CN114497452A - Positive electrode material for silicon battery and preparation method and application thereof - Google Patents
Positive electrode material for silicon battery and preparation method and application thereof Download PDFInfo
- Publication number
- CN114497452A CN114497452A CN202111631608.0A CN202111631608A CN114497452A CN 114497452 A CN114497452 A CN 114497452A CN 202111631608 A CN202111631608 A CN 202111631608A CN 114497452 A CN114497452 A CN 114497452A
- Authority
- CN
- China
- Prior art keywords
- positive electrode
- lithium
- salt
- silicon
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 75
- 239000010703 silicon Substances 0.000 title claims abstract description 75
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 73
- 238000002360 preparation method Methods 0.000 title abstract description 18
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 46
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 22
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 239000007773 negative electrode material Substances 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 7
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 4
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims abstract description 4
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 4
- 229910052788 barium Inorganic materials 0.000 claims abstract description 4
- 229910052797 bismuth Inorganic materials 0.000 claims abstract description 4
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 4
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 4
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 229910052718 tin Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 4
- 229910008101 Li1+aNibMnc Inorganic materials 0.000 claims abstract 2
- 229910003002 lithium salt Inorganic materials 0.000 claims description 54
- 159000000002 lithium salts Chemical class 0.000 claims description 54
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 53
- 239000000243 solution Substances 0.000 claims description 42
- 239000002243 precursor Substances 0.000 claims description 34
- 238000003756 stirring Methods 0.000 claims description 21
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 17
- 150000002696 manganese Chemical class 0.000 claims description 15
- 150000002815 nickel Chemical class 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 15
- 239000012670 alkaline solution Substances 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 239000011261 inert gas Substances 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 230000032683 aging Effects 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 6
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims description 6
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 5
- 229910002651 NO3 Inorganic materials 0.000 claims description 5
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 239000002210 silicon-based material Substances 0.000 claims description 5
- 238000003828 vacuum filtration Methods 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 3
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 claims description 3
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 3
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 3
- RGVLTEMOWXGQOS-UHFFFAOYSA-L manganese(2+);oxalate Chemical compound [Mn+2].[O-]C(=O)C([O-])=O RGVLTEMOWXGQOS-UHFFFAOYSA-L 0.000 claims description 3
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 3
- DOLZKNFSRCEOFV-UHFFFAOYSA-L nickel(2+);oxalate Chemical compound [Ni+2].[O-]C(=O)C([O-])=O DOLZKNFSRCEOFV-UHFFFAOYSA-L 0.000 claims description 3
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 2
- 229940071125 manganese acetate Drugs 0.000 claims description 2
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 claims description 2
- 229940078494 nickel acetate Drugs 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000011068 loading method Methods 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 11
- 239000010405 anode material Substances 0.000 abstract description 4
- 239000007784 solid electrolyte Substances 0.000 abstract description 2
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 abstract 1
- 239000011572 manganese Substances 0.000 description 38
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 6
- 239000010406 cathode material Substances 0.000 description 6
- 230000009469 supplementation Effects 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 230000002427 irreversible effect Effects 0.000 description 5
- 238000006138 lithiation reaction Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 241000080590 Niso Species 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229940093474 manganese carbonate Drugs 0.000 description 3
- 239000011656 manganese carbonate Substances 0.000 description 3
- 235000006748 manganese carbonate Nutrition 0.000 description 3
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 description 3
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000002572 peristaltic effect Effects 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 description 2
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910018626 Al(OH) Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical class [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- AMDUMQZTBRMNMG-UHFFFAOYSA-N nickel nitric acid Chemical group [Ni].O[N+]([O-])=O AMDUMQZTBRMNMG-UHFFFAOYSA-N 0.000 description 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 description 1
- ZULUUIKRFGGGTL-UHFFFAOYSA-L nickel(ii) carbonate Chemical compound [Ni+2].[O-]C([O-])=O ZULUUIKRFGGGTL-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical group [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002153 silicon-carbon composite material Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及锂电池领域,具体涉及一种硅系电池用正极材料及其制备方法、应用。The invention relates to the field of lithium batteries, in particular to a positive electrode material for silicon-based batteries and a preparation method and application thereof.
背景技术Background technique
锂离子电池是一种应用非常广泛的二次电池,随着锂离子电池对高能量密度的追求,尤其是动力电池要实现单体300Wh/kg的比能量目标,负极材料必须选用硅类(纳米硅或者氧化亚硅类等)负极。但是硅类负极材料存在一个致命的问题,其在初次进行嵌锂反应的时候会生成固体电解质膜(SEI膜),在这个过程中将消耗一部分锂。常规正极材料与硅类负极进行匹配的时候,在首次充电过程中正极材料中脱出的大量活性锂将变成死锂禁锢于硅类负极的SEI膜里,导致电池的实际比能量大大降低。Lithium-ion battery is a very widely used secondary battery. With the pursuit of high energy density of lithium-ion battery, especially for power battery to achieve the specific energy target of 300Wh/kg, the negative electrode material must be silicon-based (nanometer). silicon or silicon oxide, etc.) negative electrode. However, silicon-based anode materials have a fatal problem. When the lithium intercalation reaction is performed for the first time, a solid electrolyte film (SEI film) will be formed, and a part of lithium will be consumed in this process. When the conventional positive electrode material is matched with the silicon-based negative electrode, a large amount of active lithium released from the positive electrode material during the first charging process will become dead lithium and be trapped in the SEI film of the silicon-based negative electrode, which will greatly reduce the actual specific energy of the battery.
为了解决这个问题,在硅类负极锂离子电池里通过预锂化来补锂,弥补硅类负极生成SEI膜消耗的锂。目前已见报道的预锂化方式有两种,正极端补锂或者负极端补锂。In order to solve this problem, lithium is supplemented by pre-lithiation in the silicon-based negative electrode lithium-ion battery to make up for the lithium consumed by the silicon-based negative electrode to generate the SEI film. There are two prelithiation methods that have been reported so far, lithium supplementation at the positive end or lithium supplementation at the negative end.
常规正极端补锂技术主要是在正极极片浆料调制过程中加入一些锂含量较高且能脱出的化合物如Li2O、Li2NiO2和Li5FeO4类。这类锂含量较高的化合物一般对空气中水分较敏感,因此对浆料调制环境和极片涂布环境水分控制有严苛要求,现有的电池生产线湿度环境需升级改造,改造成本大。The conventional cathode electrode lithium supplementation technology mainly adds some compounds with high lithium content and can be extracted, such as Li 2 O, Li 2 NiO 2 and Li 5 FeO 4 , during the preparation of the cathode electrode slurry. Such compounds with high lithium content are generally sensitive to moisture in the air, so there are strict requirements for moisture control in the slurry preparation environment and the electrode coating environment. The humidity environment of the existing battery production line needs to be upgraded, and the transformation cost is high.
常规负极端补锂技术一般采用锂箔、锂带、金属锂粉等与负极极片制备过程结合起来实现补锂。而锂箔、锂带、金属锂粉等比较活泼,对环境湿度和气氛等要求苛刻,稍不留意容易发生火灾或者爆炸等安全事故。因此对电池生产车间的设备和环境提出更高要求。Conventional negative electrode lithium replenishment technology generally uses lithium foil, lithium tape, metal lithium powder, etc., combined with the preparation process of the negative electrode pole piece to achieve lithium replenishment. Lithium foil, lithium strip, metal lithium powder, etc. are relatively active, and have strict requirements on environmental humidity and atmosphere, and are prone to safety accidents such as fire or explosion if they are not careful. Therefore, higher requirements are placed on the equipment and environment of the battery production workshop.
以上两类补锂方式对锂离子电池生产企业来讲,技术难度加大,现有生产设备需要改进或者升级,生产成本增加。The above two types of lithium replenishment methods are more technically difficult for lithium-ion battery manufacturers, existing production equipment needs to be improved or upgraded, and production costs increase.
有鉴于此,确有必要提供一种解决上述问题的技术方案。In view of this, it is indeed necessary to provide a technical solution to solve the above problems.
发明内容SUMMARY OF THE INVENTION
本发明的目的之一在于:提供一种硅系电池用正极材料,以解决目前硅系锂离子电池中预锂化技术难度高、生产成本高的问题,通过采用本发明的正极材料,硅系锂离子电池不仅不需要额外补锂,生产成本低,且其容量高,与硅负极的匹配度更高。One of the objectives of the present invention is to provide a positive electrode material for a silicon-based battery, so as to solve the problems of high technical difficulty and high production cost of pre-lithiation in the current silicon-based lithium ion battery. Lithium-ion batteries not only do not require additional lithium supplementation, but also have low production costs, high capacity, and higher matching with silicon anodes.
为了实现上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种硅系电池用正极材料,其化学式为Li1+aNibMncMc-dO2,其中,0≤a≤1,0<b<1,0<c<1,0<d<1,且d≤c,b+2c-d<1+a;M为Ti、Zr、La、Ce、Pr、Nd、Nb、Sm、Al、Mg、Sr、Ba、Co、Zn、Sn、Bi、Sb、Si、Tb、Bi、Yb、Lu、B、Y中的至少一种。A positive electrode material for a silicon-based battery, the chemical formula is Li 1+a Ni b Mn c M cd O 2 , wherein 0≤a≤1, 0<b<1, 0<c<1, 0<d<1 , and d≤c, b+2c-d<1+a; M is Ti, Zr, La, Ce, Pr, Nd, Nb, Sm, Al, Mg, Sr, Ba, Co, Zn, Sn, Bi, At least one of Sb, Si, Tb, Bi, Yb, Lu, B, and Y.
本发明的目的之二在于,提供一种上述所述的硅系电池用正极材料的制备方法,包括以下步骤:Another object of the present invention is to provide a method for preparing the above-mentioned positive electrode material for a silicon-based battery, comprising the following steps:
S1、将镍盐和锰盐混合制备第一溶液,在惰性气体中将所述第一溶液与碱性溶液分别加入反应器中搅拌反应,并控制溶液pH为7~13;加料后继续搅拌陈化18~26h,真空抽滤,洗涤,干燥,得到前驱体;S1, the nickel salt and the manganese salt are mixed to prepare the first solution, in the inert gas, the first solution and the alkaline solution are respectively added to the reactor for stirring reaction, and the pH of the control solution is 7~13; Continue to stir after feeding 18 ~ 26h, vacuum filtration, washing, drying to obtain the precursor;
S2、将步骤S1得到的前驱体与锂盐混合并装入反应炉中,于450~900℃下反应8~30h,冷却,研磨,得到硅系电池用正极材料;S2, mixing the precursor obtained in step S1 with the lithium salt and putting it into a reaction furnace, reacting at 450-900° C. for 8-30 hours, cooling and grinding to obtain a positive electrode material for silicon-based batteries;
其中,M盐在步骤S1中与镍盐、锰盐混合制备成第一溶液,或在步骤S2中与步骤S1得到的前驱体、锂盐混合反应。Wherein, M salt is mixed with nickel salt and manganese salt in step S1 to prepare the first solution, or in step S2, it is mixed with the precursor and lithium salt obtained in step S1 for reaction.
优选的,所述锂盐为氧化锂、锂的碳酸盐、锂的硝酸盐、锂的醋酸盐和锂的氢氧化物中的至少一种;所述镍盐为镍的硝酸盐、镍的碳酸盐、草酸镍、醋酸镍和氧化镍中的至少一种;所述锰盐为锰的硝酸盐、锰的碳酸盐、草酸锰、醋酸锰和氧化锰中的至少一种;所述M盐为M的硝酸盐、M的碳酸盐、M的醋酸盐、M的氢氧化物和氧化M中的至少一种。Preferably, the lithium salt is at least one of lithium oxide, lithium carbonate, lithium nitrate, lithium acetate and lithium hydroxide; the nickel salt is nickel nitrate, nickel at least one of manganese carbonate, nickel oxalate, nickel acetate and nickel oxide; the manganese salt is at least one of manganese nitrate, manganese carbonate, manganese oxalate, manganese acetate and manganese oxide; The M salt is at least one of M nitrate, M carbonate, M acetate, M hydroxide and M oxide.
优选的,将所述镍盐、锰盐、M盐中的镍、锰、M记为金属A,所述金属A与所述锂盐中的锂的摩尔比为1:(1.05~1.5)。Preferably, nickel, manganese, and M in the nickel salt, manganese salt, and M salt are denoted as metal A, and the molar ratio of the metal A to the lithium in the lithium salt is 1:(1.05-1.5).
优选的,步骤S1中,前驱体的制备方法为:将镍盐、锰盐和M盐混合制备第一溶液,在惰性气体中于30~80℃下,将所述第一溶液与碱性溶液分别以0.8~1.2mL/min的速度加入到带有去离子水的反应器中搅拌反应,搅拌速度为400~600rpm/min,并控制溶液pH为7~13;加料后继续搅拌陈化18~26h,真空抽滤,洗涤,于100~120℃下干燥40~60h,得到前驱体。Preferably, in step S1, the preparation method of the precursor is as follows: a first solution is prepared by mixing nickel salt, manganese salt and M salt, and the first solution is mixed with an alkaline solution in an inert gas at 30-80° C. Add to the reactor with deionized water at a speed of 0.8-1.2mL/min and stir the reaction, the stirring speed is 400-600rpm/min, and the pH of the solution is controlled to be 7-13; after feeding, continue to stir and age for 18- 26h, vacuum filtration, washing, drying at 100-120°C for 40-60h to obtain the precursor.
优选的,步骤S2中,先将所述锂盐分成第一部分和第二部分,将第一部分锂盐与所述前驱体混合,于450~900℃下反应8~24h,冷却,研磨;再加入第二部分锂盐一同混合,于450~900℃下反应8~24h,冷却,研磨,得到硅系电池用正极材料。Preferably, in step S2, the lithium salt is firstly divided into a first part and a second part, the first part of the lithium salt is mixed with the precursor, reacted at 450-900° C. for 8-24 hours, cooled and ground; and then added The second part of the lithium salt is mixed together, reacted at 450-900° C. for 8-24 hours, cooled and ground to obtain a positive electrode material for a silicon-based battery.
优选的,第一部分锂盐与第二部分锂盐的质量比为(5~9):(5~1)。Preferably, the mass ratio of the first part of the lithium salt to the second part of the lithium salt is (5-9): (5-1).
优选的,步骤S2中,将第一部分锂盐与所述前驱体混合,先以4~7℃/min的速率升温至450~650℃,保温1~3h,再以4~7℃/min的速率升温至700~900℃,保温10~24h,而后冷却,研磨;然后再加入第二部分锂盐一同混合,以4~7℃/min的速率升温至450~650℃,保温1~3h,再以4~7℃/min的速率升温至700~900℃,保温10~24h,冷却,研磨,得到硅系电池用正极材料。Preferably, in step S2, the first part of the lithium salt is mixed with the precursor, and the temperature is first heated to 450-650°C at a rate of 4-7°C/min, kept for 1-3 hours, and then heated to 4-7°C/min at a rate of 4-7°C/min. The temperature is raised to 700~900℃ at a rate of 700~900℃, kept for 10~24h, then cooled and ground; then the second part of lithium salt is added and mixed together, and the temperature is raised to 450~650℃ at a rate of 4~7℃/min, and the temperature is kept for 1~3h. Then, the temperature is raised to 700-900° C. at a rate of 4-7° C./min, maintained for 10-24 hours, cooled, and ground to obtain a positive electrode material for a silicon-based battery.
本发明的目的之三在于,提供一种正极片,包括正极集流体和涂覆于所述正极集流体至少一表面的正极活性物质层,所述正极活性物质层包括上述所述的硅系电池用正极材料。The third object of the present invention is to provide a positive electrode sheet, comprising a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector, the positive electrode active material layer comprising the above-mentioned silicon-based battery Use positive electrode material.
本发明的目的之四在于,提供一种锂离子电池,包括正极片、负极片和间隔于所述正极片和所述负极片之间的隔膜,所述负极片中的负极活性物质为硅类材料,所述正极片为上述所述的正极片。The fourth object of the present invention is to provide a lithium ion battery, comprising a positive electrode sheet, a negative electrode sheet, and a separator spaced between the positive electrode sheet and the negative electrode sheet, and the negative electrode active material in the negative electrode sheet is silicon-based material, the positive electrode sheet is the above-mentioned positive electrode sheet.
相比于现有技术,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:
1)本发明提供的硅系锂离子电池用正极材料,该正极材料本身自带一部分锂,其在首次脱出(对应于首次充电过程)后不能重新嵌回材料中,因此其与硅类负极材料配合使用,可以用于硅类负极材料在首次充电过程生成SEI膜需要消耗的锂,相比于其他正极材料与硅类负极材料匹配时必须加入预锂化工艺,本发明的正极材料避开了额外加入补锂剂的工艺过程,降低了电池生产过程的工艺复杂度和生产难度,由此解决了目前硅系锂离子电池需要提前预锂化和生产成本高的问题,与硅类负极材料的匹配更高。1) The positive electrode material for a silicon-based lithium-ion battery provided by the present invention, the positive electrode material itself has a part of lithium, which cannot be re-inserted into the material after the first extraction (corresponding to the first charging process), so it is different from the silicon-based negative electrode material. Used together, it can be used for the lithium consumed by the silicon-based negative electrode material to generate the SEI film during the first charging process. Compared with other positive electrode materials and silicon-based negative electrode materials, a pre-lithiation process must be added. The positive electrode material of the present invention avoids The process of adding lithium supplementary agent additionally reduces the process complexity and production difficulty of the battery production process, thereby solving the current problems of pre-lithiation and high production cost of silicon-based lithium-ion batteries. match higher.
2)此外,本发明提供的正极材料本身具有较高的质量比容量,即使在首次充电释放部分锂离子供硅类负极形成SEI膜,依然能够匹配高容量硅碳类负极并提供较高质量比容量。2) In addition, the positive electrode material provided by the present invention itself has a high mass specific capacity, even if the lithium ion is charged and released for the first time for the silicon-based negative electrode to form an SEI film, it can still match the high-capacity silicon-carbon negative electrode and provide a higher mass ratio. capacity.
3)另外,本发明提供的制备方法,可以有效调节硅系电池用正极材料中的富余锂量(供硅碳类负极形成SEI膜用)和有效质量比容量(首次放电之后能够恢复的质量比容量),从而匹配不同类型的硅类负极材料。3) In addition, the preparation method provided by the present invention can effectively adjust the surplus lithium amount in the positive electrode material for silicon-based batteries (for silicon-carbon negative electrode to form SEI film) and the effective mass specific capacity (mass ratio that can be recovered after the first discharge). capacity) to match different types of silicon-based anode materials.
附图说明Description of drawings
图1为本发明实施例1硅系电池用正极材料的XRD图。FIG. 1 is an XRD pattern of a positive electrode material for a silicon-based battery in Example 1 of the present invention.
图2为本发明实施例2硅系电池用正极材料的XRD图。FIG. 2 is an XRD pattern of a positive electrode material for a silicon-based battery in Example 2 of the present invention.
图3为本发明实施例3硅系电池用正极材料的XRD图。3 is an XRD pattern of a positive electrode material for a silicon-based battery in Example 3 of the present invention.
图4为本发明实施例6硅系电池用正极材料的XRD图。4 is an XRD pattern of the positive electrode material for a silicon-based battery in Example 6 of the present invention.
图5为本发明实施例9硅系电池用正极材料的XRD图。5 is an XRD pattern of the positive electrode material for a silicon-based battery in Example 9 of the present invention.
具体实施方式Detailed ways
1、硅系电池用正极材料1. Cathode materials for silicon batteries
本发明第一方面提供了一种硅系电池用正极材料,其化学式为Li1+aNibMncMc-dO2,其中,0≤a≤1,0<b<1,0<c<1,0<d<1,且d≤c,b+2c-d<1+a;M为Ti、Zr、La、Ce、Pr、Nd、Nb、Sm、Al、Mg、Sr、Ba、Co、Zn、Sn、Bi、Sb、Si、Tb、Bi、Yb、Lu、B、Y中的至少一种。A first aspect of the present invention provides a positive electrode material for a silicon-based battery, the chemical formula of which is Li 1+a Ni b Mn c M cd O 2 , wherein 0≤a≤1, 0<b<1, 0<c< 1, 0<d<1, and d≤c, b+2c-d<1+a; M is Ti, Zr, La, Ce, Pr, Nd, Nb, Sm, Al, Mg, Sr, Ba, Co , at least one of Zn, Sn, Bi, Sb, Si, Tb, Bi, Yb, Lu, B, Y.
具体的,本发明的硅系电池用正极材料包括但不限于Specifically, the positive electrode material for a silicon-based battery of the present invention includes but is not limited to
Li1.05Ni0.8Mn0.1Co0.05Al0.05O2、Li1.05Ni0.8Mn0.1Co0.05Mg0.05O2、Li1.05Ni0.8Mn0.1Co0.05Ti0.05O2、Li1.05Ni0.6Mn0.35Co0.05O2、Li1.12Ni0.8Mn0.1Co0.05Al0.05O2、Li1.12Ni0.8Mn0.1Co0.05Mg0.05O2、Li1.12Ni0.8Mn0.1Co0.05Ti0.05O2、Li1.12Ni0.8Mn0.1Co0.05Ce0.05O2、Li1.12Ni0.8Mn0.1Co0.05Yb0.05O2、Li1.2Ni0.6Mn0.35Co0.05O2、Li1.25Ni0.6Mn0.3Co0.05Al0.05O2、Li1.25Ni0.6Mn0.3Co0.05Mg0.05O2、Li1.25Ni0.6Mn0.3Co0.05Ce0.05O2、Li1.3Ni0.6Mn0.3Co0.05Al0.05O2。Li 1.05 Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 O 2 , Li 1.05 Ni 0.8 Mn 0.1 Co 0.05 Mg 0.05 O 2 , Li 1.05 Ni 0.8 Mn 0.1 Co 0.05 Ti 0.05 O 2 , Li 1.05 Ni 0.6 Mn 0.35 Co 0.0 Li 1.12 Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 O 2 , Li 1.12 Ni 0.8 Mn 0.1 Co 0.05 Mg 0.05 O 2 , Li 1.12 Ni 0.8 Mn 0.1 Co 0.05 Ti 0.05 O 2 , Li 1.12 Ni 0.8 Mn 0.1 Co 0.05 Ce 2. Li 1.12 Ni 0.8 Mn 0.1 Co 0.05 Yb 0.05 O 2 , Li 1.2 Ni 0.6 Mn 0.35 Co 0.05 O 2 , Li 1.25 Ni 0.6 Mn 0.3 Co 0.05 Al 0.05 O 2 , Li 1.25 Ni 0.6 Mn 0.3 Co 0.05 O Mg 2 2. Li 1.25 Ni 0.6 Mn 0.3 Co 0.05 Ce 0.05 O 2 , Li 1.3 Ni 0.6 Mn 0.3 Co 0.05 Al 0.05 O 2 .
本发明提供的正极材料一站式解决了硅类材料为负极的锂离子电池需要额外补锂以及需匹配高容量正极材料的问题。The positive electrode material provided by the present invention solves the one-stop problem that the lithium ion battery with silicon-based material as the negative electrode needs additional lithium supplementation and needs to be matched with a high-capacity positive electrode material.
本发明第二方面提供了一种该硅系电池用正极材料的制备方法,包括以下步骤:A second aspect of the present invention provides a method for preparing the positive electrode material for the silicon-based battery, comprising the following steps:
S1、将镍盐、锰盐和M盐混合制备第一溶液,在惰性气体中将所述第一溶液与碱性溶液分别加入反应器中搅拌反应,并控制溶液pH为7~13;加料后继续搅拌陈化18~26h,真空抽滤,洗涤,干燥,得到前驱体;S1, the nickel salt, manganese salt and M salt are mixed to prepare the first solution, in the inert gas, the first solution and the alkaline solution are respectively added to the reactor for stirring reaction, and the pH of the control solution is 7~13; Continue to stir and age for 18-26 h, vacuum filter, wash, and dry to obtain the precursor;
S2、将步骤S1得到的前驱体与锂盐混合并装入反应炉中,于450~900℃下反应8~24h,冷却,研磨,得到硅系电池用正极材料。S2. Mix the precursor obtained in step S1 with the lithium salt and put it into a reaction furnace, react at 450-900° C. for 8-24 hours, cool and grind to obtain a positive electrode material for a silicon-based battery.
本发明第二方面提供了另一种该硅系电池用正极材料的制备方法,包括以下步骤:The second aspect of the present invention provides another preparation method of the positive electrode material for the silicon-based battery, comprising the following steps:
S1、将镍盐和锰盐混合制备第一溶液,在惰性气体中将所述第一溶液与碱性溶液分别加入反应器中搅拌反应,并控制溶液pH为7~13;加料后继续搅拌陈化18~26h,真空抽滤,洗涤,干燥,得到前驱体;S1, the nickel salt and the manganese salt are mixed to prepare the first solution, in the inert gas, the first solution and the alkaline solution are respectively added to the reactor for stirring reaction, and the pH of the control solution is 7~13; Continue to stir after feeding 18 ~ 26h, vacuum filtration, washing, drying to obtain the precursor;
S2、将步骤S1得到的前驱体与M盐、锂盐混合并装入反应炉中,于450~900℃下反应8~24h,冷却,研磨,得到硅系电池用正极材料。S2. Mix the precursor obtained in step S1 with M salt and lithium salt, put it into a reaction furnace, react at 450-900° C. for 8-24 hours, cool and grind to obtain a positive electrode material for silicon-based batteries.
本发明提供的制备方法,先制备得到氢氧化物型或碳酸盐型镍锰前驱体,然后再将其与锂盐(或锂盐和M盐)混合,反应得到硅系电池用富锂镍锰正极材料。相比于常规混合制备正极材料的方法,本发明方法一方面可得到富锂镍锰正极材料,能有效保证正极材料的整体质量比容量,使其能自带一部分不可逆锂在首次充电过程中用于生成SEI膜;另一方面本发明方法与现有正极材料的制备方法兼容性好,不需要额外增加设备和环境控制等生产投资,节省了电池生产成本。In the preparation method provided by the present invention, a hydroxide-type or carbonate-type nickel-manganese precursor is prepared first, and then mixed with lithium salt (or lithium salt and M salt), and reacted to obtain lithium-rich nickel for silicon-based batteries Manganese cathode material. Compared with the conventional method for preparing positive electrode materials by mixing, on the one hand, the method of the present invention can obtain a lithium-rich nickel-manganese positive electrode material, which can effectively ensure the overall mass specific capacity of the positive electrode material, so that it can carry a part of irreversible lithium for use in the first charging process. On the other hand, the method of the present invention has good compatibility with the preparation method of the existing positive electrode material, does not require additional production investment such as equipment and environmental control, and saves the production cost of the battery.
在一些实施例中,所述锂盐为氧化锂、锂的碳酸盐、锂的硝酸盐、锂的醋酸盐和锂的氢氧化物中的至少一种;所述镍盐为镍的硝酸盐、镍的碳酸盐、草酸镍和氧化镍中的至少一种;所述锰盐为锰的硝酸盐、锰的碳酸盐、草酸锰和氧化锰中的至少一种;所述M盐为M的硝酸盐、M的碳酸盐、M的醋酸盐、M的氢氧化物和氧化M中的至少一种。In some embodiments, the lithium salt is at least one of lithium oxide, lithium carbonate, lithium nitrate, lithium acetate and lithium hydroxide; the nickel salt is nickel nitric acid at least one of salt, nickel carbonate, nickel oxalate and nickel oxide; the manganese salt is at least one of manganese nitrate, manganese carbonate, manganese oxalate and manganese oxide; the M salt is at least one of M nitrate, M carbonate, M acetate, M hydroxide and M oxide.
在一些实施例中,将所述镍盐、锰盐、M盐中镍、锰、M记为金属A,所述金属A与所述锂盐中的锂的摩尔比为1:(1.05~1.5)。该所述金属A的摩尔量是指所有金属相加后的摩尔量,即是镍、锰、M金属的摩尔量与锂的摩尔量比为1:(1.05~1.5)。具体的,两者的摩尔比可为1:1.05、1:1.1、1:1.12、1:1.15、1:1.18、1:1.2、1:1.22、1:1.25、1:1.3、1:1.4或1:1.5。本发明的正极材料为富锂的正极材料,由此可保证得到的正极材料本身自带的一部分不可逆锂在首次充电过程中用于生成SEI膜,同时仍有大量有效的质量比容量用于与高容量的硅类负极材料相匹配。In some embodiments, the nickel, manganese, and M in the nickel salt, manganese salt, and M salt are denoted as metal A, and the molar ratio of the metal A to the lithium in the lithium salt is 1:(1.05~1.5 ). The molar amount of the metal A refers to the molar amount after adding all the metals, that is, the molar amount of nickel, manganese, and M metals and the molar ratio of lithium are 1: (1.05-1.5). Specifically, the molar ratio of the two can be 1:1.05, 1:1.1, 1:1.12, 1:1.15, 1:1.18, 1:1.2, 1:1.22, 1:1.25, 1:1.3, 1:1.4 or 1:1.5. The positive electrode material of the present invention is a lithium-rich positive electrode material, which can ensure that a part of irreversible lithium in the obtained positive electrode material itself is used to generate the SEI film during the first charging process, and at the same time, there is still a large amount of effective mass specific capacity for and High-capacity silicon-based anode materials are matched.
在一些实施例中,步骤S1中,前驱体的制备方法为:将镍盐、锰盐和M盐混合制备第一溶液,在惰性气体中于30~80℃下,将所述第一溶液与碱性溶液分别以0.8~1.2mL/min的速度加入到带有去离子水的反应器中搅拌反应,搅拌速度为400~600rpm/min,并控制溶液pH为7~13;加料后继续搅拌陈化18~26h,真空抽滤,洗涤,于100~120℃下干燥40~60h,得到前驱体。In some embodiments, in step S1, the preparation method of the precursor is as follows: a first solution is prepared by mixing nickel salt, manganese salt and M salt, and in an inert gas at 30-80° C., the first solution is mixed with The alkaline solution was added to the reactor with deionized water at a rate of 0.8-1.2 mL/min, and the stirring speed was 400-600 rpm/min, and the pH of the solution was controlled to be 7-13; the stirring was continued after feeding. The mixture was heated for 18 to 26 hours, vacuum filtered, washed, and dried at 100 to 120°C for 40 to 60 hours to obtain the precursor.
在一些实施例中,步骤S2中,先将所述锂盐分成第一部分和第二部分,将第一部分锂盐与所述前驱体混合,于450~900℃下反应8~24h,冷却,研磨;再加入第二部分锂盐一同混合,于450~900℃下反应8~24h,冷却,研磨,得到硅系电池用正极材料。In some embodiments, in step S2, the lithium salt is first divided into a first part and a second part, the first part of the lithium salt is mixed with the precursor, reacted at 450-900° C. for 8-24 hours, cooled, and ground ; Add the second part of lithium salt and mix together, react at 450-900° C. for 8-24 hours, cool and grind to obtain a positive electrode material for a silicon-based battery.
在一些实施例中,第一部分锂盐与第二部分锂盐的质量比为(5~9):(5~1)。采用分布添加锂盐的方法,可以对该正极材料的富余锂量(供硅碳类负极形成SEI膜用)和有效质量比容量(首次放电之后能够恢复的质量比容量)的比例进行调节,以更好的匹配硅系锂离子电池的应用。具体的,第一部分锂盐与第二部分锂盐的质量比可为5:5、6:4、7:3、8:2或9:1。优选的,第一部分锂盐与第二部分锂盐的质量比为5:5、6:4、7:3或8:2。In some embodiments, the mass ratio of the first part of the lithium salt to the second part of the lithium salt is (5-9): (5-1). By the method of adding lithium salt in distribution, the ratio of the surplus lithium amount (for silicon carbon negative electrode to form SEI film) and effective mass specific capacity (mass specific capacity that can be recovered after the first discharge) of the positive electrode material can be adjusted to Better matching the application of silicon-based lithium-ion batteries. Specifically, the mass ratio of the first part of the lithium salt to the second part of the lithium salt may be 5:5, 6:4, 7:3, 8:2 or 9:1. Preferably, the mass ratio of the first part of the lithium salt to the second part of the lithium salt is 5:5, 6:4, 7:3 or 8:2.
在一些实施例中,步骤S2中,将第一部分锂盐与所述前驱体混合,先以4~7℃/min的速率升温至450~650℃,保温1~3h,再以4~7℃/min的速率升温至700~900℃,保温10~24h,而后冷却,研磨;然后再加入第二部分锂盐一同混合,以4~7℃/min的速率升温至450~650℃,保温1~3h,再以4~7℃/min的速率升温至700~900℃,保温10~24h,冷却,研磨,得到硅系电池用正极材料。In some embodiments, in step S2, the first part of the lithium salt is mixed with the precursor, and the temperature is first heated to 450-650°C at a rate of 4-7°C/min, maintained for 1-3 hours, and then heated to 4-7°C at a rate of 4-7°C/min. The temperature was raised to 700-900°C at a rate of 4-7°C/min, kept for 10-24 hours, then cooled and ground; then the second part of the lithium salt was added and mixed together, and the temperature was raised to 450-650°C at a rate of 4-7°C/min, kept for 1 ~3h, then the temperature is raised to 700~900°C at a rate of 4~7°C/min, maintained for 10~24 hours, cooled, and ground to obtain a positive electrode material for a silicon-based battery.
2、正极片2. Positive electrode
本发明第三方面提供了一种正极片,包括正极集流体和涂覆于所述正极集流体至少一表面的正极活性物质层,所述正极活性物质层包括上述所述的硅系电池用正极材料。A third aspect of the present invention provides a positive electrode sheet, comprising a positive electrode current collector and a positive electrode active material layer coated on at least one surface of the positive electrode current collector, the positive electrode active material layer comprising the above-mentioned positive electrode for a silicon-based battery Material.
3、锂离子电池3. Lithium-ion battery
本发明第四方面提供了一种锂离子电池,包括正极片、负极片和间隔于所述正极片和所述负极片之间的隔膜,所述负极片中的负极活性物质为硅类材料,所述正极片为上述所述的正极片。A fourth aspect of the present invention provides a lithium ion battery, comprising a positive electrode sheet, a negative electrode sheet, and a separator spaced between the positive electrode sheet and the negative electrode sheet, wherein the negative electrode active material in the negative electrode sheet is a silicon-based material, The positive electrode sheet is the positive electrode sheet described above.
其中,所述硅类材料可选自硅氧化合物、硅碳复合物、硅合金中的一种或几种。Wherein, the silicon-based material may be selected from one or more of silicon-oxygen compounds, silicon-carbon composites, and silicon alloys.
为使本发明的技术方案和优点更加清楚,下面将结合具体实施方式和说明书附图,对本发明及其有益效果作进一步详细的描述,但本发明的实施方式不限于此。In order to make the technical solutions and advantages of the present invention clearer, the present invention and its beneficial effects will be described in further detail below with reference to the specific embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
一种硅系电池用正极材料,其化学式为Li1.05Ni0.8Mn0.1Co0.05Al0.05O2。A positive electrode material for a silicon-based battery, the chemical formula of which is Li 1.05 Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 O 2 .
该硅系电池用正极材料的制备方法为:The preparation method of the positive electrode material for the silicon-based battery is as follows:
S1、按摩尔比8:1:0.5:0.5配制NiSO4、MnSO4、CoSO4、(Al)2(SO4)3的水溶液(Ni2+、Mn2 +、Co2+、Al3+的总浓度为2mol L-1)500mL,记为第一溶液;配制4mol L-1的NaOH溶液500mL作为碱性溶液;在惰性气体中于30~80℃下,将第一溶液和碱性溶液通过蠕动泵以约1mL/min的速度,加入到有100mL去离子水的五口烧瓶反应器中搅拌反应,搅拌速度为500rpm/min,反应过程中通过滴加氨水控制溶液的pH=10~13;加料后继续搅拌陈化24h;陈化完成后,将所得沉淀真空抽滤、用去离子水多次洗涤,并在真空干燥箱中110℃下干燥48h,得到前驱体(Ni0.8Mn0.1Co0.05Al0.05)(OH)2。S1. Prepare an aqueous solution of NiSO 4 , MnSO 4 , CoSO 4 , (Al) 2 (SO 4 ) 3 (Ni 2+ , Mn 2 + , Co 2+ , Al 3+ ) in a molar ratio of 8:1:0.5:0.5 The total concentration is 2mol L -1 ) 500mL, which is recorded as the first solution; 500mL of NaOH solution of 4mol L -1 is prepared as an alkaline solution; in an inert gas at 30 ~ 80 ℃, pass the first solution and the alkaline solution through The peristaltic pump was added to a five-necked flask reactor with 100 mL of deionized water at a speed of about 1 mL/min, and the reaction was stirred, and the stirring speed was 500 rpm/min. During the reaction, the pH of the solution was controlled by dripping ammonia water=10~13; Continue to stir and age for 24h after feeding; after the ageing is completed, the obtained precipitate is vacuum filtered, washed with deionized water for several times, and dried in a vacuum drying oven at 110 ° C for 48h to obtain the precursor (Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 )(OH) 2 .
S2、将前驱体(Ni0.8Mn0.1Co0.05Al0.05)(OH)2与LiOH·H2O(金属A与Li的摩尔=1:1.05)进行机械混合,混合物装入匣钵放入马弗炉中,以氧气为烧结气氛,先以6℃/min的速率升温至450℃,保温2h;再以6℃/min的速率升温至760℃,保温12h;随炉冷却至室温后研磨,得到硅系电池用正极材料Li1.05Ni0.8Mn0.1Co0.05Al0.05O2。S2. The precursor (Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 ) (OH) 2 and LiOH·H 2 O (molar of metal A and Li=1:1.05) are mechanically mixed, and the mixture is put into a saggar and placed in a muffle In the furnace, with oxygen as the sintering atmosphere, the temperature was first heated to 450°C at a rate of 6°C/min, and kept for 2 hours; then the temperature was raised to 760°C at a rate of 6°C/min, and the temperature was kept for 12 hours; the furnace was cooled to room temperature and then ground to obtain Positive electrode material for silicon-based battery Li 1.05 Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 O 2 .
实施例2Example 2
一种硅系电池用正极材料,其化学式为Li1.05Ni0.6Mn0.35Co0.05O2。A positive electrode material for a silicon-based battery, the chemical formula of which is Li 1.05 Ni 0.6 Mn 0.35 Co 0.05 O 2 .
该硅系电池用正极材料的制备方法为:The preparation method of the positive electrode material for the silicon-based battery is as follows:
S1、按6:3.5:0.5配制NiSO4、MnSO4、CoSO4的水溶液(Ni2+、Mn2+、Co2+的总浓度为2molL-1)500mL,记为第一溶液;配制4mol L-1的NaOH溶液500mL作为碱性溶液;在惰性气体中于30~80℃下,将第一溶液和碱性溶液通过蠕动泵以约1mL/min的速度,加入到有100mL去离子水的五口烧瓶反应器中搅拌反应,搅拌速度为500rpm/min,反应过程中通过滴加氨水控制溶液的pH=10~13;加料后继续搅拌陈化24h;陈化完成后,将所得沉淀真空抽滤、用去离子水多次洗涤,并在真空干燥箱中110℃下干燥48h,得到前驱体(Ni0.6Mn0.35Co0.05)(OH)2。S1. Prepare 500 mL of an aqueous solution of NiSO 4 , MnSO 4 , and CoSO 4 at 6:3.5:0.5 (the total concentration of Ni 2+ , Mn 2+ , Co 2+ is 2 mol L -1 ), and record it as the first solution; prepare 4
S2、将前驱体(Ni0.6Mn0.35Co0.05)(OH)2与Li2CO3(金属A与Li的摩尔=1:1.05)进行机械混合,混合物装入匣钵放入马弗炉中,以氧气为烧结气氛,先以6℃/min的速率升温至650℃,保温2h;再以6℃/min的速率升温至840℃,保温12h;随炉冷却至室温后研磨,得到硅系电池用正极材料Li1.05Ni0.6Mn0.35Co0.05O2。S2. The precursor (Ni 0.6 Mn 0.35 Co 0.05 ) (OH) 2 and Li 2 CO 3 (molar of metal A and Li=1:1.05) are mechanically mixed, and the mixture is put into a sagger and placed in a muffle furnace, With oxygen as the sintering atmosphere, the temperature was first heated to 650°C at a rate of 6°C/min, and kept for 2 hours; then the temperature was raised to 840°C at a rate of 6°C/min, and the temperature was kept for 12 hours. After cooling to room temperature with the furnace, the silicon battery was obtained by grinding. The positive electrode material Li 1.05 Ni 0.6 Mn 0.35 Co 0.05 O 2 is used.
实施例3Example 3
与实施例1不同的是步骤S2。The difference from Embodiment 1 is step S2.
S2、称取前驱体(Ni0.8Mn0.1Co0.05Al0.05)(OH)2与LiOH·H2O(金属A与Li的摩尔=1:1.12),将LiOH·H2O按照质量比分为7:3两份;先将前驱体与占比为70%的LiOH·H2O进行机械混合,混合物装入匣钵放入马弗炉中,以氧气为烧结气氛,先以6℃/min的速率升温至450℃,保温2h;再以6℃/min的速率升温至760℃,保温12h;随炉冷却至室温后研磨;然后再加入占比为30%的LiOH·H2O一同混合,以6℃/min的速率升温至450℃,保温2h;再以6℃/min的速率升温至700℃,保温12h;随炉冷却至室温后研磨;得到硅系电池用正极材料Li1.12Ni0.8Mn0.1Co0.05Al0.05O2。S2. Weigh the precursor (Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 ) (OH) 2 and LiOH·H 2 O (molar of metal A and Li=1:1.12), and divide LiOH·H 2 O into 7 according to the mass ratio : 3 in two parts; firstly, the precursor was mechanically mixed with 70% LiOH·H 2 O, the mixture was put into a sagger and placed in a muffle furnace, and oxygen was used as the sintering atmosphere. The temperature was increased to 450°C at a rate of 450°C and kept for 2h; then the temperature was raised to 760°C at a rate of 6°C/min, and the temperature was kept for 12h; cooled to room temperature with the furnace, and then ground; and then mixed with 30% LiOH·H 2 O. The temperature was raised to 450°C at a rate of 6°C/min and kept for 2 hours; then the temperature was raised to 700°C at a rate of 6°C/min, and the temperature was kept for 12 hours; after cooling to room temperature with the furnace, grinding; the cathode material Li 1.12 Ni 0.8 for silicon-based batteries was obtained Mn 0.1 Co 0.05 Al 0.05 O 2 .
其余同实施例1,这里不再赘述。The rest are the same as in Embodiment 1, and are not repeated here.
实施例4Example 4
与实施例3不同的是步骤S2中锂盐依次加入的比例,第一次加入占比为80%的锂盐,第二次加入占比为20%的锂盐。The difference from Example 3 is that in step S2, the proportion of lithium salts added sequentially, the first time adding lithium salt accounting for 80%, and the second adding lithium salt accounting for 20%.
其余同实施例3,这里不再赘述。The rest are the same as in Embodiment 3, and are not repeated here.
实施例5Example 5
与实施例3不同的是步骤S2中锂盐依次加入的比例,第一次加入占比为50%的锂盐,第二次加入占比为50%的锂盐。The difference from Example 3 is that in step S2, the proportion of lithium salts added sequentially, the first time adding a lithium salt accounting for 50%, and the second adding a lithium salt accounting for 50%.
其余同实施例3,这里不再赘述。The rest are the same as in Embodiment 3, and are not repeated here.
实施例6Example 6
与实施例2不同的是步骤S2。The difference from
S2、称取前驱体(Ni0.6Mn0.35Co0.05)(OH)2与Li2CO3(金属A与Li的摩尔=1:1.2),将Li2CO3按照质量比分为8:2两份;先将前驱体与占比为80%的Li2CO3进行机械混合,混合物装入匣钵放入马弗炉中,以氧气为烧结气氛,先以6℃/min的速率升温至650℃,保温2h;再以6℃/min的速率升温至840℃,保温12h;随炉冷却至室温后研磨;然后再加入占比为20%的Li2CO3一同混合,以6℃/min的速率升温至450℃,保温2h;再以6℃/min的速率升温至820℃,保温12h;随炉冷却至室温后研磨;得到硅系电池用正极材料Li1.12Ni0.8Mn0.1Co0.05Al0.05O2。S2. Weigh the precursor (Ni 0.6 Mn 0.35 Co 0.05 ) (OH) 2 and Li 2 CO 3 (molar of metal A and Li=1:1.2), and divide Li 2 CO 3 into two parts of 8:2 according to the mass ratio ; First, the precursor is mechanically mixed with Li 2 CO 3 with a proportion of 80%, the mixture is put into a saggar and placed in a muffle furnace, and oxygen is used as the sintering atmosphere, and the temperature is first heated to 650 ° C at a rate of 6 ° C/min. , hold for 2h; then heat up to 840°C at a rate of 6°C/min, hold for 12h; cool down to room temperature with the furnace and grind; then add 20% Li 2 CO 3 and mix together, at a temperature of 6° C/min The temperature was increased to 450 °C at a rate of 2 h, and the temperature was maintained for 2 h; then the temperature was increased to 820 °C at a rate of 6 °C/min, and the temperature was maintained for 12 h; cooled to room temperature with the furnace and then ground; the cathode material for silicon-based batteries was obtained Li 1.12 Ni 0.8 Mn 0.1 Co 0.05 Al 0.05 O 2 .
其余同实施例2,这里不再赘述。The rest are the same as those in
实施例7Example 7
与实施例6不同的是步骤S2中锂盐依次加入的比例,第一次加入占比为90%的锂盐,第二次加入占比为10%的锂盐。The difference from Example 6 is that in step S2, the proportion of lithium salts added sequentially, the first time adding lithium salt accounting for 90%, and the second adding lithium salt accounting for 10%.
其余同实施例6,这里不再赘述。The rest are the same as in Embodiment 6, and are not repeated here.
实施例8Example 8
与实施例6不同的是步骤S2中锂盐依次加入的比例,第一次加入占比为50%的锂盐,第二次加入占比为50%的锂盐。The difference from Example 6 is that in step S2, the proportion of lithium salts added sequentially, the first time adding a lithium salt accounting for 50%, and the second adding a lithium salt accounting for 50%.
其余同实施例6,这里不再赘述。The rest are the same as in Embodiment 6, and are not repeated here.
实施例9Example 9
一种硅系电池用正极材料,其化学式为Li1.25Ni0.6Mn0.3Co0.05Al0.05O2。A positive electrode material for a silicon-based battery, the chemical formula of which is Li 1.25 Ni 0.6 Mn 0.3 Co 0.05 Al 0.05 O 2 .
该硅系电池用正极材料的制备方法为:The preparation method of the positive electrode material for the silicon-based battery is as follows:
S1、按6:3:0.5配制NiSO4、MnSO4、CoSO4的水溶液(Ni2+、Mn2+、Co2+的总浓度为2molL-1)500mL,记为第一溶液;配制4mol L-1的NaOH溶液500mL作为碱性溶液;在惰性气体中于30~80℃下,将第一溶液和碱性溶液通过蠕动泵以约1mL/min的速度,加入到有100mL去离子水的五口烧瓶反应器中搅拌反应,搅拌速度为500rpm/min,反应过程中通过滴加氨水控制溶液的pH=10~13;加料后继续搅拌陈化24h;陈化完成后,将所得沉淀真空抽滤、用去离子水多次洗涤,并在真空干燥箱中110℃下干燥48h,得到前驱体(Ni0.6Mn0.3Co0.05)(OH)2。S1. Prepare 500 mL of an aqueous solution of NiSO 4 , MnSO 4 , and CoSO 4 at 6:3:0.5 (the total concentration of Ni 2+ , Mn 2+ , and Co 2+ is 2 mol L -1 ), which is recorded as the first solution; prepare 4
S2、称取前驱体(Ni0.6Mn0.3Co0.05)(OH)2与Li2CO3(金属A与Li的摩尔=1:1.25),将Li2CO3按照质量比分为8:2两份;先将前驱体与占比为80%的Li2CO3进行机械混合,混合物装入匣钵放入马弗炉中,以氧气为烧结气氛,先以6℃/min的速率升温至650℃,保温2h;再以6℃/min的速率升温至840℃,保温12h;随炉冷却至室温后研磨;然后再加入Al(OH)3和占比为20%的Li2CO3一同混合,以6℃/min的速率升温至450℃,保温2h;再以6℃/min的速率升温至820℃,保温12h;随炉冷却至室温后研磨;得到硅系电池用正极材料Li1.25Ni0.6Mn0.3Co0.05Al0.05O2。S2. Weigh the precursor (Ni 0.6 Mn 0.3 Co 0.05 ) (OH) 2 and Li 2 CO 3 (molar of metal A and Li=1:1.25), and divide Li 2 CO 3 into two parts of 8:2 according to the mass ratio ; First, the precursor is mechanically mixed with Li 2 CO 3 with a proportion of 80%, the mixture is put into a saggar and placed in a muffle furnace, and oxygen is used as the sintering atmosphere, and the temperature is first heated to 650 ° C at a rate of 6 ° C/min. , hold for 2h; then heat up to 840°C at a rate of 6°C/min, hold for 12h; cool down to room temperature with the furnace and grind; then add Al(OH) 3 and 20% Li 2 CO 3 to mix together, The temperature was raised to 450°C at a rate of 6°C/min, and kept for 2 hours; then the temperature was raised to 820°C at a rate of 6°C/min, and the temperature was kept for 12 hours; cooled to room temperature with the furnace, and then ground; the cathode material for silicon-based batteries Li 1.25 Ni 0.6 Mn 0.3 Co 0.05 Al 0.05 O 2 .
对上述实施例1~3、6和9得到的硅系电池用正极材料进行测试XRD,可如图1~5所示,由图中可以看出,本发明已成功制备得到硅系电池用正极材料Li1+aNibMncMc-dO2。The XRD test of the positive electrode materials for silicon-based batteries obtained in the above examples 1 to 3, 6 and 9 is shown in Figures 1 to 5. It can be seen from the figures that the present invention has successfully prepared a positive electrode for silicon-based batteries. Material Li 1+a Ni b Mn c M cd O 2 .
将上述实施例1~9得到的硅系电池用正极材料应用于正极片中,按照活性物质(即硅系电池用正极材料),super P,PVDF粘结剂混合调浆并制作正极片。The positive electrode materials for silicon-based batteries obtained in the above Examples 1 to 9 were applied to the positive electrode sheet, and the positive electrode sheet was prepared by mixing and sizing according to the active material (ie, the positive electrode material for silicon-based batteries), super P, and PVDF binder.
将得到的正极片应用于扣式电池中测试性能,采用的对电极为金属锂片,电解液为1mol/L LiPF6的EC、DMC、EMC(体积比1:1:1)溶液,隔膜为celgard2400聚丙烯膜。测试过程中,实施例1、实施例3~5的最高截止电压为4.2V,实施例2、实施例6~9的最高截止电压为4.4V,首次充放电电流均为0.1C。The obtained positive electrode sheet was applied to the button battery to test the performance, the counter electrode used was a metal lithium sheet, the electrolyte was EC, DMC, and EMC (volume ratio 1:1:1) solution of 1mol/L LiPF 6 , and the separator was celgard 2400 polypropylene film. During the test, the highest cut-off voltage of Example 1 and Examples 3 to 5 was 4.2V, the highest cut-off voltage of Example 2 and Examples 6 to 9 was 4.4V, and the first charge and discharge currents were both 0.1C.
此外,还将得到的正极片制备成全电池并测试性能,以硅碳为负极材料,电解液为1mol/L LiPF6的EC、DMC、EMC(体积比1:1:1)溶液,隔膜为celgard2400聚丙烯膜,制成软包全电池(404050)。测试过程中,实施例1、实施例3~5的最高截止电压为4.2V,实施例2、实施例6~9的最高截止电压为4.4V,首次充放电电流均为0.1C,循环充放电电流为1C。In addition, the obtained positive electrode sheet was prepared into a full battery and tested its performance. Silicon carbon was used as the negative electrode material, the electrolyte was 1 mol/L LiPF 6 EC, DMC, and EMC (volume ratio 1:1:1) solution, and the diaphragm was celgard2400 Polypropylene film, made into soft pack full battery (404050). During the test, the maximum cut-off voltage of Example 1 and Examples 3 to 5 was 4.2V, and the maximum cut-off voltage of Example 2 and Examples 6 to 9 was 4.4V. The first charge and discharge currents were both 0.1C, and the cycle charge and discharge The current is 1C.
测试结果见下表1。The test results are shown in Table 1 below.
表1Table 1
由上述测试结果可以看出,采用本发明制备方法得到的硅系电池用正极材料Li1+ aNibMncMc-dO2,其自带的一部分不可逆锂在首次充电过程中可用于生成SEI膜,同时有效质量比容量也较高,可很好的匹配硅类负极材料,因此本发明的正极材料与硅系负极材料组成的锂离子电池并不需要额外补锂,制备工艺简单,生产成本低,解决了目前硅系锂离子电池中预锂化技术难度高、生产成本高的问题。It can be seen from the above test results that the positive electrode material Li 1+ a Ni b Mn c M cd O 2 obtained by the preparation method of the present invention contains a part of irreversible lithium which can be used to generate SEI during the first charging process. At the same time, the effective mass specific capacity is also high, which can well match the silicon-based negative electrode material. Therefore, the lithium-ion battery composed of the positive electrode material and the silicon-based negative electrode material of the present invention does not require additional lithium supplementation, the preparation process is simple, and the production cost is low. It solves the problems of high technical difficulty and high production cost of pre-lithiation in the current silicon-based lithium-ion battery.
此外,由实施例1、3~5以及2、6~8的对比中还可以看出,当采用分布加入锂盐的制备方法时,可以对该正极材料的富余锂量(供硅碳类负极形成SEI膜用)和有效质量比容量(首次放电之后能够恢复的质量比容量)的比例进行调节,可提升正极材料的不可逆容量,使其更多的应用于SEI膜的生成中,以保证后续的循环性能。优选的,当两部分的锂盐添加质量比为5:5~8:2时,不可逆容量有效增加,在循环500周后仍可以保持较为优异的容量保持率。In addition, from the comparison of Examples 1, 3-5 and 2, 6-8, it can also be seen that when the preparation method of adding lithium salt by distribution is adopted, the surplus lithium amount of the positive electrode material (for silicon carbon negative electrode) can be obtained. The ratio of the effective mass specific capacity (the mass specific capacity that can be recovered after the first discharge) can be adjusted, which can improve the irreversible capacity of the cathode material and make it more used in the formation of the SEI film to ensure the subsequent cycle performance. Preferably, when the added mass ratio of the two parts of the lithium salt is 5:5 to 8:2, the irreversible capacity is effectively increased, and a relatively excellent capacity retention rate can still be maintained after 500 cycles of cycling.
根据上述说明书的揭示和教导,本发明所属领域的技术人员还能够对上述实施方式进行变更和修改。因此,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作出的任何显而易见的改进、替换或变型均属于本发明的保护范围。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。Based on the disclosure and teaching of the above specification, those skilled in the art to which the present invention pertains can also make changes and modifications to the above-described embodiments. Therefore, the present invention is not limited to the above-mentioned specific embodiments, and any obvious improvement, replacement or modification made by those skilled in the art on the basis of the present invention falls within the protection scope of the present invention. In addition, although some specific terms are used in this specification, these terms are only for convenience of description and do not constitute any limitation to the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111631608.0A CN114497452A (en) | 2021-12-28 | 2021-12-28 | Positive electrode material for silicon battery and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111631608.0A CN114497452A (en) | 2021-12-28 | 2021-12-28 | Positive electrode material for silicon battery and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114497452A true CN114497452A (en) | 2022-05-13 |
Family
ID=81495914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111631608.0A Pending CN114497452A (en) | 2021-12-28 | 2021-12-28 | Positive electrode material for silicon battery and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114497452A (en) |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005025975A (en) * | 2003-06-30 | 2005-01-27 | Mitsubishi Chemicals Corp | Lithium nickel manganese cobalt based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using it, and lithium secondary battery |
KR20050091380A (en) * | 2004-03-12 | 2005-09-15 | 삼성에스디아이 주식회사 | Rechargeable lithium battery |
JP2005340186A (en) * | 2004-04-27 | 2005-12-08 | Mitsubishi Chemicals Corp | Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery |
JP2006172753A (en) * | 2004-12-13 | 2006-06-29 | Mitsubishi Chemicals Corp | Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery |
JP2006269308A (en) * | 2005-03-25 | 2006-10-05 | Mitsubishi Materials Corp | Positive electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery |
JP2006331941A (en) * | 2005-05-27 | 2006-12-07 | Sony Corp | Positive electrode active material, positive electrode, and battery |
JP2008013405A (en) * | 2006-07-06 | 2008-01-24 | Tosoh Corp | Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof |
CN101694876A (en) * | 2009-10-22 | 2010-04-14 | 江西江特锂电池材料有限公司 | Lithium-rich manganese-based anode material and preparation method thereof |
CN101771145A (en) * | 2010-01-29 | 2010-07-07 | 华中科技大学 | Method for preparing multielement cathode materials for lithium ion batteries |
CN101944610A (en) * | 2009-07-09 | 2011-01-12 | 河南新飞科隆电源有限公司 | Preparation of stratified lithium ion anode material |
CN102509784A (en) * | 2011-10-17 | 2012-06-20 | 北大先行科技产业有限公司 | Preparation method of lithium ion battery ternary cathode material |
CN102983326A (en) * | 2012-09-20 | 2013-03-20 | 横店集团东磁股份有限公司 | Spherical lithium-nickel-cobalt composite oxide positive electrode material preparation method |
CN103151512A (en) * | 2013-03-13 | 2013-06-12 | 山东海特电子新材料有限公司 | Wet-method preparation process of ternary positive material for lithium ion battery |
CN103232069A (en) * | 2013-03-20 | 2013-08-07 | 江苏凯力克钴业股份有限公司 | Lithium ion battery lithium-rich manganese base positive electrode material preparation method |
CN103456946A (en) * | 2013-09-12 | 2013-12-18 | 刘志航 | Anode material for lithium ion battery |
CN103956477A (en) * | 2014-04-30 | 2014-07-30 | 上海电力学院 | Preparation method of cathode material of lithium-rich ternary compound lithium ion battery |
CN104779385A (en) * | 2015-04-21 | 2015-07-15 | 哈尔滨工业大学(威海) | High-specific capacity lithium ion battery cathode material and preparation method thereof |
CN104979549A (en) * | 2015-07-29 | 2015-10-14 | 杭州朗鑫新材料科技有限公司 | Sheet lithium-enriched manganese-based anode material for lithium-ion battery as well as preparation method and application of sheet lithium-enriched manganese-based anode material |
CN105612124A (en) * | 2013-10-10 | 2016-05-25 | 三井金属矿业株式会社 | Method for manufacturing over-lithiated layered lithium metal composite oxide |
CN105895906A (en) * | 2016-05-11 | 2016-08-24 | 双登集团股份有限公司 | Lithium-doped ternary lithium-ion battery positive electrode material and preparation method thereof |
CN106410186A (en) * | 2016-11-17 | 2017-02-15 | 天津理工大学 | Preparation method and application of lithium-rich layered oxide cathode material |
CN108767239A (en) * | 2018-06-07 | 2018-11-06 | 四川富骅新能源科技有限公司 | A kind of nickelic low cobalt tertiary cathode material and preparation method thereof |
CN109119612A (en) * | 2018-08-27 | 2019-01-01 | 高点(深圳)科技有限公司 | Positive electrode material precursor and preparation method thereof, positive electrode and preparation method thereof, Anode and battery |
CN110422890A (en) * | 2019-06-25 | 2019-11-08 | 当升科技(常州)新材料有限公司 | Anode material for lithium-ion batteries and preparation method thereof and lithium ion cell positive and lithium ion battery |
CN111033832A (en) * | 2018-01-19 | 2020-04-17 | 株式会社Lg化学 | Positive electrode active material for lithium secondary battery, method for producing same, positive electrode for lithium secondary battery comprising same, and lithium secondary battery |
CN111082041A (en) * | 2019-12-27 | 2020-04-28 | 中国科学院宁波材料技术与工程研究所 | A lithium-rich multi-element positive electrode material, preparation method thereof, positive electrode and lithium ion power battery |
CN113707874A (en) * | 2021-08-26 | 2021-11-26 | 天津理工大学 | Preparation method of single-crystal high-nickel layered cathode material |
-
2021
- 2021-12-28 CN CN202111631608.0A patent/CN114497452A/en active Pending
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005025975A (en) * | 2003-06-30 | 2005-01-27 | Mitsubishi Chemicals Corp | Lithium nickel manganese cobalt based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using it, and lithium secondary battery |
KR20050091380A (en) * | 2004-03-12 | 2005-09-15 | 삼성에스디아이 주식회사 | Rechargeable lithium battery |
JP2005340186A (en) * | 2004-04-27 | 2005-12-08 | Mitsubishi Chemicals Corp | Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery |
JP2006172753A (en) * | 2004-12-13 | 2006-06-29 | Mitsubishi Chemicals Corp | Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery |
JP2006269308A (en) * | 2005-03-25 | 2006-10-05 | Mitsubishi Materials Corp | Positive electrode material for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery |
JP2006331941A (en) * | 2005-05-27 | 2006-12-07 | Sony Corp | Positive electrode active material, positive electrode, and battery |
JP2008013405A (en) * | 2006-07-06 | 2008-01-24 | Tosoh Corp | Lithium-nickel-manganese-cobalt composite oxide, method for producing the same, and use thereof |
CN101944610A (en) * | 2009-07-09 | 2011-01-12 | 河南新飞科隆电源有限公司 | Preparation of stratified lithium ion anode material |
CN101694876A (en) * | 2009-10-22 | 2010-04-14 | 江西江特锂电池材料有限公司 | Lithium-rich manganese-based anode material and preparation method thereof |
CN101771145A (en) * | 2010-01-29 | 2010-07-07 | 华中科技大学 | Method for preparing multielement cathode materials for lithium ion batteries |
CN102509784A (en) * | 2011-10-17 | 2012-06-20 | 北大先行科技产业有限公司 | Preparation method of lithium ion battery ternary cathode material |
CN102983326A (en) * | 2012-09-20 | 2013-03-20 | 横店集团东磁股份有限公司 | Spherical lithium-nickel-cobalt composite oxide positive electrode material preparation method |
CN103151512A (en) * | 2013-03-13 | 2013-06-12 | 山东海特电子新材料有限公司 | Wet-method preparation process of ternary positive material for lithium ion battery |
CN103232069A (en) * | 2013-03-20 | 2013-08-07 | 江苏凯力克钴业股份有限公司 | Lithium ion battery lithium-rich manganese base positive electrode material preparation method |
CN103456946A (en) * | 2013-09-12 | 2013-12-18 | 刘志航 | Anode material for lithium ion battery |
CN105612124A (en) * | 2013-10-10 | 2016-05-25 | 三井金属矿业株式会社 | Method for manufacturing over-lithiated layered lithium metal composite oxide |
CN103956477A (en) * | 2014-04-30 | 2014-07-30 | 上海电力学院 | Preparation method of cathode material of lithium-rich ternary compound lithium ion battery |
CN104779385A (en) * | 2015-04-21 | 2015-07-15 | 哈尔滨工业大学(威海) | High-specific capacity lithium ion battery cathode material and preparation method thereof |
CN104979549A (en) * | 2015-07-29 | 2015-10-14 | 杭州朗鑫新材料科技有限公司 | Sheet lithium-enriched manganese-based anode material for lithium-ion battery as well as preparation method and application of sheet lithium-enriched manganese-based anode material |
CN105895906A (en) * | 2016-05-11 | 2016-08-24 | 双登集团股份有限公司 | Lithium-doped ternary lithium-ion battery positive electrode material and preparation method thereof |
CN106410186A (en) * | 2016-11-17 | 2017-02-15 | 天津理工大学 | Preparation method and application of lithium-rich layered oxide cathode material |
CN111033832A (en) * | 2018-01-19 | 2020-04-17 | 株式会社Lg化学 | Positive electrode active material for lithium secondary battery, method for producing same, positive electrode for lithium secondary battery comprising same, and lithium secondary battery |
CN108767239A (en) * | 2018-06-07 | 2018-11-06 | 四川富骅新能源科技有限公司 | A kind of nickelic low cobalt tertiary cathode material and preparation method thereof |
CN109119612A (en) * | 2018-08-27 | 2019-01-01 | 高点(深圳)科技有限公司 | Positive electrode material precursor and preparation method thereof, positive electrode and preparation method thereof, Anode and battery |
CN110422890A (en) * | 2019-06-25 | 2019-11-08 | 当升科技(常州)新材料有限公司 | Anode material for lithium-ion batteries and preparation method thereof and lithium ion cell positive and lithium ion battery |
CN111082041A (en) * | 2019-12-27 | 2020-04-28 | 中国科学院宁波材料技术与工程研究所 | A lithium-rich multi-element positive electrode material, preparation method thereof, positive electrode and lithium ion power battery |
CN113707874A (en) * | 2021-08-26 | 2021-11-26 | 天津理工大学 | Preparation method of single-crystal high-nickel layered cathode material |
Non-Patent Citations (3)
Title |
---|
叶艳艳;张海朗;: "锂离子电池富锂正极材料Li[Li_(0.2)Ni_(0.16)Mn_(0.56)Co_(0.06)Al_(0.02)]O_2的合成和电化学性能", 化工新型材料, no. 01 * |
王先友;白艳松;杨秀康;舒洪波;吴强;: "锂含量对富锂正极材料Li_(1+x)[Ni_(0.5)Co_(0.2)Mn_(0.3)]_(1-x)O_2(x=0.091,0.115,0.138)结构、形貌及电化学性能的影响", 湘潭大学自然科学学报, no. 03 * |
赵航;魏闯;康鑫;李素平;: "锂离子电池三元正极材料的研究进展", 中国陶瓷, no. 05 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106684323A (en) | Ternary lithium-ion battery cathode material improved by active oxide multiply and preparation method thereof | |
CN111082026A (en) | A kind of ternary cathode material coated with lithium tungstate and preparation method thereof | |
CN111771301B (en) | Positive active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same | |
CN111785960A (en) | Vanadium pentoxide/rGO coated nickel cobalt lithium manganate cathode material and preparation method | |
CN110540254A (en) | A boron-magnesium co-doped gradient nickel-cobalt lithium manganese oxide positive electrode material and preparation method thereof | |
CN106602009A (en) | Lithium-rich positive electrode modified material of lithium ion battery and preparation method of lithium-rich positive electrode modified material | |
CN102569773B (en) | Anode material for lithium-ion secondary battery and preparation method thereof | |
CN110034274B (en) | Modified ternary cathode material, preparation method thereof and lithium ion battery | |
CN107834050A (en) | A kind of lithium-enriched cathodic material of lithium ion battery and its improved method | |
CN113285051B (en) | A kind of iron-manganese-based cathode material, preparation method and application thereof | |
CN108899531A (en) | A kind of preparation method of Phosphate coating nickel cobalt aluminium tertiary cathode material | |
CN106910887A (en) | A kind of lithium-rich manganese-based anode material, its preparation method and the lithium ion battery comprising the positive electrode | |
WO2022089205A1 (en) | Doped high-nickel ternary material and preparation method therefor | |
CN111740098A (en) | A high-nickel positive electrode material with surface layer doped with Mn and a thin layer of rock salt phase and preparation method thereof | |
CN113809294A (en) | Cobalt-free high-nickel ternary positive electrode material, preparation method and method for preparing battery positive electrode | |
CN106602024A (en) | In-situ surface-modified lithium-rich material and preparation method thereof | |
CN113845153A (en) | Multi-element high-entropy solid solution cathode material and preparation method and application thereof | |
CN109509875B (en) | High-rate single crystal lithium nickel cobalt manganese oxide cathode material and preparation method thereof | |
CN111370690A (en) | High nickel cathode material for lithium ion battery, its preparation method and application | |
WO2025002026A1 (en) | Sodium ion battery positive electrode material, preparation method therefor, positive electrode and sodium ion battery | |
CN105932241A (en) | Preparation method of nickel-cobalt-lithium aluminate composite positive electrode material | |
CN103855372B (en) | High-manganese composite cathode material and preparation method thereof | |
CN115241435B (en) | Layered Na3M2XO6Oxide coated modified sodium manganate positive electrode material and preparation method thereof | |
CN102646830A (en) | Metallic oxide coated lithium-rich material, preparing method of same, and lithium ion batteries containing same | |
CN114804235A (en) | High-voltage nickel cobalt lithium manganate positive electrode material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220513 |