CN114498039B - Double-end matching method for improving matching effect of monopole antenna - Google Patents
Double-end matching method for improving matching effect of monopole antenna Download PDFInfo
- Publication number
- CN114498039B CN114498039B CN202111557335.XA CN202111557335A CN114498039B CN 114498039 B CN114498039 B CN 114498039B CN 202111557335 A CN202111557335 A CN 202111557335A CN 114498039 B CN114498039 B CN 114498039B
- Authority
- CN
- China
- Prior art keywords
- additional network
- network
- matching
- monopole antenna
- additional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005404 monopole Effects 0.000 title claims abstract description 45
- 230000000694 effects Effects 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 14
- 230000009466 transformation Effects 0.000 claims description 10
- 238000006467 substitution reaction Methods 0.000 claims description 9
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000003990 capacitor Substances 0.000 claims description 3
- 230000002068 genetic effect Effects 0.000 claims description 3
- 238000005457 optimization Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims 1
- 238000004891 communication Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
Abstract
The invention discloses a double-end matching method for improving the matching effect of a monopole antenna, wherein an additional network 1 is added between the input end of the monopole antenna and a fixed matching network, and an additional network 2 is added between the fixed matching network and an antenna oscillator; the steps of determining the parameters of the elements in the additional network 1 and the additional network 2 are as follows: step 1, measuring scattering parameters of a monopole antenna fixed matching network; step 2, measuring the input impedance of only the antenna element part of the monopole antenna; step 3, calculating the voltage standing wave ratio; and 4, constructing an objective function. The invention discloses a double-end matching method for improving the matching effect of a monopole antenna, which is characterized in that from the viewpoint of changing the original monopole antenna to be small and obviously improving the effect, an additional network is respectively added at the front end and the rear end of the original monopole antenna, which are close to a fixed matching network, the two additional network elements are few and have no consumption, and the double-end matching greatly increases the design flexibility and the degree of freedom.
Description
Technical Field
The invention belongs to the field of wireless communication, and particularly relates to a double-end matching method for improving the matching effect of a monopole antenna in the field.
Background
Short-wave communication has irreplaceable advantages compared with other communication modes, such as strong survivability, long communication distance, capability of performing long-distance communication with small power, high cost performance of equipment, easy maintenance and the like. The short wave antenna is an important component in short wave communication as front-end equipment of a short wave transceiving system, and the matching degree of the short wave antenna and the transceiving system directly influences the communication effect.
The monopole antenna is used as a classic antenna form of a short wave antenna, and is often used in combination with a matching network in order to improve matching effect and impedance bandwidth, namely, the input port of an antenna oscillator is connected with the matching network. However, in practical use, when the antenna is completely damaged, the reflection coefficient still slightly exceeds the requirement of the system for the monopole antenna, that is, the matching effect of the matching network and the antenna element is poor, and the reason for the excess is complex, for example, the monopole antenna is affected by new environment, and ages. The new selection and erection of the novel monopole antenna are a better solution, but the cost is too high, the period is long, and land seeking is needed again sometimes.
Disclosure of Invention
The technical problem to be solved by the invention is to provide a double-end matching method for improving the matching effect of a monopole antenna, and to avoid the phenomenon that the reflection coefficient is too large due to the mismatch of the monopole antenna and a transceiver feeder line.
The invention adopts the following technical scheme:
the double-end matching method for improving the matching effect of the monopole antenna has the improvement that: an additional network 1 is added between the input end of the monopole antenna and the fixed matching network, and an additional network 2 is added between the fixed matching network and the antenna oscillator; the steps of determining the parameters of the elements in the additional network 1 and the additional network 2 are as follows:
step 1, measuring scattering parameter S of monopole antenna fixed matching network, and recording asConverting the S parameter into an ABCD parameter which is recorded asWhen the characteristic impedance is Z 0 Then, there are:
step 2, measuring the input impedance of the monopole antenna only on the antenna oscillator part, and recording as Z a ;
Step 3, the ABCD parameter of the additional network 1 is assumed to be recorded asABCD parameter of the additional network 2 is notedAnd assuming that the network formed by the additional network 1, the fixed matching network and the additional network 2 is a total matching network, and the ABCD parameter of the total matching network is recorded asNamely, the following steps are included:
wherein:
A t =(A 0 A 1 +B 0 C 1 )A 2 +(A 0 B 1 +B 0 D 1 )C 2
B t =(A 0 A 1 +B 0 C 1 )B 2 +(A 0 B 1 +B 0 D 1 )D 2
C t =(C 0 A 1 +D 0 C 1 )A 2 +(C 0 B 1 +D 0 D 1 )C 2
D t =(C 0 A 1 +D 0 C 1 )B 2 +(C 0 B 1 +D 0 D 1 )D 2
the input impedance of the antenna, assumed to contain the total matching network, is denoted as Z in And the reflection coefficient is recorded as gamma in The voltage standing wave ratio is recorded as VSWR; wherein,
z determined in step 2 a And A determined in this step t 、B t 、C t 、D t Substitution intoIs calculated to obtain Z in Is a reaction of Z in Substitution intoCalculating to obtain gamma in Will gamma in Substitution intoCalculating to obtain VSWR;
step 4, optimizing and calculating the element parameters of the additional network 1 and the additional network 2, and utilizing a genetic algorithm to realize the full working frequency [ f min ,f max ]The transformation ratio of the impedance converter of the additional network 1 and the parameter p of each possible element of the additional network 2 in a series-parallel connection mode are simultaneously optimized in the range, the optimization target is that the voltage standing wave ratio is minimum in the working frequency range, the parameter corresponding to the minimum voltage standing wave ratio in all the combinations is taken as an optimal solution, namely the transformation ratio of the impedance converter of the additional network 1 and the series-parallel connection access mode and element parameters of the additional network 2 are simultaneously obtained, and the constructed objective function is as follows:
where N is the transformation ratio of the impedance transformer of the additional network 1, p is the component parameter of the additional network 2, N max The number of all possible element series-parallel connections for the additional network 2.
Further, the additional network 1 is a lossless transmission line impedance transformer with unbalanced input and unbalanced output, and an input end interface of the additional network 1 is completely the same as an input end interface of the fixed matching network.
Furthermore, the additional network 2 is composed of an inductor, a capacitor, an open-circuit coaxial line and a short-circuit coaxial line which are connected in series or in parallel.
The beneficial effects of the invention are:
the invention discloses a double-end matching method for improving the matching effect of a monopole antenna, which is characterized in that from the viewpoint of changing the original monopole antenna to be small and improving the effect to be obvious, an additional network, namely an additional network 1 and an additional network 2, is respectively added at the front end and the rear end of the original monopole antenna, which are close to a fixed matching network, the additional network 1 is positioned between the antenna input end and the original fixed matching network, the additional network 2 is positioned between the original fixed matching network and an antenna oscillator, the two additional network elements are few and are not consumed, the double-end matching greatly increases the design flexibility and the freedom degree, the optimal additional network parameters are easier to design, and the matching effect of the original monopole antenna is improved. And the input interface of the additional network 1 is completely compatible with the original monopole antenna, and a feeder line interface does not need to be modified. The method can avoid designing and selecting a new monopole antenna due to the standard exceeding of the indexes of the original monopole antenna, greatly saves the cost, avoids the problems of shutdown reconstruction, land acquisition and the like, has simple principle and strong operability, greatly improves the matching of the monopole antenna and a receiver or a transmitter, reduces the voltage standing wave ratio of the monopole antenna and improves the system efficiency.
Drawings
Fig. 1 is a schematic view of a monopole antenna;
FIG. 2 is a schematic diagram of a monopole antenna with an additional network;
fig. 3 is a schematic diagram of the configuration of the additional network 1.
Detailed Description
In order to make the objects, technical solutions and advantages of the present invention more apparent, the present invention will be described in further detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
As shown in fig. 1, the monopole antenna includes a fixed matching network and an antenna element, so as to save cost, avoid waste and shorten the period, and adding a few components on the basis of the original monopole antenna to perform matching design again is a better method for improving the matching effect of the monopole antenna.
Embodiment 1, this embodiment discloses a double-end matching method for improving the matching effect of a monopole antenna, as shown in fig. 2, an additional network 1 is added between an input end of the monopole antenna and a fixed matching network, and an additional network 2 is added between the fixed matching network and an antenna element; the steps of determining the parameters of the elements in the additional network 1 and the additional network 2 are as follows:
step 1, measuring scattering parameter S of monopole antenna fixed matching network, and recording as SConverting S parameter into ABCD parameter and recording asWhen the characteristic impedance is Z 0 Then, there are:
step 2, measuring the input impedance of the monopole antenna only in the antenna element part, and recording as Z a ;
Step 3, the ABCD parameter of the additional network 1 is assumed to be recordedABCD parameter of the additional network 2 is notedAnd assuming that the network formed by the additional network 1, the fixed matching network and the additional network 2 is a total matching network, and the ABCD parameter of the total matching network is recorded asNamely, the following steps are included:
wherein:
A t =(A 0 A 1 +B 0 C 1 )A 2 +(A 0 B 1 +B 0 D 1 )C 2
B t =(A 0 A 1 +B 0 C 1 )B 2 +(A 0 B 1 +B 0 D 1 )D 2
C t =(C 0 A 1 +D 0 C 1 )A 2 +(C 0 B 1 +D 0 D 1 )C 2
D t =(C 0 A 1 +D 0 C 1 )B 2 +(C 0 B 1 +D 0 D 1 )D 2
the input impedance of the antenna, assumed to comprise the total matching network, is denoted as Z in And the reflection coefficient is recorded as gamma in The voltage standing wave ratio is recorded as VSWR; wherein,Z 0 is the characteristic impedance;
z determined in step 2 a And A determined in this step t 、B t 、C t 、D t Substitution intoIs calculated to obtain Z in Is a reaction of Z in Substitution intoCalculating to obtain gamma in Will gamma be in Substitution intoCalculating to obtain VSWR; the VSWR is a function of the operating frequency and is determined by the transformation ratio of the impedance transformer of the additional network 1 and the series-parallel connection form and the element parameters of the additional network 2.
Step 4, optimizing and calculating the element parameters of the additional network 1 and the additional network 2, and utilizing a genetic algorithm to realize the full working frequency [ f ] min ,f max ]The transformation ratio of the impedance converter of the additional network 1 and the parameter p of each possible element of the additional network 2 in a series-parallel connection mode are simultaneously optimized in the range, the optimization target is the minimum voltage standing wave ratio in the working frequency range, the parameter corresponding to the minimum voltage standing wave ratio in all the combinations is taken as the optimal solution, namely the transformation ratio of the impedance converter of the additional network 1 and the series-parallel connection access mode and element parameters of the additional network 2 are simultaneously obtained, and the constructed objective function is as follows:
where N is the transformation ratio of the impedance transformer of the additional network 1, p is the component parameter of the additional network 2, N max The number of all possible element series-parallel connections for the additional network 2.
In this embodiment, as shown in fig. 3, the additional network 1 is a lossless transmission line impedance transformer with unbalanced input and unbalanced output, and the input interface of the additional network 1 is identical to the input interface of the fixed matching network. Namely, the interface form of the original monopole antenna is not changed, and the compatibility of the interface of the additional network 1 and the original system is ensured.
The additional network 2 is composed of an inductor, a capacitor, an open-circuit coaxial line and a short-circuit coaxial line which are connected in series or in parallel.
Claims (3)
1. A double-end matching method for improving the matching effect of a monopole antenna is characterized in that: an additional network 1 is added between the input end of the monopole antenna and the fixed matching network, and an additional network 2 is added between the fixed matching network and the antenna oscillator; the steps of determining the parameters of the elements in the additional network 1 and the additional network 2 are as follows:
step 1, measuring scattering parameter S of monopole antenna fixed matching network, and recording asConverting S parameter into ABCD parameter and recording asWhen the characteristic impedance is Z 0 Then, there are:
step 2, measuring the input impedance of the monopole antenna only in the antenna element part, and recording as Z a ;
Step 3, assuming additional network 1ABCD parameters are recordedABCD parameter of the additional network 2 is notedAnd assuming a network formed by the additional network 1, the fixed matching network and the additional network 2 as a total matching network, and recording ABCD parameters of the total matching network asNamely, the following steps are included:
wherein:
A t =(A 0 A 1 +B 0 C 1 )A 2 +(A 0 B 1 +B 0 D 1 )C 2
B t =(A 0 A 1 +B 0 C 1 )B 2 +(A 0 B 1 +B 0 D 1 )D 2
C t =(C 0 A 1 +D 0 C 1 )A 2 +(C 0 B 1 +D 0 D 1 )C 2
D t =(C 0 A 1 +D 0 C 1 )B 2 +(C 0 B 1 +D 0 D 1 )D 2
the input impedance of the antenna, assumed to contain the total matching network, is denoted as Z in And the reflection coefficient is recorded as gamma in The voltage standing wave ratio is recorded as VSWR; wherein,
z determined in step 2 a And A determined in this step t 、B t 、C t 、D t Substitution intoIs calculated to obtain Z in A 1 is formed of in Substitution intoF is obtained through calculation in Will gamma in Substitution intoCalculating to obtain VSWR;
step 4, optimizing and calculating the element parameters of the additional network 1 and the additional network 2, and utilizing a genetic algorithm to realize the full working frequency [ f ] min ,f max ]The transformation ratio of the impedance converter of the additional network 1 and the parameter p of each possible element of the additional network 2 in a series-parallel connection mode are simultaneously optimized in the range, the optimization target is the minimum voltage standing wave ratio in the working frequency range, the parameter corresponding to the minimum voltage standing wave ratio in all the combinations is taken as the optimal solution, namely the transformation ratio of the impedance converter of the additional network 1 and the series-parallel connection access mode and element parameters of the additional network 2 are simultaneously obtained, and the constructed objective function is as follows:
where N is the transformation ratio of the impedance transformer of the additional network 1, p is the component parameter of the additional network 2, N max The number of all possible element series-parallel connections for the additional network 2.
2. The double-end matching method for improving the matching effect of the monopole antenna according to claim 1, wherein: the additional network 1 is a lossless transmission line impedance transformer with unbalanced input and unbalanced output, and an input end interface of the additional network 1 is completely the same as an input end interface of the fixed matching network.
3. The double-end matching method for improving the matching effect of the monopole antenna according to claim 1, wherein: the additional network 2 is composed of an inductor, a capacitor, an open-circuit coaxial line and a short-circuit coaxial line which are connected in series or in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111557335.XA CN114498039B (en) | 2021-12-18 | 2021-12-18 | Double-end matching method for improving matching effect of monopole antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111557335.XA CN114498039B (en) | 2021-12-18 | 2021-12-18 | Double-end matching method for improving matching effect of monopole antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114498039A CN114498039A (en) | 2022-05-13 |
CN114498039B true CN114498039B (en) | 2022-12-02 |
Family
ID=81494777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111557335.XA Active CN114498039B (en) | 2021-12-18 | 2021-12-18 | Double-end matching method for improving matching effect of monopole antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114498039B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388676A (en) * | 2008-10-30 | 2009-03-18 | 北京航空航天大学 | An Optimal Matching Design of an Electrically Small Antenna Broadband Matching Network and Its Electrically Small Antenna Broadband Matching Network |
EP2806585A1 (en) * | 2013-05-22 | 2014-11-26 | BlackBerry Limited | Method and apparatus for calibrating an iterative matching network tuner |
CN105281796A (en) * | 2014-07-14 | 2016-01-27 | 联想移动通信软件(武汉)有限公司 | Antenna matching circuit of terminal, and terminal |
CN110444893A (en) * | 2019-08-16 | 2019-11-12 | 歌尔科技有限公司 | A kind of unipole antenna bandwidth adjusting method and system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6919851B2 (en) * | 2001-07-30 | 2005-07-19 | Clemson University | Broadband monopole/ dipole antenna with parallel inductor-resistor load circuits and matching networks |
US8776002B2 (en) * | 2011-09-06 | 2014-07-08 | Variable Z0, Ltd. | Variable Z0 antenna device design system and method |
-
2021
- 2021-12-18 CN CN202111557335.XA patent/CN114498039B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388676A (en) * | 2008-10-30 | 2009-03-18 | 北京航空航天大学 | An Optimal Matching Design of an Electrically Small Antenna Broadband Matching Network and Its Electrically Small Antenna Broadband Matching Network |
EP2806585A1 (en) * | 2013-05-22 | 2014-11-26 | BlackBerry Limited | Method and apparatus for calibrating an iterative matching network tuner |
CN105281796A (en) * | 2014-07-14 | 2016-01-27 | 联想移动通信软件(武汉)有限公司 | Antenna matching circuit of terminal, and terminal |
CN110444893A (en) * | 2019-08-16 | 2019-11-12 | 歌尔科技有限公司 | A kind of unipole antenna bandwidth adjusting method and system |
Non-Patent Citations (4)
Title |
---|
Optimal positions of loading for a shortened resonant monopole using genetic algorithm;Shifu Zhao等;《2010 International Conference on Electromagnetics in Advanced Applications》;20101203;全文 * |
一种宽带匹配网络的遗传算法设计;丁霄等;《重庆邮电大学学报(自然科学版)》;20080215(第01期);全文 * |
一种短波全向宽带小型化天线;刘鹏;《中国科技信息》;20130215(第04期);全文 * |
短波天线宽带匹配网络研究;张奇;《中国优秀硕士学位论文全文数据库信息科技辑》;20170315;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114498039A (en) | 2022-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN202798694U (en) | Short wave rear selector | |
CN109639243B (en) | F-class power amplifier based on coupling loop resonant network | |
CN102545952B (en) | Wireless transceiver | |
CN103454654B (en) | Configurable matching network used at satellite navigation radio frequency front end | |
CN103634016A (en) | Adjustable Impedance Matching Circuit | |
CN101826851A (en) | Frequency-hopping filter with multi-band selection function | |
CN110289488A (en) | A multi-polarized dual-channel communication/rectification multifunctional antenna | |
CN201590488U (en) | Antenna self-adaptive matching circuit and mobile communication terminal with same | |
CN104333334A (en) | Broadband and low-noise radio frequency amplifier of satellite navigation aviation enhancing system and transmission device | |
CN204948027U (en) | Terahertz even solid-state frequency multiplier | |
CN101789796A (en) | Filter circuit for inhibiting harmonic signal of mobile terminal and method therefor | |
CN110535490A (en) | Impedance matching system and method in a kind of power line communication | |
CN114498039B (en) | Double-end matching method for improving matching effect of monopole antenna | |
CN107612572A (en) | A kind of radio-frequency match module, the radio system for mobile terminal | |
US20220077824A1 (en) | Passive wideband mixer | |
CN205140188U (en) | Wireless teletransmission water gauge control circuit based on LORA technique | |
CN112510854B (en) | Microwave rectification method for maximum energy transmission of circuit self-switching | |
CN203734680U (en) | Voltage standing-wave ratio measuring device for short-wave band | |
CN205304743U (en) | High linear broad band power amplifier of restructural high efficiency | |
CN202395733U (en) | Radio frequency broadband frequency hopping preselector filter | |
CN113675597A (en) | Broadband dipole antenna capable of improving matching effect and method for determining structural parameters of additional matching network of broadband dipole antenna | |
CN213367741U (en) | Broadband impedance transformer | |
CN221961804U (en) | Miniaturized ultra-wideband high-power limiter | |
CN219659721U (en) | Bidirectional receiving and transmitting serial port module | |
CN204119171U (en) | Satellite navigation aviation strengthens system broad low noise radio frequency signal amplifiers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |