processing method, which is applied to a user equipment, including:
在第一上行信道成功传输第一信息之后,根据所述第一上行信道的第一传输参数,以及待传输第二信息的第二上行信道的第二传输参数,确定所述第二上行信道的目标功率谱密度;After the first uplink channel successfully transmits the first information, determining a target power spectral density of the second uplink channel according to a first transmission parameter of the first uplink channel and a second transmission parameter of a second uplink channel to transmit the second information;
根据所述目标功率谱密度,在所述第二上行信道传输所述第二信息。The second information is transmitted on the second uplink channel according to the target power spectrum density.
可选地,所述第一传输参数包括第一重复次数、第一接收解调门限值和第一功率谱密度;所述第二传输参数包括第二重复次数和第二接收解调门限值;Optionally, the first transmission parameter includes a first repetition number, a first reception demodulation threshold and a first power spectrum density; the second transmission parameter includes a second repetition number and a second reception demodulation threshold;
所述根据所述第一上行信道的第一传输参数,以及待传输第二信息的第二上行信道的第二传输参数,确定所述第二上行信道的目标功率谱密度,包括:The determining, according to the first transmission parameter of the first uplink channel and the second transmission parameter of the second uplink channel for transmitting second information, a target power spectral density of the second uplink channel comprises:
根据所述第一重复次数、所述第一接收解调门限值、所述第二重复次数以及所述第二接收解调门限值,得到功率谱密度补偿值;Obtaining a power spectrum density compensation value according to the first repetition number, the first receiving demodulation threshold, the second repetition number, and the second receiving demodulation threshold;
使用所述功率谱密度补偿值对所述第一功率谱密度进行补偿,得到所述第二上行信道的目标功率谱密度。The first power spectrum density is compensated using the power spectrum density compensation value to obtain a target power spectrum density of the second uplink channel.
可选地,所述功率谱密度补偿值包括:第一补偿值和第二补偿值;Optionally, the power spectrum density compensation value includes: a first compensation value and a second compensation value;
所述根据所述第一重复次数、所述第一接收解调门限值、所述第二重复次数以及所述第二接收解调门限值,得到功率谱密度补偿值,包括:The obtaining a power spectrum density compensation value according to the first repetition number, the first receiving demodulation threshold, the second repetition number, and the second receiving demodulation threshold includes:
通过公式ΔP=α*10log(R_A/R_B),计算第一补偿值ΔP;其中,α为功率谱密度偏置扩展因子,R_A为所述第一重复次数,R_B为所述第二重复次数;The first compensation value ΔP is calculated by the formula ΔP=α*10log(R_A/R_B); wherein α is the power spectrum density bias expansion factor, R_A is the first repetition number, and R_B is the second repetition number;
通过公式ΔT=Threshold_B-Threshold_A,计算第二补偿值ΔT;其中,Threshold_A为所述第一接收解调门限值,Threshold_B为所述第二接收解调门限值。The second compensation value ΔT is calculated by the formula ΔT=Threshold_B-Threshold_A; wherein Threshold_A is the first receiving demodulation threshold value, and Threshold_B is the second receiving demodulation threshold value.
可选地,所述第二上行信道与所述第一上行信道为相同信道或者不同信道。Optionally, the second uplink channel and the first uplink channel are the same channel or different channels.
可选地,所述第一上行信道和所述第二上行信道均为窄带上行信道。Optionally, both the first uplink channel and the second uplink channel are narrowband uplink channels.
可选地,所述第一信息为基于非竞争随机接入过程的第一信令MSG1,所述第二信息为基于竞争的随机接入过程的第三信令MSG3;或者,Optionally, the first information is a first signaling MSG1 based on a non-contention random access procedure, and the second information is a third signaling MSG3 based on a contention random access procedure; or,
所述第一信息为基于竞争的随机接入过程的MSG3,所述第二信息为基于竞争的随机接入过程的第五信令MSG5。The first information is MSG3 of the contention-based random access procedure, and the second information is the fifth signaling MSG5 of the contention-based random access procedure.
为达到上述目的,本发明的实施例提供一种上行传输处理装置,包括:To achieve the above object, an embodiment of the present invention provides an uplink transmission processing device, including:
处理模块,用于在第一上行信道成功传输第一信息之后,根据所述第一上行信道的第一传输参数,以及待传输第二信息的第二上行信道的第二传输参数,确定所述第二上行信道的目标功率谱密度;A processing module, configured to determine, after the first information is successfully transmitted on the first uplink channel, a target power spectral density of the second uplink channel according to a first transmission parameter of the first uplink channel and a second transmission parameter of a second uplink channel to be used to transmit second information;
传输模块,用于根据所述目标功率谱密度,在所述第二上行信道传输所述第二信息。A transmission module is used to transmit the second information in the second uplink channel according to the target power spectrum density.
可选地,所述第一传输参数包括第一重复次数、第一接收解调门限值和第一功率谱密度;所述第二传输参数包括第二重复次数和第二接收解调门限值;Optionally, the first transmission parameter includes a first repetition number, a first reception demodulation threshold and a first power spectrum density; the second transmission parameter includes a second repetition number and a second reception demodulation threshold;
所述处理模块包括:The processing module comprises:
第一处理子模块,用于根据所述第一重复次数、所述第一接收解调门限值、所述第二重复次数以及所述第二接收解调门限值,得到功率谱密度补偿值;A first processing submodule, configured to obtain a power spectrum density compensation value according to the first repetition number, the first receiving demodulation threshold, the second repetition number, and the second receiving demodulation threshold;
第二处理子模块,用于使用所述功率谱密度补偿值对所述第一功率谱密度进行补偿,得到所述第二上行信道的目标功率谱密度。The second processing submodule is configured to compensate the first power spectrum density by using the power spectrum density compensation value to obtain a target power spectrum density of the second uplink channel.
可选地,所述功率谱密度补偿值包括:第一补偿值和第二补偿值;Optionally, the power spectrum density compensation value includes: a first compensation value and a second compensation value;
所述第一处理子模块包括:The first processing submodule includes:
第一计算单元,用于通过公式ΔP=α*10log(R_A/R_B),计算第一补偿值ΔP;其中,α为功率谱密度偏置扩展因子,R_A为所述第一重复次数,R_B为所述第二重复次数;A first calculation unit is used to calculate a first compensation value ΔP by using a formula ΔP=α*10log(R_A/R_B); wherein α is a power spectrum density bias expansion factor, R_A is the first repetition number, and R_B is the second repetition number;
第二计算单元,用于通过公式ΔT=Threshold_B-Threshold_A,计算第二补偿值ΔT;其中,Threshold_A为所述第一接收解调门限值,Threshold_B为所述第二接收解调门限值。The second calculation unit is used to calculate the second compensation value ΔT through the formula ΔT=Threshold_B-Threshold_A; wherein Threshold_A is the first receiving demodulation threshold value, and Threshold_B is the second receiving demodulation threshold value.
可选地,所述第二上行信道与所述第一上行信道为相同信道或者不同信道。Optionally, the second uplink channel and the first uplink channel are the same channel or different channels.
可选地,所述第一上行信道和所述第二上行信道均为窄带上行信道。Optionally, both the first uplink channel and the second uplink channel are narrowband uplink channels.
可选地,所述第一信息为基于非竞争随机接入过程的第一信令MSG1,所述第二信息为基于竞争的随机接入过程的第三信令MSG3;或者,Optionally, the first information is a first signaling MSG1 based on a non-contention random access procedure, and the second information is a third signaling MSG3 based on a contention random access procedure; or,
所述第一信息为基于竞争的随机接入过程的MSG3,所述第二信息为基于竞争的随机接入过程的第五信令MSG5。The first information is MSG3 of the contention-based random access procedure, and the second information is the fifth signaling MSG5 of the contention-based random access procedure.
为达到上述目的,本发明的实施例提供一种用户设备,包括:收发机和处理器;To achieve the above object, an embodiment of the present invention provides a user equipment, including: a transceiver and a processor;
所述处理器用于在第一上行信道成功传输第一信息之后,根据所述第一上行信道的第一传输参数,以及待传输第二信息的第二上行信道的第二传输参数,确定所述第二上行信道的目标功率谱密度;The processor is configured to determine, after the first uplink channel successfully transmits the first information, a target power spectral density of the second uplink channel according to a first transmission parameter of the first uplink channel and a second transmission parameter of a second uplink channel to transmit the second information;
所述收发机用于根据所述目标功率谱密度,在所述第二上行信道传输所述第二信息。The transceiver is used to transmit the second information on the second uplink channel according to the target power spectrum density.
可选地,所述第一传输参数包括第一重复次数、第一接收解调门限值和第一功率谱密度;所述第二传输参数包括第二重复次数和第二接收解调门限值;Optionally, the first transmission parameter includes a first repetition number, a first reception demodulation threshold and a first power spectrum density; the second transmission parameter includes a second repetition number and a second reception demodulation threshold;
所述处理器还用于:The processor is further configured to:
根据所述第一重复次数、所述第一接收解调门限值、所述第二重复次数以及所述第二接收解调门限值,得到功率谱密度补偿值;Obtaining a power spectrum density compensation value according to the first repetition number, the first receiving demodulation threshold, the second repetition number, and the second receiving demodulation threshold;
使用所述功率谱密度补偿值对所述第一功率谱密度进行补偿,得到所述第二上行信道的目标功率谱密度。The first power spectrum density is compensated using the power spectrum density compensation value to obtain a target power spectrum density of the second uplink channel.
可选地,所述功率谱密度补偿值包括:第一补偿值和第二补偿值;Optionally, the power spectrum density compensation value includes: a first compensation value and a second compensation value;
所述处理器还用于:The processor is further configured to:
通过公式ΔP=α*10log(R_A/R_B),计算第一补偿值ΔP;其中,α为功率谱密度偏置扩展因子,R_A为所述第一重复次数,R_B为所述第二重复次数;The first compensation value ΔP is calculated by the formula ΔP=α*10log(R_A/R_B); wherein α is the power spectrum density bias expansion factor, R_A is the first repetition number, and R_B is the second repetition number;
通过公式ΔT=Threshold_B-Threshold_A,计算第二补偿值ΔT;其中,Threshold_A为所述第一接收解调门限值,Threshold_B为所述第二接收解调门限值。The second compensation value ΔT is calculated by the formula ΔT=Threshold_B-Threshold_A; wherein Threshold_A is the first receiving demodulation threshold value, and Threshold_B is the second receiving demodulation threshold value.
可选地,所述第二上行信道与所述第一上行信道为相同信道或者不同信道。Optionally, the second uplink channel and the first uplink channel are the same channel or different channels.
可选地,所述第一上行信道和所述第二上行信道均为窄带上行信道。Optionally, both the first uplink channel and the second uplink channel are narrowband uplink channels.
可选地,所述第一信息为基于非竞争随机接入过程的第一信令MSG1,所述第二信息为基于竞争的随机接入过程的第三信令MSG3;或者,Optionally, the first information is a first signaling MSG1 based on a non-contention random access procedure, and the second information is a third signaling MSG3 based on a contention random access procedure; or,
所述第一信息为基于竞争的随机接入过程的MSG3,所述第二信息为基于竞争的随机接入过程的第五信令MSG5。The first information is MSG3 of the contention-based random access procedure, and the second information is the fifth signaling MSG5 of the contention-based random access procedure.
为达到上述目的,本发明的实施例提供一种用户设备,包括收发器、处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令;所述处理器执行所程序或指令时实现如上所述的上行传输处理方法。To achieve the above-mentioned purpose, an embodiment of the present invention provides a user equipment, including a transceiver, a processor, a memory, and a program or instruction stored in the memory and executable on the processor; when the processor executes the program or instruction, the uplink transmission processing method as described above is implemented.
为达到上述目的,本发明的实施例提供一种可读存储介质,其上存储有程序或指令,所述程序或指令被处理器执行时实现如上所述的上行传输处理方法中的步骤。To achieve the above objective, an embodiment of the present invention provides a readable storage medium on which a program or instruction is stored. When the program or instruction is executed by a processor, the steps in the uplink transmission processing method as described above are implemented.
本发明的上述技术方案的有益效果如下:The beneficial effects of the above technical solution of the present invention are as follows:
本发明实施例的方法,通过第二上行信道传输第二信息时,所采用的目标功率谱密度是基于已成功传输第一信息的第一上行信道的第一传输参数,以及该第二上行信道的第二传输参数确定的,而且,由于第一传输参数是第一上行信道成功传输第一信息所使用的,提升了采用所确定的目标功率谱密度在第二上行信道传输第二信息的成功率,降低了上行信道的传输失败风险。According to the method of the embodiment of the present invention, when transmitting the second information through the second uplink channel, the target power spectral density adopted is determined based on the first transmission parameter of the first uplink channel that has successfully transmitted the first information, and the second transmission parameter of the second uplink channel. Moreover, since the first transmission parameter is used by the first uplink channel to successfully transmit the first information, the success rate of transmitting the second information on the second uplink channel using the determined target power spectral density is improved, and the risk of transmission failure of the uplink channel is reduced.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例的上行传输处理方法的流程图之一;FIG1 is a flowchart of an uplink transmission processing method according to an embodiment of the present invention;
图2为本发明实施例的上行传输处理方法的流程图之二;FIG2 is a second flowchart of the uplink transmission processing method according to an embodiment of the present invention;
图3为本发明实施例的上行传输处理装置的结构图;3 is a structural diagram of an uplink transmission processing device according to an embodiment of the present invention;
图4为本发明实施例的用户设备的结构图;FIG4 is a structural diagram of a user equipment according to an embodiment of the present invention;
图5为本发明另一实施例的用户设备的结构图。FIG5 is a structural diagram of a user equipment according to another embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention more clear, a detailed description will be given below with reference to the accompanying drawings and specific embodiments.
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。It should be understood that the references to "one embodiment" or "an embodiment" throughout the specification mean that the specific features, structures, or characteristics associated with the embodiment are included in at least one embodiment of the present invention. Therefore, the references to "in one embodiment" or "in an embodiment" appearing throughout the specification do not necessarily refer to the same embodiment. In addition, these specific features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
在本发明的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。In various embodiments of the present invention, it should be understood that the size of the serial numbers of the following processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present invention.
另外,本文中术语“系统”和“网络”在本文中常可互换使用。Additionally, the terms "system" and "network" are often used interchangeably herein.
在本申请所提供的实施例中,应理解,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。In the embodiments provided in the present application, it should be understood that "B corresponding to A" means that B is associated with A, and B can be determined according to A. However, it should also be understood that determining B according to A does not mean determining B only according to A, and B can also be determined according to A and/or other information.
如图1所示,本发明实施例的一种上行传输处理方法,应用于用户设备,包括:As shown in FIG1 , an uplink transmission processing method according to an embodiment of the present invention is applied to a user equipment, including:
步骤101,在第一上行信道成功传输第一信息之后,根据所述第一上行信道的第一传输参数,以及待传输第二信息的第二上行信道的第二传输参数,确定所述第二上行信道的目标功率谱密度;Step 101, after a first uplink channel successfully transmits first information, determining a target power spectral density of a second uplink channel according to a first transmission parameter of the first uplink channel and a second transmission parameter of a second uplink channel to be used for transmitting second information;
步骤102,根据所述目标功率谱密度,在所述第二上行信道传输所述第二信息。Step 102: Transmit the second information in the second uplink channel according to the target power spectrum density.
这样,第二上行信道传输第二信息所采用的目标功率谱密度,是基于已成功传输第一信息的第一上行信道的第一传输参数,以及该第二上行信道的第二传输参数确定的,而且,由于第一传输参数是第一上行信道成功传输第一信息所使用的,提升了采用所确定的目标功率谱密度在第二上行信道传输第二信息的成功率,降低了上行信道的传输失败风险。In this way, the target power spectral density used by the second uplink channel to transmit the second information is determined based on the first transmission parameter of the first uplink channel that has successfully transmitted the first information, and the second transmission parameter of the second uplink channel. Moreover, since the first transmission parameter is used by the first uplink channel to successfully transmit the first information, the success rate of transmitting the second information on the second uplink channel using the determined target power spectral density is improved, and the risk of transmission failure of the uplink channel is reduced.
其中,步骤102在第二上行信道传输第二信息,是使用根据经步骤101确定的目标功率谱密度,进一步得到目标发送功率,以该目标发送功率完成第二信息的传输。Wherein, in step 102, the second information is transmitted in the second uplink channel by using the target power spectrum density determined in step 101 to further obtain the target transmission power, and the transmission of the second information is completed with the target transmission power.
可选地,所述第一传输参数包括第一重复次数、第一接收解调门限值和第一功率谱密度;所述第二传输参数包括第二重复次数和第二接收解调门限值;Optionally, the first transmission parameter includes a first repetition number, a first reception demodulation threshold and a first power spectrum density; the second transmission parameter includes a second repetition number and a second reception demodulation threshold;
如图2所示,步骤101,包括:As shown in FIG. 2 , step 101 includes:
步骤201,根据所述第一重复次数、所述第一接收解调门限值、所述第二重复次数以及所述第二接收解调门限值,得到功率谱密度补偿值;Step 201, obtaining a power spectrum density compensation value according to the first repetition number, the first receiving demodulation threshold, the second repetition number, and the second receiving demodulation threshold;
步骤202,使用所述功率谱密度补偿值对所述第一功率谱密度进行补偿,得到所述第二上行信道的目标功率谱密度。Step 202: Use the power spectrum density compensation value to compensate the first power spectrum density to obtain a target power spectrum density of the second uplink channel.
这里,第一重复次数、第一功率谱密度是第一上行信道成功传输第一信息使用的,第一接收解调门限值是配置的第一上行传输信道的接收解调门限值,第二重复次数是配置的第二上行信道传输信息的重复次数,第二接收解调门限值是配置的第二上行传输信道的接收解调门限值。Here, the first repetition number and the first power spectrum density are used for successfully transmitting the first information on the first uplink channel, the first reception demodulation threshold value is the configured reception demodulation threshold value of the first uplink transmission channel, the second repetition number is the configured repetition number of transmission information on the second uplink channel, and the second reception demodulation threshold value is the configured reception demodulation threshold value of the second uplink transmission channel.
如此,按照步骤201和步骤202,在先由第一重复次数、第一接收解调门限值、第二重复次数以及第二接收解调门限值得到一功率谱密度补偿值后,再以该功率谱密度补偿值对第一功率谱密度补偿,从而得到第二上行信道传输第二信息适用的目标功率谱密度。由于参照已成功传输信息的上行信道的传输参数,对待传输的上行信道的功率谱密度进行补偿,灵活调整上行传输的发射功率,增加了上行信道数据传输的成功率。Thus, according to step 201 and step 202, after obtaining a power spectrum density compensation value by the first number of repetitions, the first receiving demodulation threshold value, the second number of repetitions and the second receiving demodulation threshold value, the first power spectrum density is compensated by the power spectrum density compensation value, thereby obtaining a target power spectrum density suitable for transmitting the second information through the second uplink channel. Since the power spectrum density of the uplink channel to be transmitted is compensated by referring to the transmission parameters of the uplink channel of the successfully transmitted information, the transmission power of the uplink transmission is flexibly adjusted, thereby increasing the success rate of uplink channel data transmission.
可选地,该实施例中,所述功率谱密度补偿值包括:第一补偿值和第二补偿值;Optionally, in this embodiment, the power spectrum density compensation value includes: a first compensation value and a second compensation value;
步骤201包括:Step 201 includes:
通过公式ΔP=α*10log(R_A/R_B),计算第一补偿值ΔP;其中,α为功率谱密度偏置扩展因子,R_A为所述第一重复次数,R_B为所述第二重复次数;The first compensation value ΔP is calculated by the formula ΔP=α*10log(R_A/R_B); wherein α is the power spectrum density bias expansion factor, R_A is the first repetition number, and R_B is the second repetition number;
通过公式ΔT=Threshold_B-Threshold_A,计算第二补偿值ΔT;其中,Threshold_A为所述第一接收解调门限值,Threshold_B为所述第二接收解调门限值。The second compensation value ΔT is calculated by the formula ΔT=Threshold_B-Threshold_A; wherein Threshold_A is the first receiving demodulation threshold value, and Threshold_B is the second receiving demodulation threshold value.
由此可知,ΔP用于补偿R_A和R_B之间的重复次数差异。其中,若α=1,R_A=8,R_B=2,则ΔP=1*10log(8/2)=6dB。即可以理解的是,因第二上行信道的重复次数比第一上行信道的重复次数少,因此需要在功率上补偿重复次数的损失。It can be seen that ΔP is used to compensate for the difference in the number of repetitions between R_A and R_B. If α=1, R_A=8, and R_B=2, then ΔP=1*10log(8/2)=6dB. It can be understood that since the number of repetitions of the second uplink channel is less than that of the first uplink channel, the loss of the number of repetitions needs to be compensated in terms of power.
而ΔT为第一上行信道和第二上行信道的接收解调门限差值。其中,若Threshold_A=-110dBm,Threshold_B=-112dBm,则ΔT=-2dB。即可以理解的是,因第二上行信道的接收解调门限值更低,其在发射功率谱密度上需要减少2dB。ΔT is the difference between the receiving demodulation thresholds of the first uplink channel and the second uplink channel. If Threshold_A = -110dBm, Threshold_B = -112dBm, then ΔT = -2dB. It can be understood that since the receiving demodulation threshold of the second uplink channel is lower, its transmit power spectrum density needs to be reduced by 2dB.
其中,上行信道的接收解调门限值是通过系统消息如系统消息2(SIB2),或系统消息1(SIB1)下发。The receiving demodulation threshold of the uplink channel is sent via a system message such as system message 2 (SIB2) or system message 1 (SIB1).
应该知道的是,该实施例中,第二上行信道是待发送第二信息的上行信道,第一上行信道是在第二信息发送之前成功发送第一信息的上行信道,故,第一上行信道可以仅通过时间的限定,确定为最近一次发送信息的上行信道;或者,通过进一步结合第一信息的限定,确定为最近一次发送特定信息的上行信道。It should be known that, in this embodiment, the second uplink channel is the uplink channel for sending the second information, and the first uplink channel is the uplink channel for successfully sending the first information before the second information is sent. Therefore, the first uplink channel can be determined as the uplink channel for sending the most recent information only by limiting the time; or, by further combining with the limitation of the first information, it can be determined as the uplink channel for sending the most recent specific information.
可选地,所述第二上行信道与所述第一上行信道为相同信道或者不同信道。Optionally, the second uplink channel and the first uplink channel are the same channel or different channels.
例如,第一上行信道和第二上行信道均为PUSCH(Physical Uplink SharedChannel,物理上行共享信道);或者,第一上行信道为PRACH(Physical Random AccessChannel,物理随机接入信道),第二上行信道为PUSCH,等等。For example, the first uplink channel and the second uplink channel are both PUSCH (Physical Uplink Shared Channel); or, the first uplink channel is PRACH (Physical Random Access Channel), the second uplink channel is PUSCH, and so on.
一般而言,NB-IoT(Narrow Band Internet of Things,窄带物联网)作为万物互联网络的一个重要分支,能够支持低功耗设备在广域网的蜂窝数据连接。由于NB-IoT自身具备的低功耗、广覆盖、低成本、大容量等优势,广泛应用于多种垂直行业。且NPRACH(Narrow Physical Random Access Channel,窄带物理随机接入信道)功控和NPUSCH(Narrow Physical Uplink Shared Channel,窄带物理上行共享信道)功控是两套独立的功控机制,因此,本发明实施例的方法适用于NB-IoT系统,可选地,所述第一上行信道和所述第二上行信道均为窄带上行信道。Generally speaking, NB-IoT (Narrow Band Internet of Things), as an important branch of the Internet of Everything, can support cellular data connections of low-power devices in wide area networks. Due to the advantages of low power consumption, wide coverage, low cost, and large capacity of NB-IoT itself, it is widely used in various vertical industries. Moreover, NPRACH (Narrow Physical Random Access Channel) power control and NPUSCH (Narrow Physical Uplink Shared Channel) power control are two independent power control mechanisms. Therefore, the method of an embodiment of the present invention is applicable to the NB-IoT system. Optionally, the first uplink channel and the second uplink channel are both narrowband uplink channels.
可选地,所述第一信息为基于非竞争随机接入过程的第一信令MSG1,所述第二信息为基于竞争的随机接入过程的第三信令MSG3。Optionally, the first information is a first signaling MSG1 based on a non-contention random access procedure, and the second information is a third signaling MSG3 based on a contention random access procedure.
具体的,传输MSG1的第一上行信道为NPRACH,传输MSG3的第二上行信道为NPUSCH。Specifically, the first uplink channel for transmitting MSG1 is NPRACH, and the second uplink channel for transmitting MSG3 is NPUSCH.
例如,对于NB-IoT,在MSG1经NPRACH成功传输时,重复次数为8次,功率谱密度为-3dBm/15Hz。传输MSG3的NPUSCH为了满足功控需求,重复次数设置为2。而且,设定传输MSG1的NPRACH的接收解调门限为-120dBm,传输MSG3的NPUSCH的接收解调门限为-118dBm,则α=1时,NPUSCH传输MSG3的功率谱密度为-3dBm/15KHz+10*log(8/2)+(-118dBm–(-120dBm))=5dBm/15KHz。For example, for NB-IoT, when MSG1 is successfully transmitted via NPRACH, the number of repetitions is 8 and the power spectrum density is -3dBm/15Hz. To meet the power control requirements, the number of repetitions for the NPUSCH that transmits MSG3 is set to 2. In addition, the receiving demodulation threshold of the NPRACH that transmits MSG1 is set to -120dBm, and the receiving demodulation threshold of the NPUSCH that transmits MSG3 is set to -118dBm. When α=1, the power spectrum density of the NPUSCH that transmits MSG3 is -3dBm/15KHz+10*log(8/2)+(-118dBm–(-120dBm))=5dBm/15KHz.
当然,本发明实施例的方法也适用于承载用户数据的PUSCH传输成功后,传输承载控制信息的PUSCH或PUCCH(Physical Uplink Control Channel,物理上行链路控制信道)。其中,控制信息可以为UCI(Uplink Control Information,上行控制信息)、上行RRC(RadioResource Control,无线资源控制)信息、上行MR(Measurement Report,测量报告)等。Of course, the method of the embodiment of the present invention is also applicable to the transmission of PUSCH or PUCCH (Physical Uplink Control Channel) carrying control information after the PUSCH carrying user data is successfully transmitted. The control information may be UCI (Uplink Control Information), uplink RRC (Radio Resource Control) information, uplink MR (Measurement Report), etc.
可选地,所述第一上行信道为PUSCH,所述第二上行信道为PUSCH或PUCCH。Optionally, the first uplink channel is PUSCH, and the second uplink channel is PUSCH or PUCCH.
可选地,所述第一信息为基于竞争的随机接入过程的MSG3,所述第二信息为基于竞争的随机接入过程的第五信令MSG5。Optionally, the first information is MSG3 of the contention-based random access procedure, and the second information is the fifth signaling MSG5 of the contention-based random access procedure.
具体的,传输MSG3的第一上行信道为PUSCH,传输MSG5的第二上行信道为PUSCH。Specifically, the first uplink channel for transmitting MSG3 is PUSCH, and the second uplink channel for transmitting MSG5 is PUSCH.
例如,对于5G NR(New Radio,新空口),在MSG3经PUSCH成功传输时,重复次数为8次,功率谱密度为-3dBm/15Hz。传输MSG5的PUSCH为了满足功控需求,重复次数设置为2。而且,设定传输MSG3的PUSCH的接收解调门限为-120dBm,传输MSG5的PUSCH的接收解调门限为-120dBm,则α=1时,PUSCH传输MSG5的功率谱密度为-3dBm/15KHz+10*log(8/2)+(-120dBm–(-120dBm))=3dBm/15KHz。For example, for 5G NR (New Radio), when MSG3 is successfully transmitted via PUSCH, the number of repetitions is 8 and the power spectrum density is -3dBm/15Hz. To meet the power control requirements, the number of repetitions for the PUSCH that transmits MSG5 is set to 2. In addition, the receiving demodulation threshold of the PUSCH that transmits MSG3 is set to -120dBm, and the receiving demodulation threshold of the PUSCH that transmits MSG5 is set to -120dBm. When α=1, the power spectrum density of the PUSCH that transmits MSG5 is -3dBm/15KHz+10*log(8/2)+(-120dBm–(-120dBm))=3dBm/15KHz.
综上所述,本发明实施例的方法,第二上行信道传输第二信息所采用的目标功率谱密度,是基于已成功传输第一信息的第一上行信道的第一传输参数,以及该第二上行信道的第二传输参数确定的,而且,由于第一传输参数是第一上行信道成功传输第一信息所使用的,提升了采用所确定的目标功率谱密度在第二上行信道传输第二信息的成功率,降低了上行信道的传输失败风险。To summarize, in the method of an embodiment of the present invention, the target power spectral density used by the second uplink channel to transmit the second information is determined based on the first transmission parameter of the first uplink channel that has successfully transmitted the first information, and the second transmission parameter of the second uplink channel. Moreover, since the first transmission parameter is used by the first uplink channel to successfully transmit the first information, the success rate of transmitting the second information on the second uplink channel using the determined target power spectral density is improved, and the risk of transmission failure of the uplink channel is reduced.
如图3所示,本发明实施例的一种上行传输处理装置,包括:As shown in FIG3 , an uplink transmission processing device according to an embodiment of the present invention includes:
处理模块310,用于在第一上行信道成功传输第一信息之后,根据所述第一上行信道的第一传输参数,以及待传输第二信息的第二上行信道的第二传输参数,确定所述第二上行信道的目标功率谱密度;The processing module 310 is used to determine the target power spectral density of the second uplink channel according to the first transmission parameter of the first uplink channel and the second transmission parameter of the second uplink channel to transmit the second information after the first information is successfully transmitted on the first uplink channel;
传输模块320,用于根据所述目标功率谱密度,在所述第二上行信道传输所述第二信息。The transmission module 320 is configured to transmit the second information on the second uplink channel according to the target power spectrum density.
这样,第二上行信道传输第二信息所采用的目标功率谱密度,是基于已成功传输第一信息的第一上行信道的第一传输参数,以及该第二上行信道的第二传输参数确定的,而且,由于第一传输参数是第一上行信道成功传输第一信息所使用的,提升了采用所确定的目标功率谱密度在第二上行信道传输第二信息的成功率,降低了上行信道的传输失败风险。In this way, the target power spectral density used for transmitting the second information on the second uplink channel is determined based on the first transmission parameter of the first uplink channel that has successfully transmitted the first information, and the second transmission parameter of the second uplink channel. Moreover, since the first transmission parameter is used by the first uplink channel to successfully transmit the first information, the success rate of transmitting the second information on the second uplink channel using the determined target power spectral density is improved, and the risk of transmission failure of the uplink channel is reduced.
可选地,所述第一传输参数包括第一重复次数、第一接收解调门限值和第一功率谱密度;所述第二传输参数包括第二重复次数和第二接收解调门限值;Optionally, the first transmission parameter includes a first repetition number, a first reception demodulation threshold and a first power spectrum density; the second transmission parameter includes a second repetition number and a second reception demodulation threshold;
所述处理模块包括:The processing module comprises:
第一处理子模块,用于根据所述第一重复次数、所述第一接收解调门限值、所述第二重复次数以及所述第二接收解调门限值,得到功率谱密度补偿值;A first processing submodule, configured to obtain a power spectrum density compensation value according to the first repetition number, the first receiving demodulation threshold, the second repetition number, and the second receiving demodulation threshold;
第二处理子模块,用于使用所述功率谱密度补偿值对所述第一功率谱密度进行补偿,得到所述第二上行信道的目标功率谱密度。The second processing submodule is configured to compensate the first power spectrum density by using the power spectrum density compensation value to obtain a target power spectrum density of the second uplink channel.
这里,第一重复次数、第一功率谱密度是第一上行信道成功传输第一信息使用的,第一接收解调门限值是配置的第一上行传输信道的接收解调门限值,第二重复次数是配置的第二上行信道传输信息的重复次数,第二接收解调门限值是配置的第二上行传输信道的接收解调门限值。Here, the first repetition number and the first power spectrum density are used for successfully transmitting the first information on the first uplink channel, the first reception demodulation threshold value is the configured reception demodulation threshold value of the first uplink transmission channel, the second repetition number is the configured repetition number of transmission information on the second uplink channel, and the second reception demodulation threshold value is the configured reception demodulation threshold value of the second uplink transmission channel.
如此,本发明实施例的装置,在第一处理子模块先由第一重复次数、第一接收解调门限值、所述第二重复次数以及第二接收解调门限值得到一功率谱密度补偿值后,再经第二处理子模块以该功率谱密度补偿值对第一功率谱密度补偿,从而得到第二上行信道传输第二信息适用的目标功率谱密度。由于参照已成功传输信息的上行信道的传输参数,对待传输的上行信道的功率谱密度进行补偿,灵活调整上行传输的发射功率,增加了上行信道数据传输的成功率。In this way, in the device of the embodiment of the present invention, after the first processing submodule obtains a power spectrum density compensation value from the first repetition number, the first receiving demodulation threshold value, the second repetition number and the second receiving demodulation threshold value, the second processing submodule compensates the first power spectrum density with the power spectrum density compensation value, thereby obtaining a target power spectrum density suitable for transmitting the second information through the second uplink channel. By referring to the transmission parameters of the uplink channel that has successfully transmitted information, the power spectrum density of the uplink channel to be transmitted is compensated, and the transmission power of the uplink transmission is flexibly adjusted, thereby increasing the success rate of uplink channel data transmission.
可选地,所述功率谱密度补偿值包括:第一补偿值和第二补偿值;Optionally, the power spectrum density compensation value includes: a first compensation value and a second compensation value;
所述第一处理子模块包括:The first processing submodule includes:
第一计算单元,用于通过公式ΔP=α*10log(R_A/R_B),计算第一补偿值ΔP;其中,α为功率谱密度偏置扩展因子,R_A为所述第一重复次数,R_B为所述第二重复次数;A first calculation unit is used to calculate a first compensation value ΔP by using a formula ΔP=α*10log(R_A/R_B); wherein α is a power spectrum density bias expansion factor, R_A is the first repetition number, and R_B is the second repetition number;
第二计算单元,用于通过公式ΔT=Threshold_B-Threshold_A,计算第二补偿值ΔT;其中,Threshold_A为所述第一接收解调门限值,Threshold_B为所述第二接收解调门限值。The second calculation unit is used to calculate the second compensation value ΔT through the formula ΔT=Threshold_B-Threshold_A; wherein Threshold_A is the first receiving demodulation threshold value, and Threshold_B is the second receiving demodulation threshold value.
由此可知,ΔP用于补偿R_A和R_B之间的重复次数差异,ΔT为第一上行信道和第二上行信道的接收解调门限差值。It can be seen that ΔP is used to compensate for the difference in the number of repetitions between R_A and R_B, and ΔT is the difference in the receiving demodulation threshold between the first uplink channel and the second uplink channel.
其中,上行信道的接收解调门限值是通过系统消息如SIB2,或SIB1下发。The receiving demodulation threshold of the uplink channel is sent via a system message such as SIB2 or SIB1.
可选地,所述第二上行信道与所述第一上行信道为相同信道或者不同信道。Optionally, the second uplink channel and the first uplink channel are the same channel or different channels.
可选地,所述第一上行信道和所述第二上行信道均为窄带上行信道。Optionally, both the first uplink channel and the second uplink channel are narrowband uplink channels.
可选地,所述第一信息为基于非竞争随机接入过程的第一信令MSG1,所述第二信息为基于竞争的随机接入过程的第三信令MSG3;或者,Optionally, the first information is a first signaling MSG1 based on a non-contention random access procedure, and the second information is a third signaling MSG3 based on a contention random access procedure; or,
所述第一信息为基于竞争的随机接入过程的MSG3,所述第二信息为基于竞争的随机接入过程的第五信令MSG5。The first information is MSG3 of the contention-based random access procedure, and the second information is the fifth signaling MSG5 of the contention-based random access procedure.
需要说明的是,该装置是应用了上述方法的装置,上述方法实施例的实现方式适用于该装置,也能达到相同的技术效果。It should be noted that the device is a device to which the above method is applied, and the implementation method of the above method embodiment is applicable to the device and can also achieve the same technical effect.
如图4所示,本发明实施例的一种用户设备400,包括:收发机420和处理器410;As shown in FIG4 , a user equipment 400 according to an embodiment of the present invention includes: a transceiver 420 and a processor 410;
所述处理器410用于在第一上行信道成功传输第一信息之后,根据所述第一上行信道的第一传输参数,以及待传输第二信息的第二上行信道的第二传输参数,确定所述第二上行信道的目标功率谱密度;The processor 410 is configured to determine, after the first information is successfully transmitted on the first uplink channel, a target power spectral density of the second uplink channel according to a first transmission parameter of the first uplink channel and a second transmission parameter of a second uplink channel to transmit second information;
所述收发机420用于根据所述目标功率谱密度,在所述第二上行信道传输所述第二信息。The transceiver 420 is configured to transmit the second information on the second uplink channel according to the target power spectrum density.
可选地,所述第一传输参数包括第一重复次数、第一接收解调门限值和第一功率谱密度;所述第二传输参数包括第二重复次数和第二接收解调门限值;Optionally, the first transmission parameter includes a first repetition number, a first reception demodulation threshold and a first power spectrum density; the second transmission parameter includes a second repetition number and a second reception demodulation threshold;
所述处理器还用于:The processor is further configured to:
根据所述第一重复次数、所述第一接收解调门限值、所述第二重复次数以及所述第二接收解调门限值,得到功率谱密度补偿值;Obtaining a power spectrum density compensation value according to the first repetition number, the first receiving demodulation threshold, the second repetition number, and the second receiving demodulation threshold;
使用所述功率谱密度补偿值对所述第一功率谱密度进行补偿,得到所述第二上行信道的目标功率谱密度。The first power spectrum density is compensated using the power spectrum density compensation value to obtain a target power spectrum density of the second uplink channel.
可选地,所述功率谱密度补偿值包括:第一补偿值和第二补偿值;Optionally, the power spectrum density compensation value includes: a first compensation value and a second compensation value;
所述处理器还用于:The processor is further configured to:
通过公式ΔP=α*10log(R_A/R_B),计算第一补偿值ΔP;其中,α为功率谱密度偏置扩展因子,R_A为所述第一重复次数,R_B为所述第二重复次数;The first compensation value ΔP is calculated by the formula ΔP=α*10log(R_A/R_B); wherein α is the power spectrum density bias expansion factor, R_A is the first repetition number, and R_B is the second repetition number;
通过公式ΔT=Threshold_B-Threshold_A,计算第二补偿值ΔT;其中,Threshold_A为所述第一接收解调门限值,Threshold_B为所述第二接收解调门限值。The second compensation value ΔT is calculated by the formula ΔT=Threshold_B-Threshold_A; wherein Threshold_A is the first receiving demodulation threshold value, and Threshold_B is the second receiving demodulation threshold value.
可选地,所述第二上行信道与所述第一上行信道为相同信道或者不同信道。Optionally, the second uplink channel and the first uplink channel are the same channel or different channels.
可选地,所述第一上行信道和所述第二上行信道均为窄带上行信道。Optionally, both the first uplink channel and the second uplink channel are narrowband uplink channels.
可选地,所述第一信息为基于非竞争随机接入过程的第一信令MSG1,所述第二信息为基于竞争的随机接入过程的第三信令MSG3;或者,Optionally, the first information is a first signaling MSG1 based on a non-contention random access procedure, and the second information is a third signaling MSG3 based on a contention random access procedure; or,
所述第一信息为基于竞争的随机接入过程的MSG3,所述第二信息为基于竞争的随机接入过程的第五信令MSG5。The first information is MSG3 of the contention-based random access procedure, and the second information is the fifth signaling MSG5 of the contention-based random access procedure.
本发明实施例的用户设备,通过第二上行信道传输第二信息时,所采用的目标功率谱密度是基于已成功传输第一信息的第一上行信道的第一传输参数,以及该第二上行信道的第二传输参数确定的,而且,由于第一传输参数是第一上行信道成功传输第一信息所使用的,提升了采用所确定的目标功率谱密度在第二上行信道传输第二信息的成功率,降低了上行信道的传输失败风险。When the user equipment of an embodiment of the present invention transmits the second information through the second uplink channel, the target power spectral density adopted is determined based on the first transmission parameter of the first uplink channel that has successfully transmitted the first information, and the second transmission parameter of the second uplink channel. Moreover, since the first transmission parameter is used by the first uplink channel to successfully transmit the first information, the success rate of transmitting the second information on the second uplink channel using the determined target power spectral density is improved, and the risk of transmission failure of the uplink channel is reduced.
本发明另一实施例的一种用户设备,如图5所示,包括收发器510、处理器500、存储器520及存储在所述存储器520上并可在所述处理器500上运行的程序或指令;所述处理器500执行所述程序或指令时实现上述的上行传输处理方法。A user equipment according to another embodiment of the present invention, as shown in FIG5 , includes a transceiver 510, a processor 500, a memory 520, and a program or instruction stored in the memory 520 and executable on the processor 500; when the processor 500 executes the program or instruction, the above-mentioned uplink transmission processing method is implemented.
所述收发器510,用于在处理器500的控制下接收和发送数据。The transceiver 510 is used to receive and send data under the control of the processor 500 .
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发器510可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口530还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。Among them, in Figure 5, the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by processor 500 and various circuits of memory represented by memory 520 are linked together. The bus architecture can also link various other circuits such as peripherals, regulators, and power management circuits together, which are all well known in the art and are therefore not further described herein. The bus interface provides an interface. The transceiver 510 can be a plurality of components, namely, a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium. For different user devices, the user interface 530 can also be an interface that can be connected to external or internal devices, and the connected devices include but are not limited to keypads, displays, speakers, microphones, joysticks, etc.
处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。The processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
本发明实施例的一种可读存储介质,其上存储有程序或指令,所述程序或指令被处理器执行时实现如上所述的上行传输处理方法中的步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。A readable storage medium according to an embodiment of the present invention stores a program or instruction thereon. When the program or instruction is executed by a processor, the steps in the uplink transmission processing method as described above are implemented and the same technical effect can be achieved. To avoid repetition, it will not be described here.
其中,所述处理器为上述实施例中所述的用户设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。The processor is the processor in the user equipment described in the above embodiment. The readable storage medium includes a computer readable storage medium, such as a computer read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
进一步需要说明的是,此说明书中所描述的用户设备包括但不限于智能手机、平板电脑等,且所描述的许多功能部件都被称为模块,以便更加特别地强调其实现方式的独立性。It should be further explained that the user devices described in this specification include but are not limited to smart phones, tablet computers, etc., and many of the functional components described are called modules in order to more particularly emphasize the independence of their implementation methods.
本发明实施例中,模块可以用软件实现,以便由各种类型的处理器执行。举例来说,一个标识的可执行代码模块可以包括计算机指令的一个或多个物理或者逻辑块,举例来说,其可以被构建为对象、过程或函数。尽管如此,所标识模块的可执行代码无需物理地位于一起,而是可以包括存储在不同位里上的不同的指令,当这些指令逻辑上结合在一起时,其构成模块并且实现该模块的规定目的。In the embodiment of the present invention, module can be implemented with software so that it can be executed by various types of processors. For example, an executable code module of an identification can include one or more physical or logical blocks of computer instructions, for example, it can be constructed as an object, process or function. Nevertheless, the executable code of the identified module does not need to be physically located together, but can include different instructions stored in different positions, and when these instructions are logically combined together, it constitutes a module and realizes the specified purpose of the module.
实际上,可执行代码模块可以是单条指令或者是许多条指令,并且甚至可以分布在多个不同的代码段上,分布在不同程序当中,以及跨越多个存储器设备分布。同样地,操作数据可以在模块内被识别,并且可以依照任何适当的形式实现并且被组织在任何适当类型的数据结构内。所述操作数据可以作为单个数据集被收集,或者可以分布在不同位置上(包括在不同存储设备上),并且至少部分地可以仅作为电子信号存在于系统或网络上。In fact, executable code module can be a single instruction or many instructions, and can even be distributed on a plurality of different code segments, distributed among different programs, and distributed across a plurality of memory devices. Similarly, operating data can be identified in the module, and can be implemented and organized in the data structure of any appropriate type according to any appropriate form. The operating data can be collected as a single data set, or can be distributed in different locations (including on different storage devices), and can only be present on a system or network as an electronic signal at least in part.
在模块可以利用软件实现时,考虑到现有硬件工艺的水平,所以可以以软件实现的模块,在不考虑成本的情况下,本领域技术人员都可以搭建对应的硬件电路来实现对应的功能,所述硬件电路包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者是其它分立的元件。模块还可以用可编程硬件设备,诸如现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等实现。When a module can be implemented by software, considering the level of existing hardware technology, a person skilled in the art can build a corresponding hardware circuit to implement the corresponding function of the module that can be implemented by software without considering the cost. The hardware circuit includes a conventional very large scale integration (VLSI) circuit or gate array and existing semiconductors such as logic chips, transistors, or other discrete components. The module can also be implemented by a programmable hardware device, such as a field programmable gate array, a programmable array logic, a programmable logic device, etc.
上述范例性实施例是参考该些附图来描述的,许多不同的形式和实施例是可行而不偏离本发明精神及教示,因此,本发明不应被建构成为在此所提出范例性实施例的限制。更确切地说,这些范例性实施例被提供以使得本发明会是完善又完整,且会将本发明范围传达给那些熟知此项技术的人士。在该些图式中,组件尺寸及相对尺寸也许基于清晰起见而被夸大。在此所使用的术语只是基于描述特定范例性实施例目的,并无意成为限制用。如在此所使用地,除非该内文清楚地另有所指,否则该单数形式“一”、“一个”和“该”是意欲将该些多个形式也纳入。会进一步了解到该些术语“包含”及/或“包括”在使用于本说明书时,表示所述特征、整数、步骤、操作、构件及/或组件的存在,但不排除一或更多其它特征、整数、步骤、操作、构件、组件及/或其族群的存在或增加。除非另有所示,陈述时,一值范围包含该范围的上下限及其间的任何子范围。The above exemplary embodiments are described with reference to the accompanying drawings, and many different forms and embodiments are feasible without departing from the spirit and teachings of the present invention. Therefore, the present invention should not be constructed as a limitation of the exemplary embodiments proposed herein. More specifically, these exemplary embodiments are provided so that the present invention will be perfect and complete, and the scope of the present invention will be conveyed to those who are familiar with the technology. In these figures, the component sizes and relative sizes may be exaggerated for clarity. The terms used here are only based on the purpose of describing specific exemplary embodiments and are not intended to be limiting. As used herein, unless the text clearly indicates otherwise, the singular forms "one", "an" and "the" are intended to include these multiple forms. It will be further understood that the terms "including" and/or "comprising" when used in this specification indicate the presence of the features, integers, steps, operations, components and/or components, but do not exclude the presence or increase of one or more other features, integers, steps, operations, components, components and/or their groups. Unless otherwise indicated, when stated, a range of values includes the upper and lower limits of that range and any subranges therebetween.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and modifications can be made without departing from the principles of the present invention. These improvements and modifications should also be regarded as the scope of protection of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011297040.9A CN114585064B (en) | 2020-11-18 | 2020-11-18 | Uplink transmission processing method, device and equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011297040.9A CN114585064B (en) | 2020-11-18 | 2020-11-18 | Uplink transmission processing method, device and equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114585064A CN114585064A (en) | 2022-06-03 |
CN114585064B true CN114585064B (en) | 2024-11-01 |
Family
ID=81766796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011297040.9A Active CN114585064B (en) | 2020-11-18 | 2020-11-18 | Uplink transmission processing method, device and equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114585064B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102291811A (en) * | 2011-08-11 | 2011-12-21 | 大唐移动通信设备有限公司 | ULPC (uplink power control) method and device |
CN108810874A (en) * | 2017-05-05 | 2018-11-13 | 中国移动通信有限公司研究院 | A kind of reporting terminal capability information, method of reseptance, terminal and network side equipment |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI493911B (en) * | 2007-03-07 | 2015-07-21 | Interdigital Tech Corp | Combined open loop/closed loop method for controlling uplink power of a mobile station |
US10181937B2 (en) * | 2015-06-03 | 2019-01-15 | Lg Electronics Inc. | Method of performing power control and link adaptation in full duplex radio communication system and apparatus for the same |
CN109788537B (en) * | 2017-11-15 | 2022-04-01 | 中国移动通信有限公司研究院 | Method, base station and terminal for controlling uplink power |
CN109842926B (en) * | 2017-11-27 | 2021-06-29 | 华为技术有限公司 | Power control method, device and system |
-
2020
- 2020-11-18 CN CN202011297040.9A patent/CN114585064B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102291811A (en) * | 2011-08-11 | 2011-12-21 | 大唐移动通信设备有限公司 | ULPC (uplink power control) method and device |
CN108810874A (en) * | 2017-05-05 | 2018-11-13 | 中国移动通信有限公司研究院 | A kind of reporting terminal capability information, method of reseptance, terminal and network side equipment |
Also Published As
Publication number | Publication date |
---|---|
CN114585064A (en) | 2022-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202114453A (en) | Information determination method and device, first communication node and storage medium | |
JP2021517434A5 (en) | ||
US20220110073A1 (en) | Data Processing Method, Terminal, and Base Station | |
US10873914B2 (en) | Communication method and communications apparatus | |
US12089159B2 (en) | Terminal energy-saving control method, apparatus and device | |
WO2021023103A1 (en) | Method for configuring timing advance, terminal and network device | |
US20230189290A1 (en) | Information determining method, information sending method, terminal, and network side device | |
EP3554151B1 (en) | Power control method and device | |
US20230163814A1 (en) | Auxiliary information transmission method, terminal device, and network device | |
CN114390657B (en) | Power determination method, device, terminal and readable storage medium | |
WO2022028524A1 (en) | Physical downlink control channel monitoring method and apparatus, and device | |
JP2020537414A (en) | Signal interference avoidance method and network equipment | |
CN114585064B (en) | Uplink transmission processing method, device and equipment | |
EP4106243A1 (en) | Information transmission method, apparatus and device | |
US20230403598A1 (en) | Traffic identifier-to-link mapping methods and multi-link devices | |
US20220294499A1 (en) | Information feedback method and device, information receiving method and device, and storage medium | |
WO2019034101A1 (en) | Valid value determination method for network configuration parameters, user terminal, base station and valid value determination system for network configuration parameters | |
EP4044760B1 (en) | Connection resume methods and apparatuses | |
CN117014945A (en) | Power determination method, terminal and readable storage medium | |
EP4358451A2 (en) | Method for transmitting feedback information, and terminal device | |
WO2024094015A1 (en) | Transmission method, ue and readable storage medium | |
EP4460108A1 (en) | Communication operation execution method, apparatus, terminal, and storage medium | |
WO2023011600A1 (en) | P-mpr reporting method and apparatus, and terminal device | |
US20240349278A1 (en) | Transmission Method, Terminal, and Network-Side Device | |
CN118201058A (en) | Information configuration method, base station and network node |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |