CN114578865A - A test, control method and system for intelligent safety equipment - Google Patents
A test, control method and system for intelligent safety equipment Download PDFInfo
- Publication number
- CN114578865A CN114578865A CN202210251483.7A CN202210251483A CN114578865A CN 114578865 A CN114578865 A CN 114578865A CN 202210251483 A CN202210251483 A CN 202210251483A CN 114578865 A CN114578865 A CN 114578865A
- Authority
- CN
- China
- Prior art keywords
- type
- trajectory information
- calibration
- driving
- determining
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 113
- 238000012360 testing method Methods 0.000 title claims abstract description 17
- 230000033001 locomotion Effects 0.000 claims abstract description 122
- 238000010998 test method Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims description 73
- 230000004044 response Effects 0.000 claims description 44
- 238000001514 detection method Methods 0.000 claims description 37
- 238000006073 displacement reaction Methods 0.000 claims description 25
- 238000004590 computer program Methods 0.000 claims description 19
- 238000010586 diagram Methods 0.000 description 6
- 239000004984 smart glass Substances 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000000386 athletic effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Power-Operated Mechanisms For Wings (AREA)
Abstract
本申请实施例公开了一种用于智能安全设备的测试、控制方法及系统。测试方法包括:确定驱动部件从第一初始位置运动到第二初始位置的运动参数;基于所述运动参数,确定所述第一初始位置和所述第二初始位置之间的轨迹信息的类型;基于所述轨迹信息的类型,确定第二校准位置;以及基于所述运动参数和所述第二校准位置,确定第一校准位置。该测试方法可以在智能安全设备安装好之后通过测试以自动识别驱动部件的轨迹信息的类型并确定第一校准位置和第二校准位置,因此具有很好的兼容性。
The embodiments of the present application disclose a testing and control method and system for an intelligent security device. The testing method includes: determining a motion parameter of a drive component moving from a first initial position to a second initial position; based on the motion parameter, determining a type of trajectory information between the first initial position and the second initial position; A second calibration position is determined based on the type of trajectory information; and a first calibration position is determined based on the motion parameter and the second calibration position. The test method can automatically identify the type of trajectory information of the driving component and determine the first calibration position and the second calibration position through the test after the intelligent safety device is installed, so it has good compatibility.
Description
技术领域technical field
本申请涉及智能控制技术领域,特别是用于智能安全设备的测试方法、控制方法、控制系统、介质、处理器和电子设备。The present application relates to the technical field of intelligent control, in particular to a test method, a control method, a control system, a medium, a processor and an electronic device for intelligent security equipment.
背景技术Background technique
智能安全设备作为智能控制领域的热门产品,越来越普及。但是不同的智能安全设备的驱动部件具有不同类型的轨迹信息,而不同类型的轨迹信息可能需要有相应的控制系统。As a popular product in the field of intelligent control, intelligent security equipment is becoming more and more popular. However, the driving components of different intelligent safety devices have different types of trajectory information, and different types of trajectory information may require corresponding control systems.
目前的智能安全设备还没有可以兼容具有不同类型的轨迹信息的驱动部件的控制技术,因此有必要开发一种可以适应具有不同类型的轨迹信息的驱动部件的控制技术。At present, the intelligent safety equipment has no control technology that can be compatible with driving components with different types of trajectory information, so it is necessary to develop a control technology that can adapt to driving components with different types of trajectory information.
发明内容SUMMARY OF THE INVENTION
本申请实施例的第一方面公开了一种智能安全设备的测试方法,所述测试方法包括:确定所驱动部件从第一初始位置运动到第二初始位置的运动参数;基于所述运动参数,确定所述第一初始位置和所述第二初始位置之间的轨迹信息的类型;基于所述轨迹信息的类型,确定第二校准位置;以及基于所述运动参数和所述第二校准位置,确定第一校准位置。A first aspect of the embodiments of the present application discloses a test method for an intelligent safety device, the test method includes: determining a motion parameter of a driven component moving from a first initial position to a second initial position; based on the motion parameter, determining a type of trajectory information between the first initial position and the second initial position; determining a second calibration position based on the type of the trajectory information; and based on the motion parameters and the second calibration position, Determine the first calibration position.
在一些实施例中,所述确定驱动部件从第一初始位置运动到第二初始位置的运动参数,包括:基于所述驱动部件的第一初始状态,获取所述第一初始位置。In some embodiments, the determining a motion parameter of the driving member moving from a first initial position to a second initial position includes: acquiring the first initial position based on a first initial state of the driving member.
在一些实施例中,所述确定驱动部件从第一初始位置运动到第二初始位置的运动参数,包括:控制所述驱动部件反方向运动,判断所述驱动部件是否位于第一检测位置;响应于是,确定当前的所述第一检测位置为驱动部件第一最大位置;响应于否,继续控制所述驱动部件反方向运动,使所述驱动部件到达第一检测位置;控制所述驱动部件运动到达所述第二初始位置;以及基于所述驱动部件从所述第一检测位置运动到达所述第二初始位置的位移数据,确定所述运动参数。In some embodiments, the determining a motion parameter of the driving member moving from the first initial position to the second initial position includes: controlling the driving member to move in a reverse direction, and judging whether the driving member is located at the first detection position; responding to Then, the current first detection position is determined as the first maximum position of the driving member; in response to no, continue to control the driving member to move in the opposite direction, so that the driving member reaches the first detection position; control the driving member to move reaching the second initial position; and determining the motion parameter based on displacement data of the drive member moving from the first detection position to the second initial position.
在一些实施例中,所述基于所述运动参数,确定所述第一初始位置和第二初始位置之间的轨迹信息的类型,包括:判断所述运动参数是否大于或等于运动参数阈值;响应于否,确定所述轨迹信息为第一类型;以及响应于是,确定所述轨迹信息为第二类型。In some embodiments, determining the type of trajectory information between the first initial position and the second initial position based on the motion parameter includes: judging whether the motion parameter is greater than or equal to a motion parameter threshold; responding to In response to No, the trajectory information is determined to be of the first type; and in response to Yes, the trajectory information is determined to be of the second type.
在一些实施例中,所述基于所述轨迹信息的类型,确定第二校准位置,包括:响应于确定所述轨迹信息为第一类型,将所述第二初始位置确定为第二校准位置。In some embodiments, the determining the second calibration position based on the type of the trajectory information includes determining the second initial position as the second calibration position in response to determining that the trajectory information is of the first type.
在一些实施例中,所述基于所述轨迹信息的类型,确定第二校准位置,包括:In some embodiments, the determining the second calibration position based on the type of the trajectory information includes:
响应于确定所述轨迹信息为第二类型,执行以下操作:In response to determining that the trajectory information is of the second type, the following operations are performed:
将所述第二初始位置确定为第三校准位置;determining the second initial position as a third calibration position;
控制所述驱动部件反方向运动预设时间,然后解离合;以及Controlling the driving part to move in the opposite direction for a preset time, and then disengaging and disengaging; and
基于所述驱动部件解离合的位置,确定所述第二校准位置。The second calibration position is determined based on the position of the disengagement of the drive member.
在一些实施例中,所述基于所述运动参数和所述第二校准位置,确定第一校准位置,包括:In some embodiments, the determining a first calibration position based on the motion parameter and the second calibration position includes:
控制所述驱动部件从所述第二校准位置按照所述运动参数进行反方向运动;controlling the driving component to move in the opposite direction from the second calibration position according to the movement parameter;
判断是否已经确定驱动部件第一最大位置;judging whether the first maximum position of the driving component has been determined;
响应于否,执行以下操作:In response to no, do the following:
控制所述驱动部件继续反方向运动至所述第一检测位置;以及controlling the driving member to continue to move in the opposite direction to the first detection position; and
基于第一检测位置确定驱动部件第一最大位置;以及determining a first maximum position of the drive member based on the first detected position; and
基于所述驱动部件第一最大位置和所述第一检测位置,确定所述第一校准位置。The first calibration position is determined based on the first maximum position of the drive member and the first detected position.
在一些实施例中,所述基于所述驱动部件第一最大位置和所述第一检测位置,确定第一校准位置,包括:将驱动部件第一最大位置加上缓冲值的结果与将第一检测位置减去所述缓冲值的结果进行比较;以及确定相对较小的结果为所述第一校准位置。In some embodiments, the determining the first calibration position based on the first maximum position of the driving member and the first detection position includes: adding a result of adding the first maximum position of the driving member to the buffer value with the first A result of subtracting the buffer value from the detected position is compared; and a relatively smaller result is determined to be the first calibration position.
本申请实施例的第二方面公开了一种用于智能安全设备的控制方法,所述控制方法包括:获取驱动部件在运动过程中的位置数据;基于所述驱动部件的位置数据以及轨迹信息的类型,判断所述驱动部件是否到达第一校准位置;以及响应于是,控制所述驱动部件停止运动。A second aspect of the embodiments of the present application discloses a control method for an intelligent safety device, the control method includes: acquiring position data of a driving component during movement; type, judging whether the drive member has reached the first calibration position; and in response to this, controlling the drive member to stop moving.
在一些实施例中,所述基于所述驱动部件的位置数据以及轨迹信息的类型,判断所述驱动部件是否到达第一校准位置,包括:基于所述驱动部件的位置数据,确定所述驱动部件按照预设方向运动的位移;基于所述轨迹信息的类型,确定所述驱动部件从第二校准位置运动到所述第一校准位置所需的运动参数;判断所述驱动部件按照预设方向运动的位移是否与所述运动参数匹配;以及响应于是,确定所述驱动部件已到达所述第一校准位置。In some embodiments, the determining whether the driving component has reached the first calibration position based on the position data of the driving component and the type of the trajectory information includes: determining the driving component based on the position data of the driving component The displacement according to the preset direction; based on the type of the trajectory information, determine the motion parameters required for the driving part to move from the second calibration position to the first calibration position; determine that the driving part moves according to the preset direction whether the displacement of the matches the motion parameter; and in response thereto, determining that the drive member has reached the first calibration position.
本申请实施例的第三方面公开了一种用于智能安全设备的控制方法,所述控制方法包括:获取轨迹信息的类型和驱动部件在运动过程中的位置数据;以及基于所述轨迹信息的类型和所述位置数据,执行与所述轨迹信息的类型对应的执行方案。A third aspect of the embodiments of the present application discloses a control method for an intelligent safety device, the control method comprising: acquiring the type of trajectory information and position data of a driving component during motion; and type and the position data, execute an execution plan corresponding to the type of the trajectory information.
在一些实施例中,所述基于所述轨迹信息的类型和所述位置数据,执行与所述轨迹信息的类型对应的执行方案,包括:响应于所述轨迹信息的类型是第一类型,执行第一执行方案:基于所述驱动部件的位置数据,判断所述驱动部件是否到达第二校准位置;以及响应于是,控制所述驱动部件停止运动。In some embodiments, the executing an execution scheme corresponding to the type of the trajectory information based on the type of the trajectory information and the location data includes: in response to the type of the trajectory information being the first type, executing The first implementation scheme: based on the position data of the driving member, determine whether the driving member has reached the second calibration position; and in response, control the driving member to stop moving.
在一些实施例中,所述基于所述轨迹信息的类型和所述位置数据,执行与所述轨迹信息的类型对应的执行方案,包括:响应于所述轨迹信息的类型是第二类型,执行第二执行方案:基于所述驱动部件的位置数据,判断所述驱动部件是否到达第三校准位置;响应于是,控制所述驱动部件停止运动;以及控制所述驱动部件反方向运动预设时间,以使所述驱动部件反方向运动到第二校准位置,然后解离合。In some embodiments, the executing an execution scheme corresponding to the type of the trajectory information based on the type of the trajectory information and the location data includes: in response to the type of the trajectory information being the second type, executing The second implementation scheme: based on the position data of the driving member, determine whether the driving member has reached the third calibration position; in response, control the driving member to stop moving; and control the driving member to move in the opposite direction for a preset time, in order to move the drive member in the opposite direction to the second calibration position, and then disengage and disengage.
本申请实施例的第四方面公开了一种用于智能安全设备的控制系统,所述控制系统包括:运动参数确定模块,配置为基于驱动部件从第一初始位置运动到第二初始位置,确定所述驱动部件的运动参数;轨迹信息类型确定模块,配置为基于所述驱动部件的所述运动参数,确定轨迹信息的类型;第二校准位置确定模块,配置为基于所述轨迹信息的类型,确定第二校准位置;以及第一校准位置确定模块,配置为基于所述运动参数和所述第二校准位置,确定第一校准位置。A fourth aspect of the embodiments of the present application discloses a control system for an intelligent safety device, the control system includes: a motion parameter determination module configured to determine, based on the drive component moving from a first initial position to a second initial position, to determine a motion parameter of the driving component; a trajectory information type determination module, configured to determine the type of trajectory information based on the motion parameter of the driving component; a second calibration position determination module, configured to be based on the type of the trajectory information, determining a second calibration position; and a first calibration position determination module configured to determine a first calibration position based on the motion parameter and the second calibration position.
本申请实施例的第五方面公开了一种用于智能安全设备的控制系统,所述控制系统包括:获取模块,配置为获取驱动部件在运动过程中的位置数据;判断模块,配置为基于所述驱动部件的位置数据以及轨迹信息的类型,判断所述驱动部件是否到达第一校准位置;以及响应模块,配置为响应于是,控制所述驱动部件停止运动。A fifth aspect of the embodiments of the present application discloses a control system for an intelligent safety device, the control system includes: an acquisition module configured to acquire position data of a driving component during movement; a determination module configured to The position data and the type of trajectory information of the driving member are used to determine whether the driving member has reached the first calibration position; and the response module is configured to control the driving member to stop moving in response to this.
本申请实施例的第六方面公开了一种用于智能安全设备的控制系统,所述控制系统包括:获取模块,配置为获取所述轨迹信息的类型和驱动部件在运动过程中的位置数据;以及执行模块,配置为基于所述轨迹信息的类型和所述位置数据,执行与所述轨迹信息的类型对应的执行方案。A sixth aspect of the embodiments of the present application discloses a control system for an intelligent safety device, the control system comprising: an acquisition module configured to acquire the type of the trajectory information and the position data of the driving component during movement; and an execution module configured to execute an execution scheme corresponding to the type of the trajectory information based on the type of the trajectory information and the position data.
本申请实施例的第七方面公开了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时,使得所述处理器实现前述第一、二、三方面任一实施例公开的方法。A seventh aspect of the embodiments of the present application discloses a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the processor enables the processor to implement the foregoing first, second, and third A method disclosed in any embodiment of the aspect.
本申请实施例的第八方面公开了一种处理器,所述处理器用于运行计算机程序,其中,所述处理器运行所述计算机程序时,使得所述处理器实现前述第一、二、三方面任一实施例公开的方法。An eighth aspect of the embodiments of the present application discloses a processor, which is configured to run a computer program, wherein, when the processor runs the computer program, the processor is made to implement the first, second, and third aforementioned A method disclosed in any embodiment of the aspect.
本申请实施例的第九方面公开了一种电子设备,包括:一个或多个处理器;存储器,其上存储有一个或多个计算机程序;当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现前述第一、二、三方面任一实施例公开的方法。A ninth aspect of the embodiments of the present application discloses an electronic device, comprising: one or more processors; a memory on which one or more computer programs are stored; when the one or more computer programs are stored by the one When executed by the one or more processors, the one or more processors are caused to implement the method disclosed in any one of the foregoing first, second, and third aspects.
上述一些实施例可以通过确定第一校准位置和第二校准位置实现对智能安全设备的驱动部件的测试。Some of the above-mentioned embodiments can implement the test of the driving components of the smart security device by determining the first calibration position and the second calibration position.
上述一些实施例可以根据轨迹信息的类型实现对智能安全设备的驱动部件的控制。Some of the above-mentioned embodiments can control the driving components of the intelligent safety device according to the type of trajectory information.
附图说明Description of drawings
图1示出了本申请一些实施例的用于智能安全设备的控制系统100的示例性模块图。FIG. 1 shows an exemplary block diagram of a
图2示出了本申请一些实施例的用于智能安全设备的控制系统200的示例性模块图。FIG. 2 shows an exemplary block diagram of a
图3示出了本申请一些实施例的用于智能安全设备的控制系统300的示例性模块图。FIG. 3 shows an exemplary block diagram of a
图4示出了本申请一些实施例的用于智能安全设备的测试方法的示例性流程400。FIG. 4 shows an
图5示出了本申请一些实施例中确定运动参数的示例性流程500。FIG. 5 shows an
图6示出了本申请一些实施例中确定第二校准位置的示例性流程600。FIG. 6 shows an
图7示出了本申请一些实施例中确定第一校准位置的示例性流程700。FIG. 7 shows an
图8示出了本申请一些实施例的另一种用于智能安全设备的控制方法的示例性流程800。FIG. 8 shows an
图9示出了本申请一些实施例中判断驱动部件到达第一校准位置的示例性流程900。FIG. 9 shows an
图10示出了本申请一些实施例的另一种用于智能安全设备的控制方法的示例性流程1000。FIG. 10 shows an
图11示出了本申请一些实施例中根据轨迹信息的类型使驱动部件达到第二校准位置的示例性流程1100。FIG. 11 shows an
具体实施方式Detailed ways
为了更清楚地说明本申请的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使相关领域的技术人员能够更好地理解进而实现本申请,而并非以任何方式限制本申请的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。In order to illustrate the technical solutions of the embodiments of the present application more clearly, the following briefly introduces the accompanying drawings that are used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some examples or embodiments of the present application. For those of ordinary skill in the art, without any creative effort, the present application can also be applied to the present application according to these drawings. other similar situations. It should be understood that these exemplary embodiments are provided only to enable those skilled in the relevant art to better understand and implement the present application, but not to limit the scope of the present application in any way. Unless obvious from the locale or otherwise specified, the same reference numbers in the figures represent the same structure or operation.
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。As shown in this application and in the claims, unless the context clearly dictates otherwise, the words "a", "an", "an" and/or "the" are not intended to be specific in the singular and may include the plural. Generally speaking, the terms "comprising" and "comprising" only imply that the clearly identified steps and elements are included, and these steps and elements do not constitute an exclusive list, and the method or apparatus may also include other steps or elements. The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one additional embodiment".
在不同的实施例场景中,智能安全设备可以表现为例如智能锁、智能门、智能窗、智能控制阀门、智能开关等,因此,智能安全设备的驱动部件可以具有不同的运动方式以及对应的轨迹信息。在智能安全设备安装好之后,需要先对驱动部件的轨迹信息的类型进行识别,并对驱动部件在运动过程中的一些相应位置进行测试校准,然后才能进行正常使用。In different embodiment scenarios, the smart security device can be represented as, for example, a smart lock, a smart door, a smart window, a smart control valve, a smart switch, etc. Therefore, the driving components of the smart security device can have different movement modes and corresponding trajectories information. After the intelligent safety device is installed, it is necessary to identify the type of trajectory information of the driving components, and test and calibrate some corresponding positions of the driving components during the movement process before normal use.
因此,本说明书的一些实施例分别提供了用于智能安全设备的测试方法、控制方法、控制系统、计算机可读存储介质、处理器和电子设备,详述如下。Therefore, some embodiments of the present specification respectively provide a test method, a control method, a control system, a computer-readable storage medium, a processor and an electronic device for an intelligent security device, which are described in detail as follows.
图1示出了本申请一些实施例的用于智能安全设备的控制系统100的示例性模块图。FIG. 1 shows an exemplary block diagram of a
在一些实施例中,控制系统100可以包括运动参数确定模块110、轨迹信息类型确定模块120、第二校准位置确定模块130和第一校准位置确定模块140。In some embodiments, the
运动参数确定模块110,可以配置为基于驱动部件从第一初始位置运动到第二初始位置,确定驱动部件的运动参数。The motion parameter determination module 110 may be configured to determine a motion parameter of the driving member based on the driving member moving from the first initial position to the second initial position.
轨迹信息类型确定模块120,可以配置为基于驱动部件的运动参数,确定轨迹信息的类型。The trajectory information type determination module 120 may be configured to determine the type of trajectory information based on the motion parameters of the driving components.
第二校准位置确定模块130,可以配置为基于轨迹信息的类型,确定第二校准位置。The second calibration position determination module 130 may be configured to determine the second calibration position based on the type of trajectory information.
第一校准位置确定模块140,可以配置为基于运动参数和第二校准位置,确定第一校准位置。The first calibration position determination module 140 may be configured to determine the first calibration position based on the motion parameter and the second calibration position.
图2示出了本申请一些实施例的用于智能安全设备的控制系统200的示例性模块图。FIG. 2 shows an exemplary block diagram of a
在一些实施例中,控制系统200可以包括获取模块210、判断模块220、响应模块230。In some embodiments, the
获取模块210,可以配置为获取驱动部件在控制过程中的位置数据。The obtaining module 210 may be configured to obtain position data of the driving component during the control process.
判断模块220,可以配置为基于驱动部件的位置数据以及轨迹信息的类型,判断驱动部件是否到达第一校准位置。The judging module 220 may be configured to judge whether the driving component has reached the first calibration position based on the position data of the driving component and the type of the track information.
响应模块230,可以配置为响应于是,即驱动部件到达第一校准位置,控制驱动部件停止运动。The response module 230 may be configured to control the driving member to stop moving in response to the driving member reaching the first calibration position.
图3示出了本申请一些实施例的用于智能安全设备的控制系统300的示例性模块图。FIG. 3 shows an exemplary block diagram of a
在一些实施例中,控制系统300可以包括获取模块310和执行模块320。In some embodiments, the
获取模块310,可以配置为获取轨迹信息的类型和驱动部件在控制过程中的位置数据。The acquiring module 310 may be configured to acquire the type of trajectory information and the position data of the driving component during the control process.
执行模块320,可以配置为基于轨迹信息的类型和位置数据,执行与轨迹信息的类型对应的执行方案。The execution module 320 may be configured to execute an execution scheme corresponding to the type of the trajectory information based on the type of the trajectory information and the position data.
图4示出了本申请一些实施例的一种用于智能安全设备的测试方法的示例性流程400。FIG. 4 shows an
由于智能安全设备安装好之后,各部件均可能有安装误差或制造误差,并且,这时候驱动部件可能还没有确定轨迹信息的类型,也没有相应的执行方案。因此,在正式使用之前,需要对驱动部件的轨迹信息的类型进行识别,并且还需要对相应的一些位置,例如第一校准位置、第二校准位置等,进行测试校准。流程400可以用于对驱动部件的轨迹信息的类型进行识别,以及对第一校准位置、第二校准位置进行测试和校准。After the intelligent safety device is installed, each component may have installation errors or manufacturing errors, and at this time, the driving components may not yet determine the type of trajectory information, and there is no corresponding implementation plan. Therefore, before formal use, it is necessary to identify the type of trajectory information of the driving component, and also need to perform test calibration on some corresponding positions, such as the first calibration position, the second calibration position, and the like. The
在一些实施例中,智能安全设备可以包括处理器以及用于存储指令的存储器,当处理器执行存储器中的指令时,可以使得智能安全设备实现流程400。在一些实施例中,处理器以及用于存储指令的存储器可以独立于智能安全设备,处理器与智能安全设备之间通过无线网络或数据线进行通信。In some embodiments, the smart security device may include a processor and a memory for storing instructions, and when the processor executes the instructions in the memory, the smart security device may be caused to implement
在一些实施例中,智能安全设备可以包括输入设备,例如键盘、图像采集装置、语音采集装置等。智能安全设备可以通过输入设备采集用户输入的信息(例如测试、上锁、解锁的指令等)或关于用户的信息(例如人脸信息、语音等),然后执行相应的测试方法或控制方法。In some embodiments, smart security devices may include input devices, such as keyboards, image capture devices, voice capture devices, and the like. The intelligent security device can collect the information input by the user (such as testing, locking, unlocking instructions, etc.) or information about the user (such as face information, voice, etc.) through the input device, and then execute the corresponding test method or control method.
在一些实施例中,智能安全设备可以通过处理器和无线网络与终端(例如智能手机、平板电脑、笔记本电脑、台式机等)无线通信。智能安全设备可以从终端获取用户指令,然后执行相应的测试方法或控制方法。In some embodiments, the smart security device may communicate wirelessly with a terminal (eg, smartphone, tablet, laptop, desktop, etc.) through the processor and wireless network. The intelligent security device can obtain user instructions from the terminal, and then execute the corresponding test method or control method.
在步骤410中,可以确定驱动部件从第一初始位置运动到第二初始位置的运动参数。在一些实施例中,步骤410可以由运动参数确定模块110执行。In
驱动部件指的是用于提供动力使智能安全设备(例如,智能锁、智能门、智能窗、智能控制阀门、智能开关等)实现测试、控制等动作(例如,校准、上锁、解锁等动作)的部件。在一些实施例中,驱动部件可以为以转动形式输出动力的部件,例如电机。在一些实施例中,驱动部件可以为把手、旋钮等。在另一些替代性的实施例中,驱动部件可以为以直线位移形式输出动力的部件,例如气缸、液压缸等。Actuating components refer to those used to provide power to enable smart security devices (eg, smart locks, smart doors, smart windows, smart control valves, smart switches, etc.) to perform testing, control, and other actions (eg, calibration, locking, unlocking, etc.) ) components. In some embodiments, the drive component may be a component that outputs power in rotation, such as a motor. In some embodiments, the drive member may be a handle, knob, or the like. In other alternative embodiments, the driving component may be a component that outputs power in the form of linear displacement, such as an air cylinder, a hydraulic cylinder, and the like.
第一初始位置指的是智能安全设备完成上锁后驱动部件所位于的位置。在一些实施例中,可以对位于第一初始位置的驱动部件的电流进行检测。在一些实施例中,可以通过传感器(例如红外传感器、压力传感器、霍尔传感器等)对驱动部件的位置进行检测。The first initial position refers to the position where the driving part is located after the intelligent security device is locked. In some embodiments, the current of the drive member in the first initial position may be detected. In some embodiments, the position of the driving component may be detected by sensors (eg, infrared sensors, pressure sensors, Hall sensors, etc.).
第二初始位置指的是智能安全设备完成解锁后驱动部件所位于的位置。在一些实施例中,智能安全设备完成解锁可以指智能安全设备处于通过操作把手就可以实现开门的状态。在另一些实施例中,智能安全设备完成解锁可以指智能安全设备处于通过直接推门就可以实现开门的状态。The second initial position refers to the position where the driving component is located after the smart security device is unlocked. In some embodiments, the completion of the unlocking of the smart security device may refer to a state in which the smart security device is in a state where the door can be opened by operating the handle. In other embodiments, the completion of the unlocking of the smart security device may refer to a state in which the smart security device is in a state where the door can be opened by directly pushing the door.
关于驱动部件到达第二初始位置的检测方式,可以有多种。在一些实施例中,当驱动部件为电机时,可以通过检测电机的堵转现象来确定第二初始位置。例如,通过检测到电机的电流输出到达一个极值,从而确定电机到达第二初始位置,即将电机的输出电流和预设的电流阈值作比较,若电机的输出电流大于等于预设的电流阈值,则确定电机到达第二初始位置。这个预设的电流阈值可以是一个合理推定的值,也可以是堵转的峰值。在一些实施例中,可以根据电机的输出电流呈现增长趋势来确定电机到达第二初始位置。在一些实施例中,可以通过触发开关的方式来获取运动行程,根据运动行程来判断驱动部件是否达到第二初始位置。例如,在第二初始位置设置开关,当驱动部件运动到第二初始位置后,会触发开关,从而进行确定。在一些实施例中,可以通过在第二初始位置设置例如霍尔传感器等传感器来获取状态,当驱动部件到达第二初始位置时,从传感器获取感应信号,从而进行确定。There may be various ways of detecting that the driving component reaches the second initial position. In some embodiments, when the driving component is a motor, the second initial position can be determined by detecting the stall phenomenon of the motor. For example, by detecting that the current output of the motor reaches an extreme value, it is determined that the motor has reached the second initial position, that is, the output current of the motor is compared with a preset current threshold value, if the output current of the motor is greater than or equal to the preset current threshold value, Then it is determined that the motor reaches the second initial position. The preset current threshold value can be a reasonably estimated value, or it can be the peak value of the locked rotor. In some embodiments, it may be determined that the motor reaches the second initial position according to the increasing trend of the output current of the motor. In some embodiments, the motion stroke may be acquired by triggering a switch, and it is determined whether the driving component reaches the second initial position according to the motion stroke. For example, if the switch is set at the second initial position, when the driving part moves to the second initial position, the switch will be triggered, so as to make the determination. In some embodiments, the state may be acquired by arranging a sensor such as a Hall sensor at the second initial position, and when the driving component reaches the second initial position, a sensing signal may be acquired from the sensor to perform the determination.
运动参数指的是驱动部件从一个位置运动到另一个位置所经过的位移。在一些实施例中,运动参数可以指电机在转动过程中所转过的圈数。在另一些替代性的实施例中,运动参数可以指直线移动部件在设定方向上运动的位移。在一些实施例中,运动参数可以表示为自然数,例如1、2、3、…,等。在一些实施例中,运动参数可以表示为分数,例如1/4、5/2、…,等。在一些实施例中,运动参数可以表示为小数,例如0.25、2.5、……等。在另一些替代性的实施例中,运动参数可以为驱动部件(例如旋钮或把手)在解锁过程中从第一初始位置转动到第二初始位置所转过的角度,例如90°、360°、900°、……等。关于确定运动参数的具体流程,可以参见关于图5的说明内容,此处不做赘述。The motion parameter refers to the displacement through which the drive part moves from one position to another. In some embodiments, the motion parameter may refer to the number of revolutions the motor makes during rotation. In other alternative embodiments, the motion parameter may refer to the displacement of the linear moving part moving in a set direction. In some embodiments, the motion parameters may be represented as natural numbers, such as 1, 2, 3, . . . , and the like. In some embodiments, motion parameters may be expressed as fractions, such as 1/4, 5/2, . . . , etc. In some embodiments, motion parameters may be expressed as decimals, such as 0.25, 2.5, . . . , etc. In other alternative embodiments, the motion parameter may be the angle through which the driving component (such as the knob or handle) is rotated from the first initial position to the second initial position during the unlocking process, such as 90°, 360°, 900°, ... etc. For the specific process of determining the motion parameter, reference may be made to the description of FIG. 5 , which will not be repeated here.
在步骤420中,可以基于驱动部件的运动参数,确定第一初始位置和第二初始位置之间的轨迹信息的类型。在一些实施例中,步骤420可以由轨迹信息类型确定模块120执行。In
在一些实施例中,智能安全设备(例如智能锁、智能门、智能窗、智能控制阀门、智能开关等)的驱动部件的轨迹信息的类型可以包括至少两类。第一类轨迹:智能安全设备的驱动部件可以在解锁过程中根据第一类轨迹信息带动所适配的锁体在旋转一定角度后直接到达第二初始位置即完成解锁过程,该第二初始位置即为用户可以直接开门(例如推门、拉门)的第二初始位置;第二类轨迹:智能安全设备的驱动部件可以在解锁过程中根据第二类轨迹信息带动所适配的锁体在旋转一定角度后可以到达第二初始位置,但该位置不是第二校准位置(关于第二校准位置的定义,可以参见后面关于步骤430的说明内容),而是第三校准位置,即驱动组件带动副锁舌退出锁槽时驱动组件所处的位置;然后,控制驱动部件反方向运动预设时间(例如3秒),然后解离合,使得副锁舌处于解除控制的状态,副锁舌处于解除控制的状态时将会自动弹出并伸进锁槽;然后,基于驱动部件解离合的位置,确定第二校准位置。在一些实施例中,第三校准位置可以为智能安全设备的驱动组件带动副锁舌部分退出锁槽时驱动组件所处的位置。在一些实施例中,第三校准位置可以为智能安全设备的驱动组件带动副锁舌完全退出锁槽时驱动组件所处的位置。In some embodiments, the types of trajectory information of driving components of smart security devices (eg, smart locks, smart doors, smart windows, smart control valves, smart switches, etc.) may include at least two categories. The first type of trajectory: The driving component of the intelligent security device can drive the adapted lock body to rotate a certain angle according to the first type of trajectory information during the unlocking process and directly reach the second initial position to complete the unlocking process. The second initial position That is, the second initial position where the user can open the door directly (such as pushing the door, sliding the door); the second type of trajectory: the driving component of the intelligent safety device can drive the adapted lock body to move in the lock according to the second type of trajectory information during the unlocking process. After rotating a certain angle, the second initial position can be reached, but this position is not the second calibration position (for the definition of the second calibration position, please refer to the description of
在另一些替代性的实施例中,轨迹信息的类型可以包括第三类轨迹:智能安全设备的驱动部件在解锁过程中根据第三类轨迹输出直线运动并直接带动所适配的锁体发生直线位移到达第二初始位置,该第二初始位置即为可以直接开门时驱动组件所处的位置。In other alternative embodiments, the type of trajectory information may include a third type of trajectory: the driving component of the intelligent security device outputs linear motion according to the third type of trajectory during the unlocking process and directly drives the adapted lock body to generate a straight line The displacement reaches the second initial position, and the second initial position is the position of the drive assembly when the door can be opened directly.
关于确定轨迹信息的类型的具体流程,可以参见关于图6的说明内容,此处不做赘述。For the specific process of determining the type of the track information, reference may be made to the description of FIG. 6 , which will not be repeated here.
在步骤430中,可以基于轨迹信息的类型,确定第二校准位置。在一些实施例中,步骤430可以由第二校准位置确定模块130执行。In
第二校准位置可以为智能安全设备经过校准后确定的完成解锁后驱动部件所位于的位置。在一些实施例中,智能安全设备完成解锁可以指智能安全设备处于通过操作把手(例如,转动把手)就可以实现开门的状态。在另一些实施例中,智能安全设备完成解锁可以指智能安全设备处于通过直接推门或拉门就可以实现开门的状态。关于确定第二校准位置的具体流程,可以参见关于图6的说明内容,此处不做赘述。The second calibration position may be the position where the driving component is located after the unlocking is completed and determined after the smart safety device is calibrated. In some embodiments, the completion of unlocking of the smart security device may refer to a state in which the smart security device is in a state where the door can be opened by operating the handle (eg, turning the handle). In other embodiments, the completion of the unlocking of the smart security device may refer to a state in which the smart security device is in a state where the door can be opened by directly pushing or pulling the door. For the specific process of determining the second calibration position, reference may be made to the description of FIG. 6 , which will not be repeated here.
在步骤440中,可以基于运动参数和第二校准位置,确定第一校准位置。在一些实施例中,步骤440可以由第一校准位置确定模块140执行。In step 440, the first calibration position may be determined based on the motion parameters and the second calibration position. In some embodiments, step 440 may be performed by the first calibration position determination module 140 .
在一些实施例中,第一校准位置可以为智能安全设备经过校准后确定的驱动部件在上锁过程中可以到达的最后位置。本说明书及权利要求书中各处所提及的“运动”与“反方向运动”属于互逆的方向,即,在一些实施例中,驱动部件从第二初始位置开始进行反方向运动的运动方向与步骤110中驱动部件在解锁过程中从第一初始位置运动到第二初始位置的运动方向属于互逆的方向。本领域技术人员也应当理解,在另一些实施例中,也可以描述成驱动部件从第二初始位置按照运动参数运动到达第一初始位置,而驱动部件从第一初始位置反方向运动到第二初始位置。在一些实施例中,在确定第一校准位置后,可以控制驱动部件解离合,以方便用户操作门把手或旋钮进行手动开门。关于确定第一校准位置的具体流程,可以参见关于图7的说明内容,此处不做赘述。In some embodiments, the first calibration position may be the final position that the driving component can reach during the locking process determined by the smart security device after calibration. References to "movement" and "reverse movement" in various places in this specification and in the claims belong to reciprocal directions, that is, in some embodiments, the drive member performs a movement in the opposite direction from the second initial position The direction and the moving direction of the driving component from the first initial position to the second initial position during the unlocking process in step 110 belong to the opposite direction. Those skilled in the art should also understand that, in other embodiments, it can also be described that the driving part moves from the second initial position to the first initial position according to the motion parameters, and the driving part moves from the first initial position in the opposite direction to the second initial position initial position. In some embodiments, after the first calibration position is determined, the driving part can be controlled to disengage and disengage, so as to facilitate the user to operate the door handle or knob to open the door manually. For the specific process of determining the first calibration position, reference may be made to the description of FIG. 7 , which will not be repeated here.
图5示出了本申请一些实施例中确定运动参数的示例性流程500。流程500用于使驱动部件从第一初始位置开始按照到达第二初始位置的这个解锁过程中的运动参数进行转动。在一些实施例中,流程500可以由运动参数确定模块110执行。FIG. 5 shows an
在步骤510中,可以基于驱动部件的第一初始状态,获取第一初始位置。In
在一些实施例中,第一初始状态可以为驱动部件在智能安全设备的完全上锁之后所处的状态。在一些实施例中,用户关上门后可以通过手动方式对智能安全设备进行上锁。在一些替代性的实施例中,第一初始状态也可以为通过驱动部件对智能安全设备进行完全上锁之后驱动部件所处的状态。在一些实施例中,完全上锁可以指锁体的锁舌处于最大伸出长度的状态。在另一些实施例中,完全上锁的状态可以指锁体的锁舌和副锁舌均处于最大伸出长度的状态。在一些实施例中,智能安全设备完全上锁后,可以通过传感器采集锁舌所处的位置信号或锁舌端部所受的压力信号,然后通过处理器确定智能安全设备处于第一初始状态。在一些实施例中,传感器可以采用压力传感器、红外传感器或其他传感器,或其任意组合。In some embodiments, the first initial state may be the state the drive component is in after full locking of the smart security device. In some embodiments, the user can manually lock the smart security device after closing the door. In some alternative embodiments, the first initial state may also be a state in which the driving component is in after the intelligent security device is completely locked by the driving component. In some embodiments, fully locked may refer to a state in which the lock tongue of the lock body is at its maximum extended length. In other embodiments, the fully locked state may refer to a state in which both the lock tongue and the secondary lock tongue of the lock body are at the maximum extension length. In some embodiments, after the smart security device is completely locked, the position signal of the lock tongue or the pressure signal on the end of the lock tongue can be collected by the sensor, and then the processor determines that the smart security device is in the first initial state. In some embodiments, the sensors may employ pressure sensors, infrared sensors, or other sensors, or any combination thereof.
在步骤520中,可以控制驱动部件反方向运动,判断驱动部件是否位于第一检测位置。In step 520, the driving member may be controlled to move in the opposite direction, and it is determined whether the driving member is located at the first detection position.
第一检测位置指的是预设的在智能安全设备完成上锁后驱动部件所位于的位置。The first detection position refers to a preset position where the driving component is located after the smart security device is locked.
在一些实施例中,第一检测位置可以指驱动部件以与上锁过程中的运动方向相反的方向进行反方向运动,一直到不能继续运动时,驱动部件所位于的位置,在该位置,智能安全设备可以对驱动部件的位置进行检测。In some embodiments, the first detection position may refer to the position where the driving component is located when the driving component moves in a direction opposite to the moving direction during the locking process until it cannot continue to move. At this position, the intelligent The safety device can detect the position of the drive components.
在一些实施例中,以驱动部件(例如电机)能否在第一初始位置的基础上继续进行反方向转动,来判断驱动部件是否位于第一检测位置。若驱动部件不能够进行反方向转动,则判断结果为驱动部件已经位于第一检测位置;若驱动部件能够进行反转,则判断结果为驱动部件未位于第一检测位置。在一些实施例中,可以通过作为驱动部件的电机的电流采样到最大电流值来确定驱动部件发生堵转。最大电流值可以为预设的一个电流值或电流值的一个范围。当采样到的电流值与预设的电流值相匹配(例如相等)或在预设的电流值的范围内,即可判定驱动部件发生堵转。在一些实施例中,在判断驱动部件是否发生堵转时还可以将采样到的电流值与预设的电流值相匹配(例如相等)的持续时间或在预设的电流值的范围内的持续时间考虑进去。例如,采样电流在预设电流值范围内持续达到0.5秒,判定驱动部件发生堵转。In some embodiments, whether the driving component is located at the first detection position is determined based on whether the driving component (eg, the motor) can continue to rotate in the opposite direction on the basis of the first initial position. If the driving member cannot rotate in the reverse direction, the determination result is that the driving member has been positioned at the first detection position; if the driving member can be reversed, the determination result is that the driving member is not positioned at the first detection position. In some embodiments, it can be determined that the driving component is locked by sampling the current of the motor as the driving component to a maximum current value. The maximum current value may be a preset current value or a range of current values. When the sampled current value matches (eg equals) the preset current value or is within the range of the preset current value, it can be determined that the driving component is locked. In some embodiments, when judging whether the driving component is locked, the sampled current value may also be matched with a preset current value (eg equal to) for a duration or within a range of preset current values. Take time into account. For example, if the sampling current continues to reach 0.5 seconds within the preset current value range, it is determined that the driving component is locked.
在步骤530中,可以响应于是,确定当前的第一检测位置为驱动部件第一最大位置。In step 530, the current first detection position may be determined to be the first maximum position of the driving component in response to this.
驱动部件第一最大位置指的是驱动部件在上锁过程中以反方向运动所能到达的最大位置。在一些实施例中,驱动部件到达驱动部件第一最大位置后不能继续进行反方向运动。在一些实施例中,响应于驱动部件已经位于第一检测位置,即不能继续反方向运动,则将驱动部件当前所位于的第一检测位置确定为驱动部件第一最大位置。The first maximum position of the driving member refers to the maximum position that the driving member can reach by moving in the opposite direction during the locking process. In some embodiments, the drive member cannot continue to move in the opposite direction after the drive member reaches the first maximum position of the drive member. In some embodiments, in response to the driving member being located at the first detection position, that is, unable to continue to move in the reverse direction, the first detection position currently located by the driving member is determined as the first maximum position of the driving member.
在步骤540中,可以响应于否,即驱动部件未位于第一检测位置,还能继续反方向运动,则继续控制驱动部件反方向运动,使驱动部件到达第一检测位置。In
在理想状态下,驱动部件在第一初始位置将不能继续反方向运动。之所以可能会出现驱动部件还能够在第一初始位置继续反方向运动的情况,在于驱动部件与锁体之间的传动可能会有一些手动安装误差,并没有达到设计的标准状态。In an ideal state, the drive member will not be able to continue to move in the opposite direction in the first initial position. The reason why the driving component may continue to move in the opposite direction at the first initial position is that there may be some manual installation errors in the transmission between the driving component and the lock body, which does not reach the designed standard state.
在步骤550中,可以控制驱动部件运动到达第二初始位置。In
在步骤560中,可以基于驱动部件从第一检测位置运动到达第二初始位置的位移数据,确定运动参数。In
在一些实施例中,运动参数可以包括驱动部件(例如电机)从第一检测位置转动到达第二初始位置的转动圈数。In some embodiments, the motion parameter may include the number of revolutions of the drive component (eg, motor) from the first detection position to the second initial position.
在一些实施例中,运动参数可以包括驱动部件(例如旋钮、把手)从第一检测位置转动到达第二初始位置的转动角度。In some embodiments, the motion parameter may include a rotation angle of the driving component (eg, knob, handle) from the first detection position to the second initial position.
在一些实施例中,运动参数可以包括驱动部件(例如直线运动部件)从第一检测位置直线运动到达第二初始位置的位移。In some embodiments, the motion parameter may include a displacement of the drive member (eg, linear motion member) moving linearly from the first detection position to the second initial position.
尽管在图5及本申请中以特定顺序描述了流程500的各步骤,但这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。例如,步骤530或步骤540,在一些实施例中就只需要执行其中一个。Although the steps of
图6示出了本申请一些实施例中确定第二校准位置的示例性流程600。流程600可以用于根据轨迹信息的类型确定第二校准位置。在一些实施例中,流程600可以由第二校准位置确定模块130执行。FIG. 6 shows an
在步骤610中,可以判断运动参数是否大于或等于运动参数阈值。In step 610, it can be determined whether the motion parameter is greater than or equal to the motion parameter threshold.
在一些实施例中,运动参数阈值为针对运动参数预设的一个阈值。在一些实施例中,运动参数阈值可以表示为自然数,例如1、2、3、…,等。在一些实施例中,运动参数阈值可以表示为分数,例如1/4、5/2、…,等。在一些实施例中,运动参数阈值可以表示为小数,例如0.25、2.5、……等。在一些实施例中,运动参数阈值可以表示为角度,例如90°、360°、900°、……等。In some embodiments, the motion parameter threshold is a threshold value preset for the motion parameter. In some embodiments, the motion parameter thresholds may be expressed as natural numbers, such as 1, 2, 3, . . . , and the like. In some embodiments, the motion parameter threshold may be expressed as a fraction, such as 1/4, 5/2, . . . , etc. In some embodiments, the motion parameter threshold may be expressed as a decimal, such as 0.25, 2.5, . . . , etc. In some embodiments, the motion parameter threshold may be expressed as an angle, eg, 90°, 360°, 900°, . . . , and the like.
运动参数与运动参数阈值进行比较的结果为以下两个中的其中一个:The result of comparing the motion parameter to the motion parameter threshold is one of the following two:
一、运动参数大于或等于运动参数阈值;1. The motion parameter is greater than or equal to the motion parameter threshold;
二、运动参数小于运动参数阈值。2. The motion parameter is less than the motion parameter threshold.
若是出现第一个结果,接下来将执行步骤620。若是出现第二个结果,接下来将执行630。If the first result occurs, step 620 will be executed next. If the second result occurs, 630 will be executed next.
在步骤620中,可以响应于是,即运动参数大于或等于运动参数阈值,确定轨迹信息为第二类型。执行完步骤620后,将跳到步骤640进行执行。In
在一些实施例中,轨迹信息为第二类型的驱动部件所适配的锁体可以为包括锁舌以及副锁舌的锁体。In some embodiments, the lock body whose trajectory information is adapted to the second type of driving component may be a lock body including a lock tongue and a secondary lock tongue.
在一些实施例中,轨迹信息为第二类型的驱动部件可以为电机。In some embodiments, the driving component whose trajectory information is of the second type may be a motor.
在步骤630中,可以响应于否,即运动参数小于运动参数阈值,确定轨迹信息为第一类型。执行完步骤630后,将跳到步骤670进行执行。In
在一些实施例中,轨迹信息为第一类型的驱动部件所适配的锁体可以为包括锁舌但不包括副锁舌的锁体。In some embodiments, the lock body to which the driving component of the first type is adapted according to the trajectory information may be a lock body including a deadbolt but not a secondary deadbolt.
在一些实施例中,轨迹信息为第一类型的驱动部件可以为电机。In some embodiments, the driving component whose trajectory information is of the first type may be a motor.
在步骤640中,将第二初始位置确定为第三校准位置。In
在一些实施例中,第三校准位置指的是,驱动部件使副锁舌处于控制状态,使得智能安全设备处于用户可以直接进行开门的状态,或通过操作把手或旋钮进行开门的状态,这时驱动部件所位于的位置。In some embodiments, the third calibration position refers to that the driving component keeps the secondary latch in a control state, so that the smart security device is in a state where the user can directly open the door, or a state in which the door is opened by operating a handle or a knob, at this time Where the drive components are located.
在步骤640中,第三校准位置可以与轨迹信息为第二类型的驱动部件在解锁过程中所到达的第二初始位置是同一个位置,即,可将轨迹信息为第二类型的驱动部件在解锁过程中所到达的第二初始位置确定为第三校准位置。In
在步骤650中,可以控制驱动部件反方向运动预设时间,然后解离合。In
在一些实施例中,对于轨迹信息为第二类型的驱动部件,可以控制驱动部件反方向运动预设时间(例如,3秒),然后停止运动,解离合,以便于用户操作把手或旋钮进行开门。在控制驱动部件解离合后,智能安全设备的副锁舌不再受驱动部件控制,可以自动弹出,然后伸进锁槽中。In some embodiments, for the driving part whose trajectory information is the second type, the driving part can be controlled to move in the opposite direction for a preset time (for example, 3 seconds), then stop moving and disengage, so that the user can operate the handle or knob to open the door . After the control driving part is disengaged and disengaged, the auxiliary latch of the intelligent safety device is no longer controlled by the driving part, and can be automatically ejected and then extended into the lock slot.
在步骤660中,可以基于驱动部件解离合的位置,确定第二校准位置。In
在一些实施例中,副锁舌弹出后,用户需要操作把手控制副锁舌从锁槽中退出后才能开门。在一些实施例中,副锁舌从锁槽中退出后,用户需要使用钥匙使副锁舌收回,然后才能开门。在一些实施例中,副锁舌从锁槽中退出后,用户需要拧动旋钮副锁舌收回,然后才能开门。副锁舌从锁槽中退出的状态,可以是完全退出的状态,也可以不是完全退出的状态。在一些实施例中,在解锁过程中,副锁舌从锁槽中退出时驱动部件所位于的位置,可以确定为第二校准位置。在一些实施例中,第二校准位置也可以为用户关门后以手动方式进行上锁时驱动部件所位于的起始位置。In some embodiments, after the secondary deadbolt is ejected, the user needs to operate the handle to control the secondary deadbolt to withdraw from the lock slot before opening the door. In some embodiments, after the secondary deadbolt is withdrawn from the lock slot, the user needs to use the key to retract the secondary deadbolt before opening the door. In some embodiments, after the secondary latch is withdrawn from the lock slot, the user needs to turn the knob to retract the secondary latch, and then the door can be opened. The state in which the secondary lock tongue is withdrawn from the lock slot can be completely withdrawn or not completely withdrawn. In some embodiments, during the unlocking process, the position at which the driving component is located when the secondary lock tongue is withdrawn from the lock slot may be determined as the second calibration position. In some embodiments, the second calibration position may also be the initial position at which the driving component is located when the user manually locks the door after closing the door.
在步骤670中,可以将第二初始位置确定为第二校准位置。In
在一些实施例中,由于轨迹信息为第二类型的驱动部件所适配的锁体可以为包括锁舌但不包括副锁舌的锁体,智能安全设备在驱动部件运动到第二初始位置后,就处于用户可以直接进行开门的状态,因此,可以将该第二初始位置直接确定为第二校准位置。In some embodiments, since the track information is that the lock body to which the second type of driving component is adapted may be a lock body that includes a lock tongue but does not include a secondary lock tongue, after the driving component moves to the second initial position, the intelligent safety device can move to the second initial position. , it is in the state that the user can directly open the door, therefore, the second initial position can be directly determined as the second calibration position.
尽管在图6及本申请中以特定顺序描述了流程600的各步骤,但这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。例如,在一些实施例中,可以仅执行步骤610、620、640、650、660,而在另一些实施例中,可以仅执行步骤610、630、670。Although the steps of
图7示出了本申请一些实施例中确定第一校准位置的示例性流程700。流程700可以用于控制驱动部件进行反方向运动,然后确定第一校准位置。在一些实施例中,流程700可以由第一校准位置确定模块140执行。FIG. 7 shows an
在步骤710中,可以控制驱动部件从第二校准位置按照运动参数进行反方向运动。In step 710, the driving member may be controlled to move in the opposite direction from the second calibration position according to the movement parameters.
在一些实施例中,驱动部件可以为电机。In some embodiments, the drive component may be a motor.
在一些实施例中,步骤710中的运动参数,可以为前述步骤410中所确定的运动参数。在一些实施例中,驱动部件从第二校准位置在反方向上运动的位移为前述步骤410中所确定的运动参数减去从第二初始位置反方向运动到第二校准位置的位移。In some embodiments, the motion parameters in step 710 may be the motion parameters determined in the foregoing
在步骤720中,可以判断是否已经确定驱动部件第一最大位置。In step 720, it may be determined whether the first maximum position of the drive member has been determined.
在一些实施例中,响应于否,即没有确定驱动部件第一最大位置,则接着执行步骤730。在一些实施例中,响应于是,即已经确定驱动部件第一最大位置,则跳过步骤730、740,直接执行步骤750。In some embodiments, in response to NO, ie, the first maximum position of the drive member has not been determined, then step 730 is then performed. In some embodiments, in response to that, that is, the first maximum position of the drive member has been determined, steps 730 and 740 are skipped, and step 750 is directly executed.
在步骤730中,可以继续控制驱动部件反方向运动至第一检测位置。In step 730, the driving component may be controlled to move in the opposite direction to the first detection position.
在步骤740中,可以基于第一检测位置确定驱动部件第一最大位置。In step 740, a first maximum position of the drive member may be determined based on the first detected position.
在一些实施例中,将第一检测位置确定为驱动部件第一最大位置。In some embodiments, the first detected position is determined to be the first maximum position of the drive member.
在步骤750中,可以基于驱动部件第一最大位置和第一检测位置,确定第一校准位置。In step 750, a first calibration position may be determined based on the first maximum position of the drive member and the first detected position.
智能安全设备(例如,智能锁、智能门、智能窗、智能控制阀门、智能开关等)在设计制造时会留一些余量,以使完成上锁后,驱动部件还能沿着上锁方向继续运动,从而避免驱动部件因为运动被阻碍而导致电流过大,起到保护驱动部件的作用。但是在实际制造或安装过程中,可能因为传动误差或安装误差而出现智能安全设备完成上锁后驱动部件就已经位于驱动部件第一最大位置,即不能沿着上锁方向继续运动。这意味着,如果智能安全设备直接以这个驱动部件第一最大位置作为最终的第一校准位置,驱动部件在之后的上锁过程中将会运动到这个位置后才开始减速直至停止运动,但由于不能运动受到阻碍,驱动部件的电流将会过大,从而影响驱动部件的寿命。因此,需要在驱动部件上锁位置与第一检测位置之间的过渡段重新选择一个位置作为最终的第一校准位置,以实现智能安全设备既能够充分上锁,又不会出现驱动部件在上锁过程中的运动被阻止的现象。Smart security equipment (for example, smart locks, smart doors, smart windows, smart control valves, smart switches, etc.) will have some margin in the design and manufacture, so that after the lock is completed, the driving part can continue in the direction of locking movement, so as to avoid excessive current caused by the blocking of the movement of the driving components, and play a role in protecting the driving components. However, in the actual manufacturing or installation process, the driving part may be located at the first maximum position of the driving part after the intelligent safety device is locked due to transmission error or installation error, that is, it cannot continue to move in the locking direction. This means that if the intelligent safety device directly takes the first maximum position of the driving part as the final first calibration position, the driving part will move to this position in the subsequent locking process before starting to decelerate until it stops moving, but due to If the movement is not hindered, the current of the driving components will be too large, thus affecting the life of the driving components. Therefore, it is necessary to reselect a position as the final first calibration position in the transition section between the locking position of the driving part and the first detection position, so as to realize that the intelligent safety device can be fully locked without causing the driving part to be locked. A phenomenon in which movement during locking is blocked.
在一些实施例中,可以将驱动部件在各个位置上的位置数据表示为数值形式,并且位置数据随着驱动部件在解锁方向上运动而变大。为了在驱动部件第一最大位置与第一检测位置之间的过渡段重新选择一个位置作为最终的第一校准位置,可以将驱动部件第一最大位置加上一个缓冲值的结果与将第一检测位置减去一个缓冲值的结果进行比较,然后确定相对较小的结果为第一校准位置。若比较结果为相等,则可以确定驱动部件第一最大位置加上一个缓冲值的结果或第一检测位置减去一个缓冲值的结果为第一校准位置。缓冲值可以是根据设计经验预先设定一个的值。缓冲值的设定应该满足一个条件:最终选择的第一校准位置与驱动部件第一最大位置之间的位移应该大于或等于驱动部件从开始减速到完全停止的这个过程所运动的位移。In some embodiments, the position data of the drive member at various positions may be represented in numerical form, and the position data becomes larger as the drive member moves in the unlocking direction. In order to reselect a position as the final first calibration position in the transition between the first maximum position of the driving member and the first detection position, the result of adding a buffer value to the first maximum position of the driving member can be combined with the first detection position. The result of the position minus a buffer value is compared, and the relatively small result is determined as the first calibration position. If the comparison result is equal, the result of adding a buffer value to the first maximum position of the driving part or the result of subtracting a buffer value from the first detection position can be determined as the first calibration position. The buffer value may be a value preset according to design experience. The setting of the buffer value should satisfy a condition: the displacement between the finally selected first calibration position and the first maximum position of the drive part should be greater than or equal to the displacement of the drive part during the process of decelerating from the start to the complete stop.
例如,驱动部件第一最大位置的位置数据可以表示成2000,在第一检测位置的位置数据可以表示成2500,在第二校准位置的位置数据可以表示成10000,缓冲值可以根据经验预设为200,则驱动部件第一最大位置的位置数据加上一个缓冲值的结果为2200,第一检测位置的位置数据减去一个缓冲值的结果为2300,最终选择驱动部件第一最大位置的位置数据加上一个缓冲值的结果(即2200)作为第一校准位置。For example, the position data of the first maximum position of the driving component can be expressed as 2000, the position data of the first detection position can be expressed as 2500, the position data of the second calibration position can be expressed as 10000, and the buffer value can be preset according to experience as 200, the result of adding a buffer value to the position data of the first maximum position of the driving component is 2200, and the result of subtracting a buffer value from the position data of the first detection position is 2300, and finally the position data of the first maximum position of the driving component is selected. The result of adding a buffer value (ie 2200) is used as the first calibration position.
在另一些替代性的实施例中,驱动部件在各个位置上的位置数据可以表示为数值形式,并且位置数据随着驱动部件在解锁方向上运动而变小。为了在驱动部件第一最大位置与第一检测位置之间的过渡段重新选择一个位置作为最终的第一校准位置,可以将驱动部件第一最大位置减去一个缓冲值的结果与将第一检测位置加上一个缓冲值的结果进行比较,然后基于比较结果,确定相对较大的结果为第一校准位置。若比较结果为相等,则可以确定驱动部件第一最大位置加上一个缓冲值的结果或第一检测位置减去一个缓冲值的结果为第一校准位置。缓冲值可以是根据设计经验预先设定一个的值。缓冲值的设定应该满足一个条件:最终选择的第一校准位置与驱动部件第一最大位置之间的位移应该大于或等于驱动部件从开始减速到完全停止的这个过程所运动的位移。In other alternative embodiments, the position data of the driving member at each position may be expressed in numerical form, and the position data becomes smaller as the driving member moves in the unlocking direction. In order to reselect a position as the final first calibration position in the transition between the first maximum position of the driving member and the first detection position, the result of subtracting a buffer value from the first maximum position of the driving member can be combined with the first detection position. The result of the position plus a buffer value is compared, and then based on the comparison result, a relatively larger result is determined as the first calibration position. If the comparison result is equal, the result of adding a buffer value to the first maximum position of the driving part or the result of subtracting a buffer value from the first detection position can be determined as the first calibration position. The buffer value may be a value preset according to design experience. The setting of the buffer value should satisfy a condition: the displacement between the finally selected first calibration position and the first maximum position of the drive part should be greater than or equal to the displacement of the drive part during the process of deceleration from start to complete stop.
例如,驱动部件第一最大位置的位置数据可以表示为10000,在第一检测位置的位置数据可以表示为9500,在第二校准位置的位置数据可以表示为2000,缓冲值可以根据经验预设为200,则驱动部件第一最大位置的位置数据减去一个缓冲值的结果为9800,第一检测位置的位置数据减去一个缓冲值的结果为9700,最终选择驱动部件第一最大位置的位置数据加上一个缓冲值的结果(即9800)作为第一校准位置。For example, the position data of the first maximum position of the driving component can be expressed as 10000, the position data of the first detection position can be expressed as 9500, the position data of the second calibration position can be expressed as 2000, and the buffer value can be preset according to experience as 200, the result of subtracting a buffer value from the position data of the first maximum position of the driving component is 9800, and the result of subtracting a buffer value from the position data of the first detection position is 9700, and finally the position data of the first maximum position of the driving component is selected. The result of adding a buffer value (ie 9800) is used as the first calibration position.
尽管在图7及本申请中以特定顺序描述了流程700的各步骤,但这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。例如,在一些实施例中,可以按顺序执行步骤710、720、730、740、750。又例如,在一些实施例中,可以先按顺序执行步骤710、720,然后执行步骤750。又例如,在一些实施例中,可以先执行步骤720,然后执行步骤710、730、740、750。又例如,在一些实施例中,可以先执行步骤720,然后执行步骤710、750。Although the steps of
图8示出了本申请一些实施例的另一种用于智能安全设备的控制方法的示例性流程800。流程800可以用于实现对智能安全设备进行自动上锁。可以基于流程400所示的方法所确定的轨迹信息的类型以及相应的位置校准结果,如第一校准位置和第二校准位置,实施流程800。FIG. 8 shows an
在步骤810中,可以获取驱动部件在运动过程中的位置数据。在一些实施例中,步骤810可以由获取模块210执行。在一些实施例中,运动过程指的是通过驱动部件对智能安全设备进行上锁的过程。In step 810, position data of the driving component during the movement process may be acquired. In some embodiments, step 810 may be performed by acquisition module 210 . In some embodiments, the movement process refers to the process of locking the smart security device through the driving component.
在一些实施例中,驱动部件可以包括电机。在一些实施例中,驱动部件可以包括直线运动部件,例如气缸、液压缸等。在一些实施例中,驱动部件的位置数据可以为驱动部件在运动方向上所处的位置。在一些实施例中,驱动部件的位置数据可以为数字信号形式。在一些实施例中,智能安全设备可以通过传感器采集驱动部件在运动方向所处的位置,并通过模数转换器将传感器的模拟信号转换成以数字信号存在的驱动部件的位置数据。在一些实施例中,传感器可以采用压力传感器、红外传感器或其他传感器,或其任意组合。In some embodiments, the drive components may include motors. In some embodiments, the drive components may include linear motion components, such as air cylinders, hydraulic cylinders, and the like. In some embodiments, the position data of the driving member may be the position of the driving member in the direction of movement. In some embodiments, the position data of the drive components may be in the form of digital signals. In some embodiments, the intelligent safety device can collect the position of the driving part in the moving direction through the sensor, and convert the analog signal of the sensor into the position data of the driving part in the digital signal through the analog-to-digital converter. In some embodiments, the sensors may employ pressure sensors, infrared sensors, or other sensors, or any combination thereof.
在步骤820中,可以基于驱动部件的位置数据以及轨迹信息的类型,判断驱动部件是否到达第一校准位置。在一些实施例中,步骤820可以由判断模块220执行。In step 820, it may be determined whether the driving component has reached the first calibration position based on the position data of the driving component and the type of the trajectory information. In some embodiments, step 820 may be performed by the determination module 220 .
关于具体判断过程的说明,可以参见图9及相关的说明内容,此处不做赘述。For the description of the specific judgment process, reference may be made to FIG. 9 and related description contents, which will not be repeated here.
在步骤830中,可以响应于驱动部件到达第一校准位置,控制驱动部件停止运动。在一些实施例中,步骤830可以由响应模块230执行。In
在一些实施例中,驱动部件到达第一校准位置后,控制驱动部件就可以停止运动。在一些实施例中,驱动部件从减速到完全停止运动,持续时间可以为例如0.5秒。在一些实施例中,驱动部件从减速到完全停止运动,持续时间可以为例如0.1秒、0.2秒、0.3秒、0.4秒、1秒、2秒、5秒等。在一些实施例中,驱动部件减速的持续时间的选择可以与速度的大小及减速的快慢有关。在一些实施例中,驱动部件可以在完全停止转动后解离合,以方便用户操作把手或旋钮进行开门操作。In some embodiments, the control of the drive member may stop movement after the drive member reaches the first calibration position. In some embodiments, the duration of movement of the drive member from deceleration to a complete stop may be, for example, 0.5 seconds. In some embodiments, the duration of movement of the drive member from deceleration to complete stop may be, for example, 0.1 seconds, 0.2 seconds, 0.3 seconds, 0.4 seconds, 1 second, 2 seconds, 5 seconds, and the like. In some embodiments, the selection of the duration of the deceleration of the drive component may be related to the magnitude of the speed and the speed of the deceleration. In some embodiments, the driving part can be disengaged after the rotation is completely stopped, so as to facilitate the user to operate the handle or knob to open the door.
尽管在图8及本申请中以特定顺序描述了流程800的各步骤,但这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行,和/或将其中至少一个步骤反复执行。例如,在一些实施例中,可以反复依次执行步骤810、820,直到步骤820的判断结果为驱动部件到达第一校准位置,才往后执行步骤830。Although the steps of
图9示出了本申请一些实施例中判断驱动部件到达第一校准位置的示例性流程900。流程900可以用于实现判断驱动部件是否到达第一校准位置。在一些实施例中,流程900可以由判断模块220执行。FIG. 9 shows an
在步骤910中,可以基于驱动部件的位置数据,确定驱动部件按照预设方向运动的位移。In step 910, the displacement of the driving member moving in a preset direction may be determined based on the position data of the driving member.
在一些实施例中,驱动部件按照预设方向运动的位移可以为驱动部件从第二校准位置开始反方向运动至当下所位于的位置的过程中所运动的位移。在一些实施例中,驱动部件按照预设方向运动的位移可以为驱动部件(例如电机)从第二校准位置开始反方向运动至当下所位于的位置的过程中所转动的圈数。In some embodiments, the displacement of the driving member moving in the preset direction may be the displacement of the driving member during the process of moving in the opposite direction from the second calibration position to the current position. In some embodiments, the displacement of the driving member moving in the preset direction may be the number of revolutions the driving member (eg, motor) rotates in the process of moving in the opposite direction from the second calibration position to the current position.
在步骤920中,可以基于轨迹信息的类型,确定驱动部件从第二校准位置运动到第一校准位置所需的运动参数。In step 920, motion parameters required for the drive member to move from the second calibration position to the first calibration position may be determined based on the type of trajectory information.
在一些实施例中,轨迹信息可以分为第一类型和第二类型。轨迹信息为第一类型的驱动部件适配的锁体可以为包括锁舌但不包括副锁舌的锁体。轨迹信息为第二类型的驱动部件适配的锁体可以为包括锁舌以及副锁舌的锁体。在一些实施例中,轨迹信息的类型及该类型轨迹信息的驱动部件适配的锁体可以通过图4~图7中所示的示例性方法进行预先确定,相应地,该类型轨迹信息的驱动部件适配的锁体要实现完全上锁所需的运动参数也可以通过图4~图7中所示的示例性方法进行预先确定。In some embodiments, the trajectory information may be classified into a first type and a second type. The lock body for which the trajectory information is adapted for the drive part of the first type may be a lock body including a deadbolt but not a secondary deadbolt. The lock body for which the trajectory information is adapted for the second type of driving component may be a lock body including a lock tongue and a secondary lock tongue. In some embodiments, the type of trajectory information and the lock body to which the driving component of the type of trajectory information is adapted may be predetermined by the exemplary methods shown in FIGS. The motion parameters required to achieve complete locking of the component-fitted lock body can also be predetermined by the exemplary methods shown in FIGS. 4 to 7 .
在步骤930中,可以判断驱动部件按照预设方向运动的位移是否与运动参数匹配。In step 930, it can be determined whether the displacement of the driving component moving in the preset direction matches the motion parameters.
在一些实施例中,判断结果为不匹配,则返回步骤910,再次重复执行步骤910、930,一直到判断结果为匹配,才接着步骤940。In some embodiments, if the result of the determination is a mismatch, the process returns to step 910, and steps 910 and 930 are repeatedly performed again until the determination result is a match, and then step 940 is continued.
在一些实施例中,匹配是指驱动部件按照预设方向运动的位移与运动参数相等。In some embodiments, matching means that the displacement of the drive member moving in the preset direction is equal to the motion parameter.
在步骤940中,可以响应于是,即判断结果为匹配,确定驱动部件已到达第一校准位置。In
在一些实施例中,第一校准位置可以通过图4~图7中所示的示例性方法进行预先确定。In some embodiments, the first calibration position may be predetermined by the exemplary method shown in FIGS. 4-7 .
尽管在本申请中以特定顺序描述了流程900的各步骤,但这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行,和/或将其中至少一个步骤反复执行。例如,在一些实施例中,可以对步骤920只执行一次,但可以反复依次执行步骤910、930,直到步骤930的判断结果为匹配,才往后执行步骤640。Although the steps of
图10示出了本申请一些实施例的另一种用于智能安全设备的控制方法的示例性流程1000。流程1000可以用于实现对智能安全设备的自动解锁。可以基于流程400所示的方法所确定的轨迹信息的类型以及相应的位置校准结果,如第一校准位置和第二校准位置,实施流程1000。FIG. 10 shows an
在步骤1010中,可以获取轨迹信息的类型和驱动部件在运动过程中的位置数据。在一些实施例中,步骤1010可以由获取模块310执行。In step 1010, the type of trajectory information and the position data of the driving component during the movement process may be acquired. In some embodiments, step 1010 may be performed by acquisition module 310 .
在一些实施例中,运动过程可以为通过驱动部件对智能安全设备进行解锁的过程。In some embodiments, the movement process may be a process of unlocking the intelligent security device through the driving component.
在一些实施例中,轨迹信息的类型可以包括至少两类。轨迹信息为第一类型时,驱动部件在解锁过程中带动该类型轨迹信息的驱动组件适配的锁体在旋转一定角度后直接到达解锁堵转位置,即完成解锁过程,该解锁堵转位置为驱动部件在可以直接开门时所位于的第二初始位置;轨迹信息为第二类型时,驱动部件在解锁过程中带动该类型轨迹信息的驱动组件适配的锁体在旋转一定角度后可能会到达解锁堵转位置,但这个位置只是第三校准位置而不是第二初始位置;然后,控制驱动部件反方向运动预设时间(例如3秒),然后停止运动,解离合,使得副锁舌处于解除控制的状态,副锁舌处于解除控制的状态时将会自动弹出,这时驱动部件所处位置才是驱动部件在可以直接开门时所位于的第二初始位置,解锁过程才算完成。In some embodiments, the types of trajectory information may include at least two categories. When the trajectory information is of the first type, the driving component drives the lock body adapted to the drive assembly of this type of trajectory information to rotate a certain angle during the unlocking process and directly reach the unlocking and locked-rotor position, that is, the unlocking process is completed. The unlocking and locked-rotor position is: The second initial position of the driving component when the door can be opened directly; when the trajectory information is of the second type, the lock body that the driving component drives the driving component of this type of trajectory information during the unlocking process may reach the lock body after rotating a certain angle Unlock the locked-rotor position, but this position is only the third calibration position instead of the second initial position; then, control the driving part to move in the opposite direction for a preset time (for example, 3 seconds), then stop the movement and disengage, so that the auxiliary lock tongue is in the release position In the control state, the secondary latch will automatically pop up when the control is released. At this time, the position of the driving part is the second initial position of the driving part when the door can be opened directly, and the unlocking process is completed.
在另一些替代性的实施例中,轨迹信息的类型还可以包括第三类型。轨迹信息为第三类型时,驱动部件在解锁过程中输出直线运动并直接带动该类型轨迹信息的驱动部件适配的锁体发生直线位移到达第二初始位置,该第二初始位置即为驱动部件在可以直接开门时所位于的位置。In other alternative embodiments, the type of track information may further include a third type. When the trajectory information is of the third type, the driving component outputs linear motion during the unlocking process and directly drives the lock body adapted to the driving component of this type of trajectory information to have a linear displacement to reach the second initial position, and the second initial position is the driving component. In the position where the door can be opened directly.
在一些实施例中,驱动部件的位置数据可以为驱动部件在运动方向上所处的位置。在一些实施例中,驱动部件的位置数据可以为数字信号形式。在一些实施例中,智能安全设备可以通过传感器采集驱动部件在运动方向所处的位置,并通过模数转换器将传感器的模拟信号转换成以数字信号存在的驱动部件的位置数据。在一些实施例中,传感器可以采用压力传感器、红外传感器或其他传感器,或其任意组合。In some embodiments, the position data of the driving member may be the position of the driving member in the direction of movement. In some embodiments, the position data of the drive components may be in the form of digital signals. In some embodiments, the intelligent safety device can collect the position of the driving part in the moving direction through the sensor, and convert the analog signal of the sensor into the position data of the driving part in the digital signal through the analog-to-digital converter. In some embodiments, the sensors may employ pressure sensors, infrared sensors, or other sensors, or any combination thereof.
在步骤1020中,可以基于轨迹信息的类型和位置数据,执行与轨迹信息的类型对应的执行方案。在一些实施例中,步骤1020可以由执行模块320执行。In step 1020, an execution scheme corresponding to the type of trajectory information may be executed based on the type of trajectory information and the location data. In some embodiments, step 1020 may be performed by execution module 320 .
在一些实施例中,执行方案为解锁方案。解锁方案指的是通过驱动部件对智能安全设备进行解锁的方案。In some embodiments, the execution scheme is an unlock scheme. The unlocking scheme refers to the scheme of unlocking the intelligent security device through the driving component.
关于步骤1020中执行方案的具体内容,可以参见说明书中关于图11的说明内容。For the specific content of the execution scheme in step 1020, reference may be made to the description content of FIG. 11 in the specification.
图11示出了本申请一些实施例中根据轨迹信息的类型使驱动部件达到第二初始位置的示例性流程1100。流程1100可以用于根据轨迹信息的类型执行相应的解锁策略从而实现解锁。在一些实施例中,流程1100可以由执行模块320执行。FIG. 11 shows an
在一些实施例中,前述图10的步骤1010中获取的轨迹信息的类型为第一类型,则执行步骤1110、1120。在一些实施例中,前述图10的步骤1020中获取的轨迹信息的类型为第二类型,则执行步骤1130、1140、1150。In some embodiments, if the type of the trajectory information acquired in step 1010 of FIG. 10 is the first type, then steps 1110 and 1120 are performed. In some embodiments, if the type of the trajectory information acquired in step 1020 of FIG. 10 is the second type, steps 1130 , 1140 and 1150 are executed.
在步骤1110中,可以基于驱动部件的位置数据,判断驱动部件是否到达第二校准位置。In
在一些实施例中,第二校准位置可以通过图6中所示的示例性方法进行预先确定,具体可以参考。若是驱动部件未到达第二校准位置,则一直反复执行步骤1030和步骤1110,即边控制驱动部件反方向运动,边采集驱动部件的位置数据并判断驱动部件是否到达第二校准位置。In some embodiments, the second calibration position may be predetermined by the exemplary method shown in FIG. 6 , for details, please refer to. If the driving component does not reach the second calibration position, steps 1030 and 1110 are repeatedly performed, that is, while controlling the driving component to move in the opposite direction, the position data of the driving component is collected and it is determined whether the driving component reaches the second calibration position.
在步骤1120中,可以响应于驱动部件到达第二校准位置,控制驱动部件停止运动。In step 1120, the drive member may be controlled to stop moving in response to the drive member reaching the second calibration position.
在一些实施例中,轨迹信息可以为第一类型,则步骤1120中的第二校准位置即为解锁堵转位置。在一些实施例中,驱动部件到达第二校准位置后,可以控制驱动部件的电流以恒力矩方式转动,超过设定时间阈值,例如0.5秒,即停止转动。In some embodiments, the trajectory information may be of the first type, and the second calibration position in step 1120 is the unlocked locked-rotor position. In some embodiments, after the driving component reaches the second calibration position, the current of the driving component can be controlled to rotate in a constant torque manner, and the rotation is stopped after a set time threshold, eg, 0.5 seconds.
在步骤1130中,可以基于驱动部件的位置数据,判断驱动部件是否到达第三校准位置。In
在一些实施例中,轨迹信息可以为第二类型,相应地,第三校准位置即为解锁堵转位置,驱动部件到达第三校准位置后,将不能继续转动。第三校准位置可以通过图6中的步骤610、620、640进行预先确定。在一些实施例中,当驱动部件的位置数据显示与第三校准位置相同时,即可判断驱动部件到达第三校准位置。在一些实施例中,还可以根据驱动部件发生堵转之后的时间超过设定时间阈值,例如0.5秒,判定驱动部件到达第三校准位置。In some embodiments, the trajectory information may be of the second type, and correspondingly, the third calibration position is the unlocked and locked-rotor position, and the driving component cannot continue to rotate after reaching the third calibration position. The third calibration position may be predetermined by
在步骤1140中,可以响应于驱动部件到达第三校准位置,控制驱动部件停止运动。In step 1140, the drive member may be controlled to stop moving in response to the drive member reaching the third calibration position.
在一些实施例中,当判定驱动部件到达第三校准位置后,可以控制驱动部件的电流以恒力矩方式转动,超过设定时间阈值(例如0.5秒),即停止转动。In some embodiments, after it is determined that the driving component reaches the third calibration position, the current of the driving component can be controlled to rotate in a constant torque manner, and the rotation is stopped after a set time threshold (eg, 0.5 seconds) is exceeded.
在步骤1150中,可以控制驱动部件反转预设时间(例如3秒),以使驱动部件反方向运动到第二校准位置,然后解离合。In step 1150 , the driving part may be controlled to be reversed for a preset time (eg, 3 seconds), so that the driving part is moved in the opposite direction to the second calibration position, and then disengaged.
在一些实施例中,驱动部件解离合后,副锁舌处于解除控制的状态,可以自动弹出并伸进锁槽内。因此,副锁舌完全弹出时,驱动部件位于第二校准位置。副锁舌完全弹出后,用户可以转动门把手或用钥匙拧动锁体,然后开门。In some embodiments, after the driving part is disengaged, the secondary lock tongue is in a released state, and can automatically pop out and extend into the lock slot. Therefore, when the secondary latch is fully ejected, the drive member is in the second calibration position. After the secondary deadbolt is fully ejected, the user can turn the door handle or turn the lock body with a key, and then open the door.
本申请实施例还公开了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时,使得所述处理器实现前述图1~图11及其说明内容中任一实施例公开的方法。The embodiment of the present application further discloses a computer-readable storage medium on which a computer program is stored, wherein, when the computer program is executed by a processor, the processor enables the processor to realize the aforementioned FIG. 1 to FIG. 11 and the descriptions thereof The method disclosed in any of the embodiments.
本申请实施例还公开了一种处理器,所述处理器用于运行计算机程序,其中,所述处理器运行所述计算机程序时,使得所述处理器实现前述图1~图11及其说明内容中任一实施例公开的方法。An embodiment of the present application further discloses a processor, which is used to run a computer program, wherein, when the processor runs the computer program, the processor is made to implement the foregoing FIG. 1 to FIG. 11 and the descriptions thereof The method disclosed in any of the embodiments.
本申请实施例还公开了一种电子设备,包括:一个或多个处理器;存储器,其上存储有一个或多个计算机程序;当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述一个或多个处理器实现图1~图11及其说明内容中任一实施例公开的方法。The embodiment of the present application further discloses an electronic device, comprising: one or more processors; a memory on which one or more computer programs are stored; when the one or more computer programs are stored by the one or more computer programs When executed by the processor, the one or more processors are caused to implement the method disclosed in any of the embodiments in FIG. 1 to FIG. 11 and the descriptions thereof.
本申请上述实施例可以实现的有益效果如下:(1)在一些实施例中,驱动部件在智能安全设备安装好之后,可以通过测试以自动识别驱动部件的轨迹信息的类型并对相应的第一校准位置和第二校准位置进行确定,因此驱动部件可以适配不同类型的锁体,具有很好的兼容性;(2)在一些实施例中,驱动部件可以根据轨迹信息的类型、第一校准位置和第二校准位置执行相应的执行方案(例如,上锁方案和解锁方案),有效避免发生驱动部件的运动被阻止的现象,降低了驱动部件的故障率,延长了驱动部件的使用寿命。The beneficial effects that can be achieved by the above embodiments of the present application are as follows: (1) In some embodiments, after the driving component is installed in the intelligent safety device, the test can be used to automatically identify the type of the trajectory information of the driving component and determine the corresponding first The calibration position and the second calibration position are determined, so the driving part can be adapted to different types of lock bodies and has good compatibility; (2) In some embodiments, the driving part can be calibrated according to the type of trajectory information, the first calibration The corresponding execution scheme (for example, the locking scheme and the unlocking scheme) is executed in the position and the second calibration position, which effectively avoids the phenomenon that the movement of the driving part is blocked, reduces the failure rate of the driving part, and prolongs the service life of the driving part.
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。The basic concept has been described above. Obviously, for those skilled in the art, the above detailed disclosure is only an example, and does not constitute a limitation to the present application. Although not explicitly described herein, various modifications, improvements, and corrections to this application may occur to those skilled in the art. Such modifications, improvements, and corrections are suggested in this application, so such modifications, improvements, and corrections still fall within the spirit and scope of the exemplary embodiments of this application.
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本申请中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。Meanwhile, the present application uses specific words to describe the embodiments of the present application. Such as "one embodiment," "an embodiment," and/or "some embodiments" means a certain feature, structure, or characteristic associated with at least one embodiment of the present application. Thus, it should be emphasized and noted that two or more references to "an embodiment" or "one embodiment" or "an alternative embodiment" in various places throughout this application are not necessarily referring to the same embodiment . Furthermore, certain features, structures or characteristics of the one or more embodiments of the present application may be combined as appropriate.
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。Similarly, it should be noted that, in order to simplify the expressions disclosed in the present application and thus help the understanding of one or more embodiments of the invention, in the foregoing description of the embodiments of the present application, various features are sometimes combined into one embodiment, in the drawings or descriptions thereof. However, this method of disclosure does not imply that the subject matter of the application requires more features than those mentioned in the claims. Indeed, there are fewer features of an embodiment than all of the features of a single embodiment disclosed above.
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。Some examples use numbers to describe quantities of ingredients and attributes, it should be understood that such numbers used to describe the examples, in some examples, use the modifiers "about", "approximately" or "substantially" to retouch. Unless stated otherwise, "about", "approximately" or "substantially" means that a variation of ±20% is allowed for the stated number. Accordingly, in some embodiments, the numerical parameters set forth in the specification and claims are approximations that can vary depending upon the desired characteristics of individual embodiments. In some embodiments, the numerical parameters should take into account the specified significant digits and use a general digit reservation method. Notwithstanding that the numerical fields and parameters used in some embodiments of the present application to confirm the breadth of their ranges are approximations, in particular embodiments such numerical values are set as precisely as practicable.
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。Finally, it should be understood that the embodiments described in the present application are only used to illustrate the principles of the embodiments of the present application. Other variations are also possible within the scope of this application. Accordingly, by way of example and not limitation, alternative configurations of embodiments of the present application may be considered consistent with the teachings of the present application. Accordingly, the embodiments of the present application are not limited to the embodiments expressly introduced and described in the present application.
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210251483.7A CN114578865A (en) | 2022-03-15 | 2022-03-15 | A test, control method and system for intelligent safety equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210251483.7A CN114578865A (en) | 2022-03-15 | 2022-03-15 | A test, control method and system for intelligent safety equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114578865A true CN114578865A (en) | 2022-06-03 |
Family
ID=81779542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210251483.7A Pending CN114578865A (en) | 2022-03-15 | 2022-03-15 | A test, control method and system for intelligent safety equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114578865A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106341072A (en) * | 2015-07-08 | 2017-01-18 | 爱信精机株式会社 | Drive Apparatus |
US20180205862A1 (en) * | 2017-01-16 | 2018-07-19 | Olympus Corporation | Drive device and method for controlling the drive device |
CN108894612A (en) * | 2018-07-12 | 2018-11-27 | 中控智慧科技股份有限公司 | Smart lock and its application method |
CN109510174A (en) * | 2018-12-29 | 2019-03-22 | 宁波久婵物联科技有限公司 | For the intelligent electric machine system and motor control method in smart lock |
CN110426037A (en) * | 2019-08-08 | 2019-11-08 | 扆亮海 | A kind of pedestrian movement track real time acquiring method under enclosed environment |
CN110599642A (en) * | 2019-08-23 | 2019-12-20 | 珠海优特电力科技股份有限公司 | Unlocking equipment, lock and lock control system |
CN111425105A (en) * | 2020-04-24 | 2020-07-17 | 北京立禾物联科技有限公司 | Control system of intelligent storage cabinet and intelligent storage cabinet |
CN112132125A (en) * | 2020-09-29 | 2020-12-25 | Oppo(重庆)智能科技有限公司 | Fingerprint identification calibration method and device, electronic device and readable storage medium |
CN112650223A (en) * | 2020-12-11 | 2021-04-13 | 康威通信技术股份有限公司 | Multifunctional orbital transfer device control system and method applied to inspection robot |
-
2022
- 2022-03-15 CN CN202210251483.7A patent/CN114578865A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106341072A (en) * | 2015-07-08 | 2017-01-18 | 爱信精机株式会社 | Drive Apparatus |
US20180205862A1 (en) * | 2017-01-16 | 2018-07-19 | Olympus Corporation | Drive device and method for controlling the drive device |
CN108894612A (en) * | 2018-07-12 | 2018-11-27 | 中控智慧科技股份有限公司 | Smart lock and its application method |
CN109510174A (en) * | 2018-12-29 | 2019-03-22 | 宁波久婵物联科技有限公司 | For the intelligent electric machine system and motor control method in smart lock |
CN110426037A (en) * | 2019-08-08 | 2019-11-08 | 扆亮海 | A kind of pedestrian movement track real time acquiring method under enclosed environment |
CN110599642A (en) * | 2019-08-23 | 2019-12-20 | 珠海优特电力科技股份有限公司 | Unlocking equipment, lock and lock control system |
CN111425105A (en) * | 2020-04-24 | 2020-07-17 | 北京立禾物联科技有限公司 | Control system of intelligent storage cabinet and intelligent storage cabinet |
CN112132125A (en) * | 2020-09-29 | 2020-12-25 | Oppo(重庆)智能科技有限公司 | Fingerprint identification calibration method and device, electronic device and readable storage medium |
CN112650223A (en) * | 2020-12-11 | 2021-04-13 | 康威通信技术股份有限公司 | Multifunctional orbital transfer device control system and method applied to inspection robot |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108222711B (en) | Intelligent latch | |
US8534743B2 (en) | Method for operating a hatch arrangement of a motor vehicle | |
US10655368B2 (en) | Electrical door latch with motor reset | |
KR102681036B1 (en) | Switchger of tailgate for vehicle | |
CN101916981B (en) | Method for preventing motor rotation blockage of automotive electric trunk and position sensor used thereby | |
US11098504B2 (en) | Vehicle closure linear cinching system | |
US6974165B2 (en) | Door lock apparatus for a vehicle | |
US11274478B2 (en) | Two-pull, automatic reset, latch system | |
EP3560092B1 (en) | Controlling motor movement | |
CN111456570B (en) | Control method, device and system for vehicle door lock | |
KR100990958B1 (en) | Operation mechanism of switch body | |
CN109577847B (en) | A limit setting method and system for an electric rolling shutter door | |
WO2018094853A1 (en) | Electric self-attracting lock for trunk door of automobile | |
US20170058573A1 (en) | Drive control apparatus for opening-and-closing body | |
US20210102413A1 (en) | Opening/closing body control device for vehicles | |
CN114578865A (en) | A test, control method and system for intelligent safety equipment | |
US9543755B2 (en) | Automotive electrically-actuated device end-of-travel detection | |
CN114233112B (en) | Intelligent door lock direction calibration method and system and intelligent door lock | |
CN114016852B (en) | Automatic opening and closing control method and device for charging flap | |
JPH10102948A (en) | Security device and security method for electric door | |
CN117321279A (en) | Detection and correction of insufficient locking behavior of electronic locks | |
KR101308494B1 (en) | Door latch apparatus for vehicle | |
CN112746773B (en) | Door lock and control method of door lock | |
KR200442949Y1 (en) | Digital door lock with panic release detection | |
CN208294289U (en) | Switch latch mechanism and lock assembly and vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |