[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN114458306B - Method, device, equipment and medium for determining fluid flow based on noise logging - Google Patents

Method, device, equipment and medium for determining fluid flow based on noise logging Download PDF

Info

Publication number
CN114458306B
CN114458306B CN202011228597.7A CN202011228597A CN114458306B CN 114458306 B CN114458306 B CN 114458306B CN 202011228597 A CN202011228597 A CN 202011228597A CN 114458306 B CN114458306 B CN 114458306B
Authority
CN
China
Prior art keywords
noise
flow
test point
point data
data set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011228597.7A
Other languages
Chinese (zh)
Other versions
CN114458306A (en
Inventor
朱坤
胡友良
孙利国
马涌贵
毛海涛
倪国辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
CNPC Great Wall Drilling Co
China National Logging Corp
Original Assignee
China National Petroleum Corp
CNPC Great Wall Drilling Co
China National Logging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Petroleum Corp, CNPC Great Wall Drilling Co, China National Logging Corp filed Critical China National Petroleum Corp
Priority to CN202011228597.7A priority Critical patent/CN114458306B/en
Publication of CN114458306A publication Critical patent/CN114458306A/en
Application granted granted Critical
Publication of CN114458306B publication Critical patent/CN114458306B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本申请公开了一种基于噪声测井的流体流量的确定方法、装置、设备及介质,涉及噪声测井领域。该方法包括:获取噪声测井过程中的n个深度位置处的第一测试点数据集,第一测试点数据集包括时间数据和时间域下的噪声频谱数据,n为正整数;对第一测试点数据集进行处理,得到第二测试点数据集,第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据;根据第二测试点数据集合成频率能谱曲线,频率能谱曲线用于指示地质储层中流体的流动情况;根据频率能谱曲线来划分各个流动单元;根据各个流动单元的流量比例确定各个流动单元中的流体流量。直观且高效地计算井下各层的流动量,从而实现对流动单元中的流体流量进行定量分析。

The present application discloses a method, device, equipment and medium for determining fluid flow based on noise logging, and relates to the field of noise logging. The method comprises: obtaining a first test point data set at n depth positions in the noise logging process, the first test point data set comprising time data and noise spectrum data in the time domain, and n is a positive integer; processing the first test point data set to obtain a second test point data set, the second test point data set comprising depth position data and noise spectrum data in the depth domain; synthesizing a frequency energy spectrum curve according to the second test point data set, the frequency energy spectrum curve being used to indicate the flow of fluid in a geological reservoir; dividing each flow unit according to the frequency energy spectrum curve; and determining the fluid flow in each flow unit according to the flow ratio of each flow unit. The flow amount of each layer in the well is calculated intuitively and efficiently, thereby realizing quantitative analysis of the fluid flow in the flow unit.

Description

基于噪声测井的流体流量的确定方法、装置、设备及介质Method, device, equipment and medium for determining fluid flow rate based on noise logging

技术领域Technical Field

本申请涉及系统工程领域,特别涉及一种基于噪声测井的流体流量的确定方法、装置、设备及介质。The present application relates to the field of system engineering, and in particular to a method, device, equipment and medium for determining fluid flow based on noise logging.

背景技术Background Art

噪声测井是指在井下不设置人工声源,直接测量井中自然声场的声波测井方法。Noise logging refers to an acoustic logging method that directly measures the natural sound field in the well without setting up an artificial sound source underground.

噪声测井能够反映管外流体流动情况,噪声测井的过程中,在测试点的采集到的声波数据随着时间的变化而发生变化。将声波数据绘制成频谱图像,通过分析频谱图像的图像变化定性地分析井下流体流动的情况,如分析流体的类型、确定流体的流量等。以确定流体的流量为例,通常基于温度参数进行建模来确定流体的流量,利用实时测量温度相对于原始温度的温度梯度变化确定流体的流量。Noise logging can reflect the flow of fluid outside the pipe. During the process of noise logging, the acoustic wave data collected at the test point changes with time. The acoustic wave data is plotted into a spectrum image, and the flow of downhole fluid is qualitatively analyzed by analyzing the image changes of the spectrum image, such as analyzing the type of fluid, determining the flow rate of the fluid, etc. Taking the determination of the flow rate of the fluid as an example, the flow rate of the fluid is usually determined by modeling based on the temperature parameter, and the flow rate of the fluid is determined by using the temperature gradient change of the real-time measurement temperature relative to the original temperature.

上述技术方案中,基于温度建模的方式确定流体的流量会受到诸如串槽等多种因素的影响,无法准确确定井下各个能源储层中流体的流量。In the above technical solution, the determination of the fluid flow rate based on temperature modeling will be affected by various factors such as cross-channeling, and it is impossible to accurately determine the fluid flow rate in each energy reservoir underground.

发明内容Summary of the invention

本申请实施例提供了一种基于噪声测井的流体流量的确定方法、装置、设备及介质,无需基于肉眼识别噪声的大小来确定井下流体的分布情况,直观且高效地计算井下各层的流动量,从而实现对流动单元中的流体流量进行定量分析。所述技术方案包括:The embodiment of the present application provides a method, device, equipment and medium for determining fluid flow based on noise logging, which can intuitively and efficiently calculate the flow volume of each layer in the well without the need to identify the size of noise based on the naked eye to determine the distribution of downhole fluid, thereby realizing quantitative analysis of the fluid flow in the flow unit. The technical solution includes:

根据本申请的一方面,提供了一种基于噪声测井的流体流量的确定方法,所述方法包括:According to one aspect of the present application, a method for determining fluid flow rate based on noise logging is provided, the method comprising:

获取噪声测井过程中的n个深度位置处的第一测试点数据集,所述第一测试点数据集包括时间数据和噪声频谱数据,n为正整数;Acquire a first test point data set at n depth positions in a noise logging process, wherein the first test point data set includes time data and noise spectrum data, and n is a positive integer;

对所述第一测试点数据集进行处理,得到第二测试点数据集,所述第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据;Processing the first test point data set to obtain a second test point data set, wherein the second test point data set includes depth position data and noise spectrum data in a depth domain;

根据所述第二测试点数据集得到频率能谱曲线,所述频率能谱曲线用于指示对井下的地质层进行划分后的各个流动单元;Obtaining a frequency spectrum curve according to the second test point data set, wherein the frequency spectrum curve is used to indicate each flow unit after the geological layer under the well is divided;

根据所述频率能谱曲线确定各个所述流动单元对应的流量比例;Determine the flow ratio corresponding to each of the flow units according to the frequency spectrum curve;

根据所述流量比例确定各个所述流动单元中的流体流量。The fluid flow rate in each of the flow units is determined according to the flow rate ratio.

在一个可选的实施例中,所述根据所述第二测试点数据集合成频率能谱曲线,包括:In an optional embodiment, synthesizing a frequency spectrum curve according to the second test point data set includes:

根据所述第二测试点数据集合成频率能量谱图,所述频率能量谱图包括所述第二测试点数据集中处于不同的深度位置的测试点对应的噪声频谱数据;synthesizing a frequency energy spectrum according to the second test point data set, wherein the frequency energy spectrum includes noise spectrum data corresponding to test points at different depth positions in the second test point data set;

从所述频率能量谱图中提取所述频率能谱曲线。The frequency energy spectrum curve is extracted from the frequency energy spectrum diagram.

在一个可选的实施例中,所述从所述频率能量谱图中提取所述频率能谱曲线,包括:In an optional embodiment, extracting the frequency energy spectrum curve from the frequency energy spectrum graph includes:

从所述频率能量谱图中提取同一深度域下的第一噪声频谱数据;Extracting first noise spectrum data in the same depth domain from the frequency energy spectrum;

对各个深度域下的第一噪声频谱数据进行几何均值处理,得到各个所述深度域下的第二噪声频谱数据;Performing geometric mean processing on the first noise spectrum data in each depth domain to obtain the second noise spectrum data in each depth domain;

根据所述第二噪声频谱数据得到所述频率能谱曲线。The frequency energy spectrum curve is obtained according to the second noise spectrum data.

在一个可选的实施例中,所述根据所述频率能谱曲线确定各个所述流动单元对应的流量比例,包括:In an optional embodiment, determining the flow ratio corresponding to each of the flow units according to the frequency spectrum curve includes:

根据所述频率能谱曲线指示的各个所述流动单元,将各个所述流动单元对应的噪声频谱数据分别进行累加处理,得到第三测试点数据集;According to each of the flow units indicated by the frequency spectrum curve, the noise spectrum data corresponding to each of the flow units are respectively accumulated to obtain a third test point data set;

对所述第三测试点数据集进行归一化处理,得到各个所述流动单元对应的流量比例。The third test point data set is normalized to obtain the flow ratio corresponding to each of the flow units.

在一个可选的实施例中,所述根据所述流量比例确定各个所述流动单元中的流体流量,包括:In an optional embodiment, determining the fluid flow in each of the flow units according to the flow ratio includes:

获取生产测井过程中对应的第一流体总流量;Obtaining the total flow rate of the first fluid corresponding to the production logging process;

根据所述第一流体总流量和各个所述流动单元对应的流量比例确定各个所述流动单元中的流体流量。The fluid flow rate in each of the flow units is determined according to the total flow rate of the first fluid and the flow rate ratio corresponding to each of the flow units.

在一个可选的实施例中,所述根据所述流量比例确定各个所述流动单元中的流体流量,还包括:In an optional embodiment, the determining the fluid flow in each of the flow units according to the flow ratio further includes:

响应于接收到地面流量信息,根据所述地面流量信息和各个所述流动单元对应的流量比例确定注入各个所述流动单元中的流体流量,所述地面流量信息用于表征向各个所述流动单元中注入流体时对应的总注入量。In response to receiving the surface flow information, the fluid flow injected into each of the flow units is determined according to the surface flow information and the flow ratio corresponding to each of the flow units, and the surface flow information is used to characterize the total injection amount corresponding to the injection of fluid into each of the flow units.

在一个可选的实施例中,所述对所述第一测试点数据集进行处理,得到第二测试点数据集,包括:In an optional embodiment, the processing the first test point data set to obtain the second test point data set includes:

对所述第一测试点数据集进行筛选处理,得到筛选后的第一测试点数据集;Screening the first test point data set to obtain a screened first test point data set;

对所述筛选后的第一测试点数据集中处于同一深度位置处的m个测试点对应的测试点数据进行叠加平均处理,得到所述第二测试点数据集,m为正整数。The test point data corresponding to m test points at the same depth position in the filtered first test point data set are stacked and averaged to obtain the second test point data set, where m is a positive integer.

根据本申请的另一方面,提供了一种噪声测井的流体流量的确定装置,所述装置包括:According to another aspect of the present application, a device for determining fluid flow rate of noise logging is provided, the device comprising:

获取模块,用于获取噪声测井过程中的n个深度位置处的第一测试点数据集,所述第一测试点数据集包括时间数据和时间域下的噪声频谱数据,n为正整数;An acquisition module is used to acquire a first test point data set at n depth positions in a noise logging process, wherein the first test point data set includes time data and noise spectrum data in the time domain, and n is a positive integer;

处理模块,用于对所述第一测试点数据集进行处理,得到第二测试点数据集,所述第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据;A processing module, configured to process the first test point data set to obtain a second test point data set, wherein the second test point data set includes depth position data and noise spectrum data in a depth domain;

所述处理模块,用于根据所述第二测试点数据集合成频率能谱曲线,所述频率能谱曲线用于指示对井下的地质层进行划分后的各个流动单元;The processing module is used to synthesize a frequency spectrum curve according to the second test point data set, wherein the frequency spectrum curve is used to indicate each flow unit after the geological layer downhole is divided;

所述处理模块,用于根据所述频率能谱曲线确定各个所述流动单元对应的流量比例;The processing module is used to determine the flow ratio corresponding to each of the flow units according to the frequency spectrum curve;

所述处理模块,用于根据所述流量比例确定各个所述流动单元中的流体流量。The processing module is used to determine the fluid flow in each of the flow units according to the flow ratio.

在一个可选的实施例中,所述处理模块,用于根据所述第二测试点数据集合成频率能量谱图,所述频率能量谱图包括所述第二测试点数据集中处于不同的深度位置的测试点对应的噪声频谱数据;从所述频率能量谱图中提取所述频率能谱曲线。In an optional embodiment, the processing module is used to synthesize a frequency energy spectrum map based on the second test point data set, and the frequency energy spectrum map includes noise spectrum data corresponding to test points at different depth positions in the second test point data set; and extract the frequency energy spectrum curve from the frequency energy spectrum map.

在一个可选的实施例中,所述处理模块,用于从所述频率能量谱图中提取同一深度域下的第一噪声频谱数据;对各个深度域下的第一噪声频谱数据进行几何均值处理,得到各个所述深度域下的第二噪声频谱数据;根据所述第二噪声频谱数据得到所述频率能谱曲线。In an optional embodiment, the processing module is used to extract first noise spectrum data in the same depth domain from the frequency energy spectrum diagram; perform geometric mean processing on the first noise spectrum data in each depth domain to obtain second noise spectrum data in each depth domain; and obtain the frequency energy spectrum curve based on the second noise spectrum data.

在一个可选的实施例中,所述处理模块,用于根据所述频率能谱曲线指示的各个所述流动单元,将各个所述流动单元对应的噪声频谱数据分别进行累加处理,得到第三测试点数据集;对所述第三测试点数据集进行归一化处理,得到各个所述流动单元对应的流量比例。In an optional embodiment, the processing module is used to accumulate the noise spectrum data corresponding to each flow unit indicated by the frequency spectrum curve to obtain a third test point data set; and normalize the third test point data set to obtain the flow ratio corresponding to each flow unit.

在一个可选的实施例中,所述获取模块,用于获取生产测井过程中对应的第一流体总流量;所述处理模块,用于根据所述第一流体总流量和各个所述流动单元对应的流量比例确定各个所述流动单元中的流体流量。In an optional embodiment, the acquisition module is used to obtain the total flow rate of the first fluid corresponding to the production logging process; the processing module is used to determine the fluid flow rate in each flow unit based on the total flow rate of the first fluid and the flow rate ratio corresponding to each flow unit.

在一个可选的实施例中,所述处理模块,用于响应于接收到地面流量信息,根据所述地面流量信息和各个所述流动单元对应的流量比例确定注入各个所述流动单元中的流体流量,所述地面流量信息用于表征向各个所述流动单元中注入流体时对应的总注入量。In an optional embodiment, the processing module is used to determine the fluid flow rate injected into each of the flow units in response to receiving ground flow information, based on the ground flow information and the flow ratio corresponding to each of the flow units, and the ground flow information is used to characterize the total injection amount corresponding to the injection of fluid into each of the flow units.

在一个可选的实施例中,所述处理模块,用于对所述第一测试点数据集进行筛选处理,得到筛选后的第一测试点数据集;对所述筛选后的第一测试点数据集中处于同一深度位置处的m个测试点对应的测试点数据进行叠加平均处理,得到所述第二测试点数据集,m为正整数。In an optional embodiment, the processing module is used to filter the first test point data set to obtain a filtered first test point data set; and to perform superposition and averaging processing on the test point data corresponding to m test points at the same depth position in the filtered first test point data set to obtain the second test point data set, where m is a positive integer.

根据本申请的另一方面,提供了一种计算机设备,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上述方面所述的基于噪声测井的流体流量的确定方法。According to another aspect of the present application, a computer device is provided, which includes a processor and a memory, wherein the memory stores at least one instruction, at least one program, a code set or an instruction set, and the at least one instruction, the at least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining fluid flow based on noise logging as described in the above aspects.

根据本申请的另一方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如上述方面所述的基于噪声测井的流体流量的确定方法。According to another aspect of the present application, a computer-readable storage medium is provided, in which at least one instruction, at least one program, a code set or an instruction set is stored, and the at least one instruction, the at least one program, the code set or the instruction set is loaded and executed by a processor to implement the method for determining fluid flow based on noise logging as described in the above aspects.

根据本申请的另一方面,提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中。计算机设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如上方面所述的基于噪声测井的流体流量的确定方法。According to another aspect of the present application, a computer program product or a computer program is provided, wherein the computer program product or the computer program comprises computer instructions, wherein the computer instructions are stored in a computer-readable storage medium. A processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the method for determining fluid flow rate based on noise logging as described in the above aspect.

本申请实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought by the technical solution provided by the embodiment of the present application include at least:

通过第一测试点数据集得到的第二测试点数据集来合成频率能谱曲线,利用频率能谱曲线对井下的各个地质层进行划分,从而结合频率能谱曲线确定各个流动单元对应的流量比例,以及流动单元中的流体流量。使得本领域技术人员无需基于肉眼识别噪声的大小来确定井下流体的分布情况,直观且高效地计算井下各层的流动量,从而实现对流动单元中的流体流量进行定量分析。The frequency spectrum curve is synthesized by the second test point data set obtained from the first test point data set, and the various geological layers in the well are divided by the frequency spectrum curve, so as to determine the flow ratio corresponding to each flow unit and the fluid flow in the flow unit in combination with the frequency spectrum curve. It allows technicians in this field to intuitively and efficiently calculate the flow volume of each layer in the well without having to identify the size of the noise based on the naked eye, thereby achieving quantitative analysis of the fluid flow in the flow unit.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.

图1是本申请一个示例性实施例提供的计算机系统的框架图;FIG1 is a framework diagram of a computer system provided by an exemplary embodiment of the present application;

图2是本申请一个示例性实施例提供的基于噪声测井的流体流量的确定方法的流程图;FIG2 is a flow chart of a method for determining fluid flow based on noise logging provided by an exemplary embodiment of the present application;

图3是本申请另一个示例性实施例提供的基于噪声测井的流体流量的确定方法的流程图;FIG3 is a flow chart of a method for determining fluid flow based on noise logging provided by another exemplary embodiment of the present application;

图4是本申请一个示例性实施例提供的噪声频谱数据图;FIG4 is a noise spectrum data diagram provided by an exemplary embodiment of the present application;

图5是本申请一个示例性实施例提供的频率能量谱图;FIG5 is a frequency energy spectrum diagram provided by an exemplary embodiment of the present application;

图6是本申请一个示例性实施例提供的管波对几何均值的影响关系的示意图;FIG6 is a schematic diagram of the influence of tube waves on the geometric mean provided by an exemplary embodiment of the present application;

图7是本申请另一个示例性实施例提供的频率能量谱图;FIG7 is a frequency energy spectrum diagram provided by another exemplary embodiment of the present application;

图8是本申请另一个示例性实施例提供的基于噪声测井的流体流量的确定方法的流程图;FIG8 is a flow chart of a method for determining fluid flow based on noise logging provided by another exemplary embodiment of the present application;

图9是本申请一个示例性实施例提供的基于噪声测井的流体流量确定装置的结构框图;FIG9 is a structural block diagram of a fluid flow determination device based on noise logging provided by an exemplary embodiment of the present application;

图10是本申请一个示例性实施例提供的计算机设备的装置结构示意图。FIG. 10 is a schematic diagram of the device structure of a computer device provided by an exemplary embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。In order to make the objectives, technical solutions and advantages of the present application clearer, the implementation methods of the present application will be further described in detail below with reference to the accompanying drawings.

首先,对本申请实施例涉及的名词进行介绍。First, the terms involved in the embodiments of the present application are introduced.

噪声测井:是指在井下不设置人工声源,直接测量井中自然声场的声波测井方法。当井内液体或气体运动时,由于摩擦作用可以产生具有特征频谱的声音。因此,根据噪声测井可以在裸眼井中划分出产气层位、流体吸收层位,在套管井可以检测管外流体串槽位置、流体类型,以及管内流量和射孔眼的流量等。Noise logging: refers to the acoustic logging method that directly measures the natural sound field in the well without setting up an artificial sound source underground. When the liquid or gas in the well moves, the friction can produce sound with a characteristic spectrum. Therefore, according to noise logging, the gas production layer and fluid absorption layer can be divided in the open hole well, and the location of the fluid string groove outside the pipe, the fluid type, the flow rate in the pipe and the flow rate of the perforation hole can be detected in the cased well.

生产测井(Production Logging,PL或Production Logging Tool,PLT):又被命名为开发测井,指在油井(包括采油井、注水井、观察井等)投产后至报废整个生产过程中,利用各种测试仪器进行井下测试以获取相应地下信息的测井。生产测井的重要任务是测量生产井和注入井的流体流动剖面,测量参数包括流体的速度(流量)、密度、持水率、温度、压力等。通过了解各射孔层段产出或吸入流体的性质和流量,以便对油井产状和油层开采特征做出评价。Production Logging (PL or Production Logging Tool, PLT): Also known as development logging, it refers to the logging of downhole testing using various testing instruments to obtain corresponding underground information during the entire production process from the start of production to the scrapping of oil wells (including oil production wells, water injection wells, observation wells, etc.). The important task of production logging is to measure the fluid flow profile of production wells and injection wells. The measurement parameters include fluid velocity (flow), density, water holdup, temperature, pressure, etc. By understanding the properties and flow of the fluid produced or sucked in each perforated layer, it is possible to evaluate the occurrence of the oil well and the characteristics of oil layer production.

地面流量:是指由外界向井中注入流体时的流体流量。比如,向井中注水时的注水量,本申请实施例为了区分井下流动的流体和外界注入的流体,将外界注入的流体对应的流量命名为地面流量。Ground flow rate: refers to the flow rate of fluid when fluid is injected into the well from the outside. For example, the amount of water injected into the well. In order to distinguish the fluid flowing downhole from the fluid injected from the outside, the embodiment of the present application names the flow rate corresponding to the fluid injected from the outside as the ground flow rate.

频率能量谱图:是指根据采集到的测试点数据中的深度位置数据和噪声频谱数据绘制成的图像,图像的两个坐标轴分别为深度位置和噪声在不同频率下对应的幅度值,即大小。Frequency energy spectrum: refers to an image drawn based on the depth position data and noise spectrum data in the collected test point data. The two coordinate axes of the image are the depth position and the amplitude value corresponding to the noise at different frequencies, that is, the size.

流动单元:是指根据频率能谱曲线对井下的地质层进行划分后的流体对应的单元。频率能谱曲线是根据第二测试点数据集中的测试点数据计算得到的,用于指示地质储层中流体的流动情况。Flow unit: refers to the unit corresponding to the fluid after the geological layer downhole is divided according to the frequency spectrum curve. The frequency spectrum curve is calculated based on the test point data in the second test point data set and is used to indicate the flow of the fluid in the geological reservoir.

本申请实施例提供的基于噪声测井的流体流量的确定方法可以应用于具有较强的数据处理能力的计算机设备中。在一种可能的实施方式中,本申请实施例提供的基于噪声测井的流体流量的确定方法可以应用于个人计算机、工作站或服务器中,即可以通过个人计算机、工作站或服务器实现对井下各个流动单元的流体情况进行定量分析。The method for determining the fluid flow rate based on noise logging provided in the embodiment of the present application can be applied to a computer device with strong data processing capabilities. In a possible implementation, the method for determining the fluid flow rate based on noise logging provided in the embodiment of the present application can be applied to a personal computer, a workstation or a server, that is, a personal computer, a workstation or a server can be used to quantitatively analyze the fluid conditions of each flow unit in the well.

基于噪声测井的流量的确定方法可实现为一种数据处理应用程序,该数据处理应用程序安装并运行在计算机设备中,通过数据处理应用程序可对采集到的噪声频谱数据进行定量分析。The method for determining flow rate based on noise logging can be implemented as a data processing application program, which is installed and runs in a computer device. The data processing application program can be used to perform quantitative analysis on the collected noise spectrum data.

图1示出了本申请一个示例性实施例提供的计算机系统的示意图。该计算机系统100包括噪声采集设备13和计算机设备14,其中,噪声采集设备13与计算机设备14之间通过通信网络进行数据通信,或,噪声采集设备13通过数据线与计算机设备14进行连接。可选地,通信网络可以是有线网络也可以是无线网络,且该通信网络可以是局域网、城域网以及广域网中的至少一种。FIG1 shows a schematic diagram of a computer system provided by an exemplary embodiment of the present application. The computer system 100 includes a noise collection device 13 and a computer device 14, wherein the noise collection device 13 and the computer device 14 perform data communication via a communication network, or the noise collection device 13 is connected to the computer device 14 via a data line. Optionally, the communication network can be a wired network or a wireless network, and the communication network can be at least one of a local area network, a metropolitan area network, and a wide area network.

计算机设备14中安装有支持对采集到的噪声频谱数据进行处理的应用程序。井11中的探测头12与噪声采集设备13连接,通过探测头12将采集到的噪声传输至噪声采集设备13中,噪声采集设备13存储有采集到的噪声频谱数据。在一些实施例中,噪声采集设备13将噪声频谱数据传输至计算机设备14中。The computer device 14 is installed with an application program that supports processing the collected noise spectrum data. The detection head 12 in the well 11 is connected to the noise collection device 13, and the collected noise is transmitted to the noise collection device 13 through the detection head 12. The noise collection device 13 stores the collected noise spectrum data. In some embodiments, the noise collection device 13 transmits the noise spectrum data to the computer device 14.

可选的,计算机设备14可以是智能手机、智能手表、平板电脑、膝上便携式笔记本电脑、智能机器人等移动终端,也可以是台式电脑、投影式电脑等终端,本申请实施例对计算机设备的类型不做限定。Optionally, the computer device 14 can be a mobile terminal such as a smart phone, a smart watch, a tablet computer, a laptop computer, an intelligent robot, or a desktop computer, a projection computer, or other terminals. The embodiment of the present application does not limit the type of computer device.

可选的,噪声采集设备13是具有噪声采集功能的设备,在一些实施例中,噪声采集设备还具有对采集到的噪声频谱数据进行筛选处理或滤波处理的功能。Optionally, the noise collection device 13 is a device with a noise collection function. In some embodiments, the noise collection device also has a function of screening or filtering the collected noise spectrum data.

如图1所示,在本实施例中,在井11中放置探测头12,通过探测头12将采集到的噪声频谱数据传输至噪声采集设备13中,噪声频谱数据包括每个测试点对应的时间下的噪声频谱数据和深度域下的噪声频谱数据,噪声频谱数据包括不同频率下的噪声振幅值。对于同一个测试点,噪声频谱数据是随着时间的变化而变化的。噪声采集设备13通过数据线将噪声频谱数据传输至计算机设备14中,通过计算机设备上安装数据处理应用程序对噪声频谱数据进行处理,从而得到用于分析井中的流体情况的频率能谱曲线(FrequencySpectrum Energy,FSE)。As shown in FIG1 , in this embodiment, a probe 12 is placed in a well 11, and the collected noise spectrum data is transmitted to a noise acquisition device 13 through the probe 12. The noise spectrum data includes the noise spectrum data at the time corresponding to each test point and the noise spectrum data in the depth domain, and the noise spectrum data includes the noise amplitude values at different frequencies. For the same test point, the noise spectrum data changes with time. The noise acquisition device 13 transmits the noise spectrum data to a computer device 14 through a data line, and the noise spectrum data is processed by installing a data processing application on the computer device, thereby obtaining a frequency spectrum curve (Frequency Spectrum Energy, FSE) for analyzing the fluid conditions in the well.

为了方便表述,下述各个实施例以基于噪声测井的流体流量确定方法由计算机设备执行为例进行说明。For the convenience of description, the following embodiments are described by taking the method for determining fluid flow based on noise logging executed by a computer device as an example.

图2示出了本申请一个示例性实施例提供的基于噪声测井的流体流量的确定方法的流程图。本实施例以该方法用于如图1所示的计算机设备14中为例进行说明,该方法包括如下步骤:FIG2 shows a flow chart of a method for determining fluid flow based on noise logging provided by an exemplary embodiment of the present application. This embodiment is described by taking the method used in the computer device 14 shown in FIG1 as an example, and the method includes the following steps:

步骤201,获取噪声测井过程中的n个深度位置处的第一测试点数据集,第一测试点数据集包括时间数据和时间域下的噪声频谱数据,n为正整数。Step 201 : obtaining a first test point data set at n depth positions in a noise logging process, wherein the first test point data set includes time data and noise spectrum data in the time domain, and n is a positive integer.

在开采石油、天然气等能源的过程中,通过噪声测井的检测方式检测井下的流体类型和流体流量的分布情况,噪声测井是指在井下不设置人工声源,直接测量井中自然声场的声波测井方法,当井内液体或气体运动时,由于摩擦作用可以产生具有特征频谱的声音,根据噪声测井的方式能够获得井下的流体类型、分布位置等信息。In the process of exploiting oil, natural gas and other energy sources, noise logging is used to detect the type of fluid and the distribution of fluid flow in the well. Noise logging refers to an acoustic logging method that directly measures the natural sound field in the well without setting up an artificial sound source in the well. When the liquid or gas in the well moves, friction can produce sounds with characteristic spectra. According to the noise logging method, information such as the type of fluid and distribution position in the well can be obtained.

如图1所示,通过噪声采集设备13采集噪声频谱数据,将采集设备13的探测头12放入目标井11(待检测的井)中,噪声采集设备13存储探测头12采集到的噪声频谱数据,并将噪声频谱数据发送至计算机设备14中。计算机设备14中安装和运行有数据处理应用程序,该数据处理应用程序用于对采集到的噪声频谱数据进行定量分析。As shown in FIG1 , noise spectrum data is collected by a noise collection device 13, and a detection head 12 of the collection device 13 is placed in a target well 11 (a well to be detected). The noise collection device 13 stores the noise spectrum data collected by the detection head 12, and sends the noise spectrum data to a computer device 14. A data processing application is installed and run in the computer device 14, and the data processing application is used to perform quantitative analysis on the collected noise spectrum data.

示意性的,探测头12采集处于井中同一深度位置且一段时间内的k个测试点对应的噪声频谱数据,k为正整数。比如,探测头12采集处于井中同一深度位置的128个测试点对应的噪声频谱数据,该128个测试点均匀分布在目标井的井壁上,或,该128个测试点以任意的间距分布在目标井的井壁上,本申请实施例对测试点的分布状态不加以限定。在一些实施例中,测试点的数量可以是256个,或者更多。本申请实施例对测试点的数量不加以限定。Schematically, the detection head 12 collects noise spectrum data corresponding to k test points at the same depth in the well and within a period of time, where k is a positive integer. For example, the detection head 12 collects noise spectrum data corresponding to 128 test points at the same depth in the well, and the 128 test points are evenly distributed on the wall of the target well, or the 128 test points are distributed on the wall of the target well at arbitrary intervals. The embodiment of the present application does not limit the distribution state of the test points. In some embodiments, the number of test points can be 256, or more. The embodiment of the present application does not limit the number of test points.

多个深度位置的测试点对应的噪声频谱数据构成了第一测试点数据集,噪声频谱数据包括不同频率下的噪声振幅值。The noise spectrum data corresponding to the test points at multiple depth positions constitute a first test point data set, and the noise spectrum data includes noise amplitude values at different frequencies.

噪声采集设备13根据时间变化采集各个测试点的噪声频谱数据,同一个测试点对应的噪声频谱数据随着时间变化产生波动,比如,在测试点a处采集到数据为:在第0.0051秒时,噪声频率值为10赫兹(Hz),噪声振幅为20毫伏(mV);在第0.4064秒时,噪声频率值为20赫兹,噪声振幅为20毫伏。本申请实施例在采集噪声频谱数据时,将噪声频谱数据按照频率进行划分,将划分后的噪声频谱数据确定为第一测试点数据集。The noise collection device 13 collects the noise spectrum data of each test point according to the time change. The noise spectrum data corresponding to the same test point fluctuates with the time change. For example, the data collected at the test point a is: at 0.0051 seconds, the noise frequency value is 10 Hz, and the noise amplitude is 20 millivolts (mV); at 0.4064 seconds, the noise frequency value is 20 Hz, and the noise amplitude is 20 mV. When collecting the noise spectrum data, the embodiment of the present application divides the noise spectrum data according to the frequency, and determines the divided noise spectrum data as the first test point data set.

示意性的,以表一表示第一测试点数据集。Schematically, the first test point data set is represented by Table 1.

表一Table 1

其中,序号1至序号128是指处于同一深度位置处的128个测试点,振幅是指噪声偏离平衡态震动时产生的最大振幅,本申请实施例以振幅的单位为毫伏,时间单位为秒为例进行说明,将128个测试点的振幅按照噪声频率区间划分,如,在0至10Hz的噪声频率区间包括序号1的测试点对应的噪声振幅数值;在20至30Hz的噪声频率区间包括序号3的测试点对应的噪声振幅数值。表一仅为一处深度位置对应的测试点的噪声频谱数据的示例。Among them, serial numbers 1 to 128 refer to 128 test points at the same depth position, and the amplitude refers to the maximum amplitude generated when the noise deviates from the equilibrium state vibration. The embodiment of the present application takes the amplitude unit as millivolt and the time unit as second as an example for explanation, and the amplitude of the 128 test points is divided according to the noise frequency range, such as, the noise amplitude value corresponding to the test point of serial number 1 is included in the noise frequency range of 0 to 10 Hz; the noise amplitude value corresponding to the test point of serial number 3 is included in the noise frequency range of 20 to 30 Hz. Table 1 is only an example of the noise spectrum data of the test point corresponding to a depth position.

步骤202,对第一测试点数据集进行处理,得到第二测试点数据集,第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据。Step 202: Process the first test point data set to obtain a second test point data set, where the second test point data set includes depth position data and noise spectrum data in a depth domain.

数据处理应用程序对第一测试点数据集中的噪声频谱数据进行叠加平均处理,得到处于同一深度位置的测试点对应的噪声频谱数据。即将与时间关联的噪声频谱数据转换为与深度位置关联的噪声频谱数据。示意性的,以表一中序号1的测试点为例进行说明。将序号1的测试点对应的噪声频谱数据“1.767、1.358……1.347”进行叠加平均处理,得到的结果为序号1的测试点在深度位置为X米的情况下对应的噪声频谱数据。The data processing application performs superposition and averaging processing on the noise spectrum data in the first test point data set to obtain the noise spectrum data corresponding to the test point at the same depth position. That is, the noise spectrum data associated with time is converted into noise spectrum data associated with the depth position. Schematically, the test point No. 1 in Table 1 is used as an example for explanation. The noise spectrum data "1.767, 1.358...1.347" corresponding to the test point No. 1 is superimposed and averaged, and the result obtained is the noise spectrum data corresponding to the test point No. 1 at a depth position of X meters.

示意性的,以表二表示第二测试点数据集中的部分数据。Schematically, Table 2 shows part of the data in the second test point data set.

表二Table 2

以序号1的测试点在深度为2985.23米处对应的测试点的噪声频谱数据为例,该处噪声振幅数值为1.527mV,该数值是由表一中序号1的测试点对应的噪声频谱数据进行叠加平均处理后得到的。Taking the noise spectrum data of the test point corresponding to the test point No. 1 at a depth of 2985.23 meters as an example, the noise amplitude value at this point is 1.527mV, which is obtained by superimposing and averaging the noise spectrum data corresponding to the test point No. 1 in Table 1.

以此类推,可计算同一深度位置处的128个测试点的噪声频谱数据,多个深度位置处的测试点对应的噪声频谱数据构成第二测试点数据集,由于第二测试点数据集是由第一测试点数据集处理得到的,第二测试点数据集中的测试点数据为不同深度域下的噪声频谱数据。By analogy, the noise spectrum data of 128 test points at the same depth position can be calculated, and the noise spectrum data corresponding to the test points at multiple depth positions constitute a second test point data set. Since the second test point data set is obtained by processing the first test point data set, the test point data in the second test point data set are noise spectrum data in different depth domains.

在一些实施例中,在对第一测试点数据集进行叠加平均处理前,还需要对第一测试点数据集进行筛选处理,去除第一测试点数据集中的异常数据(异常波动的噪音对应的数据),以获得稳定的噪声频谱数据。In some embodiments, before performing superposition and averaging processing on the first test point data set, the first test point data set needs to be screened to remove abnormal data (data corresponding to abnormally fluctuating noise) in the first test point data set to obtain stable noise spectrum data.

步骤203,根据第二测试点数据集得到频率能谱曲线,频率能谱曲线用于指示对井下的地质层进行划分后的各个流动单元。Step 203: obtaining a frequency spectrum curve according to the second test point data set, wherein the frequency spectrum curve is used to indicate each flow unit after the geological layer downhole is divided.

数据处理应用程序通过第二测试点数据集绘制频率能量谱图,从频率能量谱图中提取频率能谱曲线。流动单元是指根据频率能谱曲线对井下的地质层进行划分后的流体对应的单元,即流动单元是通过数学运算的方式人为划分的单元,流动单元中可能存在气体、液体等物质,不同的流动单元可能存储相同类型的流体,或不同类型的流体。频率能谱曲线表示井下地质层中存流动单元的分布,比如,一个流体存储层中存储有大量的流体,则该处对应的频率能谱曲线出现峰值,又如,一个流体存储层中存储有极少量的流体,则该处对应的频率能谱曲线出现低谷值。The data processing application draws a frequency energy spectrum through the second test point data set, and extracts a frequency energy spectrum curve from the frequency energy spectrum. A flow unit refers to a unit corresponding to the fluid after the geological layer downhole is divided according to the frequency energy spectrum curve, that is, a flow unit is a unit artificially divided by mathematical operations. There may be gas, liquid and other substances in the flow unit, and different flow units may store the same type of fluid or different types of fluid. The frequency energy spectrum curve represents the distribution of flow units in the downhole geological layer. For example, if a fluid storage layer stores a large amount of fluid, the corresponding frequency energy spectrum curve there will have a peak value. For another example, if a fluid storage layer stores a very small amount of fluid, the corresponding frequency energy spectrum curve there will have a valley value.

步骤204,根据频率能谱曲线确定各个流动单元对应的流量比例。Step 204: determine the flow ratio corresponding to each flow unit according to the frequency spectrum curve.

由于频率能谱曲线指示各个流动单元出现的位置,则数据处理应用程序对第二测试点数据集中的各个测试点对应的不同频率下的噪声振幅数值进行处理,得到各个流动单元对应的噪声振幅数值,数据处理应用程序根据该噪声振幅数值计算各个流动单元对应的流量比例。比如,频率能谱曲线上的一段曲线指示流动单元1,根据该段曲线对应的噪声振幅数值确定流动单元1的流量比例。Since the frequency spectrum curve indicates the location where each flow unit appears, the data processing application processes the noise amplitude values at different frequencies corresponding to each test point in the second test point data set to obtain the noise amplitude values corresponding to each flow unit, and the data processing application calculates the flow ratio corresponding to each flow unit based on the noise amplitude values. For example, a curve segment on the frequency spectrum curve indicates flow unit 1, and the flow ratio of flow unit 1 is determined based on the noise amplitude value corresponding to the curve segment.

步骤205,根据流量比例确定各个流动单元中的流体流量。Step 205, determining the fluid flow in each flow unit according to the flow ratio.

流体流量包括流动单元中存储的流体的流量和外界注入流动单元的流体的流量中的至少一种。The fluid flow rate includes at least one of the flow rate of the fluid stored in the flow unit and the flow rate of the fluid injected into the flow unit from the outside.

示意性的,当数据处理应用程序接收到以生产测井的方式测量得到的井中的流体总流量时,根据各个流动单元对应的流量比例计算出各个流动单元对应的流体流量。Illustratively, when the data processing application receives the total fluid flow in the well measured by production logging, the fluid flow corresponding to each flow unit is calculated according to the flow ratio corresponding to each flow unit.

示意性的,当数据处理应用程序接收到外界注入流动单元的流体总流量时,根据各个流动单元对应的流量比例计算出各个流动单元对应的流体流量。Illustratively, when the data processing application receives the total flow rate of the fluid injected into the flow unit from the outside, the fluid flow rate corresponding to each flow unit is calculated according to the flow rate ratio corresponding to each flow unit.

综上所述,本实施例提供的方法,通过第一测试点数据集得到的第二测试点数据集来合成频率能谱曲线,利用频率能谱曲线对井下的各个地质层进行划分,从而结合频率能谱曲线确定各个流动单元对应的流量比例,以及流动单元中的流体流量。使得本领域技术人员无需基于肉眼识别噪声的大小来确定井下流体的分布情况,直观且高效地计算井下各层的流动量,从而实现对流动单元中的流体流量进行定量分析。In summary, the method provided in this embodiment synthesizes a frequency spectrum curve through the second test point data set obtained from the first test point data set, and uses the frequency spectrum curve to divide each geological layer in the well, so as to determine the flow ratio corresponding to each flow unit and the fluid flow in the flow unit in combination with the frequency spectrum curve. This allows those skilled in the art to intuitively and efficiently calculate the flow volume of each layer in the well without having to identify the size of the noise based on the naked eye, thereby achieving quantitative analysis of the fluid flow in the flow unit.

图3示出了本申请另一个示例性实施例提供的基于噪声测井的流体流量的确定方法的流程图。本实施例以该方法用于如图1所示的计算机设备14中为例进行说明,该方法包括如下步骤:FIG3 shows a flow chart of a method for determining fluid flow based on noise logging provided by another exemplary embodiment of the present application. This embodiment is described by taking the method used in the computer device 14 shown in FIG1 as an example, and the method includes the following steps:

步骤301,获取噪声测井过程中的n个深度位置处的第一测试点数据集,第一测试点数据集包括时间数据和时间域下的噪声频谱数据,n为正整数。Step 301 : obtaining a first test point data set at n depth positions in a noise logging process, wherein the first test point data set includes time data and noise spectrum data in the time domain, and n is a positive integer.

示意性的,在井中同一深度位置处采集多个测试点,通过多个测试点表示某一深度位置对应的噪声频谱数据,在一些实施例中,将一处深度位置当作一个点位,一个点位确定为一个通道(pass)。利用如图1所示的噪声采集设备13将采集到的噪声频谱数据传输至计算机设备14中,计算机设备14将第一测试点数据集加载到数据处理应用程序中,第一测试点数据集中的噪声频谱数据随着时间数据的变化而变化,即一个测试点对应的噪声振幅值随着时间的变化而不断发生变化。Schematically, multiple test points are collected at the same depth position in the well, and the noise spectrum data corresponding to a certain depth position is represented by multiple test points. In some embodiments, a depth position is regarded as a point position, and a point position is determined as a pass. The collected noise spectrum data is transmitted to the computer device 14 using the noise collection device 13 shown in Figure 1. The computer device 14 loads the first test point data set into the data processing application. The noise spectrum data in the first test point data set changes with the change of time data, that is, the noise amplitude value corresponding to a test point changes continuously with the change of time.

步骤302,对第一测试点数据集进行处理,得到第二测试点数据集,第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据。Step 302: Process the first test point data set to obtain a second test point data set, where the second test point data set includes depth position data and noise spectrum data in a depth domain.

示意性的,计算机设备将第一测试点数据集以表一的形式显示,或,通过绘图应用程序将第一测试点数据集绘制成噪声数据图像进行显示,绘图应用程序是具有将测试点数据绘制成噪声数据图像能力的应用程序,本申请实施例中的数据处理应用程序也能够绘制噪声数据图像。步骤302可替换为如下步骤:Schematically, the computer device displays the first test point data set in the form of Table 1, or, through a drawing application, draws the first test point data set into a noise data image for display. The drawing application is an application capable of drawing the test point data into a noise data image. The data processing application in the embodiment of the present application can also draw the noise data image. Step 302 can be replaced by the following steps:

步骤3021,对第一测试点数据集进行筛选处理,得到筛选后的第一测试点数据集。Step 3021: Screening the first test point data set to obtain a screened first test point data set.

噪声测井的过程中,井下的任何噪声都有可能被记录,因此在噪声数据图像上会出现异常波动的噪声对应的图像区域。当井筒环境较好时,噪声采集设备采集的测试点数据质量较高,数据处理应用程序从测试点数据中选取振幅值稳定的数据;当井筒环境不稳定时,流动单元中的有效信息(如流体类型的信息、流体流量的信息等)会被一定程度的掩盖,即信噪比降低(Signal Noise Ratio,SNR or S/N),需要优先选取振幅值稳定的数据。During the process of noise logging, any noise in the well may be recorded, so the image area corresponding to the abnormal fluctuating noise will appear on the noise data image. When the wellbore environment is good, the test point data collected by the noise acquisition equipment is of high quality, and the data processing application selects data with stable amplitude values from the test point data; when the wellbore environment is unstable, the effective information in the flow unit (such as information on fluid type, fluid flow rate, etc.) will be masked to a certain extent, that is, the signal-to-noise ratio (SNR or S/N) is reduced, and it is necessary to give priority to selecting data with stable amplitude values.

示意性的,数据处理应用程序根据筛选后的第一测试点数据集合成噪声数据图像,如图4所示。数据处理应用程序将噪声频谱数据按照噪声频率进行划分,如0至200Hz划分为第一区间,200Hz至400Hz划分为第二区间,400Hz至600Hz划分为第三区间,600Hz至1000Hz划分为第四区间,1000Hz至4000Hz划分为第五区间,4000Hz至6000Hz划分为第六区间。将噪声振幅按照上述各个噪声频率区间绘制噪声数据图像,比如,一段噪声对应的噪声频谱数据的振幅值为200mV,对应的频率为600Hz至1000Hz,将该噪声频谱数据归为第四区间绘制图像,从而绘制成如图4所示的图像。每个噪声频率区间对应一条噪声振幅曲线,第一区间对应有噪声振幅曲线101,第二区间对应有噪声振幅曲线102,第三区间对应有噪声振幅曲线103,第四区间对应有噪声振幅曲线104,第五区间对应有噪声振幅曲线105,第六区间对应有噪声振幅曲线106。其中,区域107是噪声存在异常波动时对应的图像区域,数据处理应用程序将区域107对应的数据进行滤除,得到筛选后的第一测试点数据集。Schematically, the data processing application synthesizes the noise data image according to the filtered first test point data set, as shown in FIG4. The data processing application divides the noise spectrum data according to the noise frequency, such as 0 to 200 Hz is divided into the first interval, 200 Hz to 400 Hz is divided into the second interval, 400 Hz to 600 Hz is divided into the third interval, 600 Hz to 1000 Hz is divided into the fourth interval, 1000 Hz to 4000 Hz is divided into the fifth interval, and 4000 Hz to 6000 Hz is divided into the sixth interval. The noise amplitude is drawn into the noise data image according to the above-mentioned noise frequency intervals. For example, the amplitude value of the noise spectrum data corresponding to a noise segment is 200 mV, and the corresponding frequency is 600 Hz to 1000 Hz. The noise spectrum data is classified as the fourth interval to draw the image, thereby drawing the image shown in FIG4. Each noise frequency interval corresponds to a noise amplitude curve, the first interval corresponds to a noise amplitude curve 101, the second interval corresponds to a noise amplitude curve 102, the third interval corresponds to a noise amplitude curve 103, the fourth interval corresponds to a noise amplitude curve 104, the fifth interval corresponds to a noise amplitude curve 105, and the sixth interval corresponds to a noise amplitude curve 106. Among them, area 107 is the image area corresponding to when the noise has abnormal fluctuations, and the data processing application filters out the data corresponding to area 107 to obtain the filtered first test point data set.

步骤3022,对筛选后的第一测试点数据集处于同一深度位置处的m个测试点对应的测试点数据进行叠加平均处理,得到第二测试点数据集,m为正整数。Step 3022, performing superposition and averaging processing on the test point data corresponding to the m test points at the same depth position in the filtered first test point data set to obtain a second test point data set, where m is a positive integer.

将与时间关联的噪声频谱数据转换为与深度位置关联的噪声频谱数据。示意性的,以表一中序号1的测试点为例进行说明。将序号1的测试点对应的噪声频谱数据“1.767、1.358……1.347”进行叠加平均处理,即将序号1的测试点对应的噪声频谱数据进行相加除以序号1的测试点对应的数量,得到序号1的测试点对应的噪声频谱数据的平均值,该平均值为序号1的测试点在深度位置为X米的情况下对应的噪声频谱数据。The noise spectrum data associated with time is converted into noise spectrum data associated with a depth position. Schematically, the test point No. 1 in Table 1 is used as an example for explanation. The noise spectrum data "1.767, 1.358...1.347" corresponding to the test point No. 1 is superimposed and averaged, that is, the noise spectrum data corresponding to the test point No. 1 is added and divided by the number corresponding to the test point No. 1 to obtain the average value of the noise spectrum data corresponding to the test point No. 1, which is the noise spectrum data corresponding to the test point No. 1 when the depth position is X meters.

步骤303,根据第二测试点数据集合成频率能量谱图,频率能量谱图包括第二测试点数据集中处于不同的深度位置的测试点对应的噪声频谱数据。Step 303: synthesize a frequency energy spectrum diagram according to the second test point data set, wherein the frequency energy spectrum diagram includes noise spectrum data corresponding to the test points at different depth positions in the second test point data set.

通过步骤3021和步骤3022得到的第二测试点数据集如表三所示。The second test point data set obtained through step 3021 and step 3022 is shown in Table 3.

表三Table 3

其中,序号1至序号128是指处于同一深度位置处的128个测试点,振幅是指噪声偏离平衡态震动时产生的最大振幅,本申请实施例以振幅的单位为毫伏,深度单位为米为例进行说明。Among them, serial numbers 1 to 128 refer to 128 test points at the same depth position, the amplitude refers to the maximum amplitude generated when the noise deviates from the equilibrium state vibration, and the embodiment of the present application is explained using the amplitude unit as millivolt and the depth unit as meter as an example.

由表三可知,数据处理应用程序将第二测试点数据集中的测试点数据按照深度域进行排序,示意性的,按照深度值由大到小的排列顺序对第二测试点数据集中的测试点数据进行排序,即将每个深度位置处的噪声振幅数据按照深度位置进行排列,形成深度域连续的噪声剖面,该噪声剖面即为频率能量谱图。It can be seen from Table 3 that the data processing application sorts the test point data in the second test point data set according to the depth domain. Schematically, the test point data in the second test point data set are sorted in order from large to small depth values, that is, the noise amplitude data at each depth position is arranged according to the depth position to form a continuous noise profile in the depth domain, which is a frequency energy spectrum.

示意性的,数据处理应用程序还可根据表三中的测试点数据合成频率能量谱图,如图5所示。频率能量谱图包括三部分,分别是:井内结构、放大区间的频率能量谱图和原频率能量谱图。其中,井内结构包括射孔段51、注水口和封隔器52,射孔段51是指设置在井筒上多个孔形成的区域,用于辅助流体由油管流向井内;注水口是指设置在油管上,用于向井内注水的窗口;封隔器52是指具有弹性的密封元件,用于封隔各种尺寸的管柱与井眼之间以及管柱之间的环形空间,并隔绝产层,以控制注入或产出的流体,保护套管的井下工具。Schematically, the data processing application can also synthesize a frequency energy spectrum according to the test point data in Table 3, as shown in FIG5. The frequency energy spectrum includes three parts, namely: the well structure, the frequency energy spectrum of the amplified interval, and the original frequency energy spectrum. Among them, the well structure includes a perforation section 51, a water injection port, and a packer 52. The perforation section 51 refers to an area formed by multiple holes arranged on the wellbore, which is used to assist the fluid to flow from the oil pipe to the well; the water injection port refers to a window arranged on the oil pipe for injecting water into the well; the packer 52 refers to an elastic sealing element, which is used to isolate the annular space between various sizes of tubings and the wellbore and between tubings, and isolate the production layer to control the injected or produced fluid and protect the downhole tools of the casing.

根据排序后的第二测试点数据集绘制成原频率能量谱图53,原频率能量谱图53的噪声振幅所在的区间在0至25mV之间,从该区间中选取部分区间对应的频率能量谱图,得到放大区间的频率能量谱图54。示意性的,本申请实施例选取的区间为0至10mV。The original frequency energy spectrum 53 is drawn according to the sorted second test point data set, the noise amplitude of the original frequency energy spectrum 53 is in the interval between 0 and 25 mV, and the frequency energy spectrum corresponding to a part of the interval is selected from the interval to obtain the frequency energy spectrum of the amplified interval 54. Schematically, the interval selected in the embodiment of the present application is 0 to 10 mV.

步骤304,从频率能量谱图中提取频率能谱曲线。Step 304: extracting a frequency energy spectrum curve from the frequency energy spectrum diagram.

频率能谱曲线是通过如下方式得到的:The frequency spectrum curve is obtained as follows:

步骤3041,从频率能量谱图中提取同一深度域下的第一噪声频谱数据。Step 3041: extract first noise spectrum data in the same depth domain from the frequency energy spectrum.

如表三所示,同一深度位置处的128个测试点对应有128个第一噪声振幅值,该128个第一噪声振幅值为不同频率下的噪声振幅值,即第一噪声频谱数据。As shown in Table 3, 128 test points at the same depth position correspond to 128 first noise amplitude values, and the 128 first noise amplitude values are noise amplitude values at different frequencies, that is, first noise spectrum data.

步骤3042,对各个深度域下的第一噪声频谱数据进行几何均值处理,得到各个深度域下的第二噪声频谱数据。Step 3042: Perform geometric mean processing on the first noise spectrum data in each depth domain to obtain second noise spectrum data in each depth domain.

通过如下公式对各个深度域下的第一噪声频谱数据进行几何均值处理,得到第二噪声频谱数据。The first noise spectrum data in each depth domain is subjected to geometric mean processing by the following formula to obtain the second noise spectrum data.

其中,FSE(Frequency Spectrum Energy)表示几何均值,a(i)表示深度域在不同频率下对应的振幅值,k表示同一深度位置处的测试点数量。Among them, FSE (Frequency Spectrum Energy) represents the geometric mean, a(i) represents the amplitude value corresponding to different frequencies in the depth domain, and k represents the number of test points at the same depth position.

示意性的,以同一深度位置处的测试点数量为128,表三中的深度位置为1985.23米处的测试点对应的噪声频谱数据为例进行说明,将“1.527、23.143、20.324、13.102、5.832、3.109……0.409”代入至上述公式中,计算几何均值,该几何均值为第二噪声频谱数据(不同频率下的第二噪声振幅值)。Instructively, taking the number of test points at the same depth position as 128 and the noise spectrum data corresponding to the test point at a depth position of 1985.23 meters in Table 3 as an example, "1.527, 23.143, 20.324, 13.102, 5.832, 3.109...0.409" are substituted into the above formula to calculate the geometric mean, which is the second noise spectrum data (the second noise amplitude values at different frequencies).

步骤3043,根据第二噪声频谱数据得到频率能谱曲线。Step 3043: Obtain a frequency energy spectrum curve according to the second noise spectrum data.

通过上述方式计算处于同一深度位置处的测试点对应的第二噪声频谱数据,在频率能量谱图上将多个深度位置处的测试点对应的第二噪声振幅数据进行连接,得到频率能谱曲线。即根据上述公式计算每个深度位置处对应的FSE值,形成频率能谱曲线55,该频率能谱曲线55表示频率能量谱图在区间0至10mV之间的变化。The second noise spectrum data corresponding to the test points at the same depth position is calculated in the above manner, and the second noise amplitude data corresponding to the test points at multiple depth positions are connected on the frequency energy spectrum to obtain a frequency energy spectrum curve. That is, the FSE value corresponding to each depth position is calculated according to the above formula to form a frequency energy spectrum curve 55, which represents the change of the frequency energy spectrum in the interval of 0 to 10mV.

需要说明的是,井筒管波噪声对划分流动单元的影响,在实际处理时,可以剔除掉管波,经过研究对比,一般情况下,管波的影响比较一致,剔除与否,对几何均值是线性的影响(如图6所示),因此在之后的归一化处理后,这种影响就会消除,不会影响后续的计算。It should be noted that the influence of wellbore tube wave noise on the division of flow units can be eliminated in actual processing. After research and comparison, it is generally found that the influence of tube waves is relatively consistent. Whether it is eliminated or not, it has a linear effect on the geometric mean (as shown in Figure 6). Therefore, after the subsequent normalization processing, this influence will be eliminated and will not affect subsequent calculations.

步骤305,根据频率能谱曲线确定各个流动单元对应的流量比例。Step 305: determine the flow ratio corresponding to each flow unit according to the frequency spectrum curve.

由于根据常规测井的方式是根据孔隙度或饱和度对流动单元进行划分的,而且常规测井的方式所能探测的深度有限。在实际情况中,地质层本身具备一定的连通性,即井筒外地质层中的流体流动产生的噪音情况是相对连续的,而不是像常规测井的方式划分出具有间隔的储层。需要说明的是,流动单元是根据上述运算方式人为划分的单元。Since the flow units are divided according to the porosity or saturation according to the conventional logging method, and the depth that can be detected by the conventional logging method is limited. In actual situations, the geological layer itself has a certain degree of connectivity, that is, the noise generated by the fluid flow in the geological layer outside the wellbore is relatively continuous, rather than dividing the reservoir with intervals like the conventional logging method. It should be noted that the flow unit is an artificially divided unit according to the above calculation method.

示意性的,如图7所示,数据处理应用程序合成带有划分结果的噪声定量分析图像。为了和本申请实划分的结果进行比较,在图7中还包括以常规测井的方式划分后的结果。在区域61中包括射孔段、注水口、深度的结构示意图,区域62包括已划分后的流动单元对应的流体流量,区域63包括放大的频率能量谱图。由图7可以看出,常规测井方式划分的结果是流动单元是断开的、具有间隔的(如流动单元78和流动单元79,用深色区域表示流动单元中含有的流体流量,如流动单元78中的流体流量未填充满该流动单元,流动单元79中的流体流量填充满该流动单元)。Schematically, as shown in FIG7 , the data processing application program synthesizes a noise quantitative analysis image with the division result. In order to compare with the result of the actual division of the present application, FIG7 also includes the result after the division in the conventional logging method. Area 61 includes a structural schematic diagram of the perforation section, the water injection port, and the depth, area 62 includes the fluid flow corresponding to the divided flow unit, and area 63 includes an amplified frequency energy spectrum. It can be seen from FIG7 that the result of the division in the conventional logging method is that the flow unit is disconnected and has intervals (such as flow unit 78 and flow unit 79, the dark area is used to represent the fluid flow contained in the flow unit, such as the fluid flow in flow unit 78 does not fill the flow unit, and the fluid flow in flow unit 79 fills the flow unit).

本申请实施例中提供的方法划分的结果为流动单元是连续的,与频率能量谱图53的变化规律一一对应。在区域62中显示有与射孔段对应的流动单元的划分标识,分别为第一划分标识64和第二划分标识65,划分标识以横线表示,横线的长度表示流动单元的注水量(注水量在0至-2000BW/D的范围之间)。BW/D(Barrel Water/Day)表示以标准桶的容量为准,以标准桶的数量衡量注入或吸收的流体的流量。QWZI(Quantity of Water ZoneIntake)表示注入的流体流量取水区域。步骤305可替换为如下步骤:The result of the division of the method provided in the embodiment of the present application is that the flow unit is continuous, which corresponds one to one with the change law of the frequency energy spectrum 53. In area 62, the division marks of the flow units corresponding to the perforation sections are displayed, which are the first division mark 64 and the second division mark 65. The division marks are represented by horizontal lines, and the length of the horizontal line represents the injection volume of the flow unit (the injection volume is between 0 and -2000 BW/D). BW/D (Barrel Water/Day) means that the flow rate of the injected or absorbed fluid is measured by the number of standard barrels based on the capacity of the standard barrel. QWZI (Quantity of Water Zone Intake) represents the water intake area of the injected fluid flow. Step 305 can be replaced by the following steps:

步骤3051,根据频率能谱曲线指示的各个流动单元,将各个流动单元对应的噪声频谱数据分别进行累加处理,得到第三测试点数据集。Step 3051: According to each flow unit indicated by the frequency spectrum curve, the noise spectrum data corresponding to each flow unit is accumulated to obtain a third test point data set.

以表三所示的第二测试点数据集为例,将第二测试点数据集按照频率能谱曲线划分流动单元,并将表三中的序号1的测试点数据按照划分后的流动单元,以各个流动单元为单位分别进行累加处理,比如,频率能谱曲线指示流动单元1的深度为1985.23米至1987.67米,即将1985.23米处序号1的测试点数据至1987.67米处序号1的测试点数据进行累加,得到第一累加结果。该第一累加结果为流动单元1对应的噪声频谱数据(如表四中的第1列所示)。Taking the second test point data set shown in Table 3 as an example, the second test point data set is divided into flow units according to the frequency spectrum curve, and the test point data of sequence number 1 in Table 3 is accumulated in units of each flow unit according to the divided flow units. For example, the frequency spectrum curve indicates that the depth of flow unit 1 is 1985.23 meters to 1987.67 meters, that is, the test point data of sequence number 1 at 1985.23 meters to the test point data of sequence number 1 at 1987.67 meters are accumulated to obtain the first accumulation result. The first accumulation result is the noise spectrum data corresponding to flow unit 1 (as shown in the first column of Table 4).

步骤3052,对第三测试点数据集进行归一化处理,得到各个流动单元的流量比例。Step 3052: normalize the third test point data set to obtain the flow ratio of each flow unit.

将序号1的测试点数据对应的第一累加结果进行归一化处理,比如,频率能谱曲线指示流动单元1的深度为1985.23米至1987.67米,即将1985.23米处序号1的测试点数据至1987.67米处序号1的测试点数据中的每个测试点数据除以步骤3051得到的第一累加结果,然后乘以一百,得到第一归一化结果。以此类推,计算表一中同一流动单元对应的每个序号的测试点数据所对应的归一化结果,计算结果如表四中的第2列所示。The first accumulated result corresponding to the test point data of sequence number 1 is normalized. For example, the frequency spectrum curve indicates that the depth of flow unit 1 is 1985.23 meters to 1987.67 meters. That is, each test point data from the test point data of sequence number 1 at 1985.23 meters to the test point data of sequence number 1 at 1987.67 meters is divided by the first accumulated result obtained in step 3051, and then multiplied by 100 to obtain the first normalized result. Similarly, the normalized result corresponding to each test point data of the sequence number corresponding to the same flow unit in Table 1 is calculated, and the calculation results are shown in the second column of Table 4.

表四Table 4

步骤306,根据流量比例确定各个流动单元中的流体流量。Step 306, determining the fluid flow in each flow unit according to the flow ratio.

确定各个流动单元中的流体流量包括以下两种方式:There are two ways to determine the fluid flow rate in each flow unit:

1、根据生产测井计算各个流动单元对应的流体流量,步骤306可替换为如下步骤:1. Calculate the fluid flow rate corresponding to each flow unit according to the production logging. Step 306 can be replaced by the following steps:

步骤3061a,获取生产测测井过程中对应的第一流体总流量。Step 3061a, obtaining the total flow rate of the first fluid corresponding to the production logging process.

示意性的,生产测井过程中对应的第一流体总流量为2818STB/D(StandardBarrel/Day),其中,第一划分标识64划分的第一流动单元对应的流体流量为1866STB/D,第二划分标识65对应的第二流动单元对应的流体流量为953STB/D。第一划分标识64和第二划分标识65分别位于如图7所示的位置(粗横线表示)。Schematically, the total flow rate of the first fluid corresponding to the production logging process is 2818 STB/D (Standard Barrel/Day), wherein the fluid flow rate corresponding to the first flow unit divided by the first division mark 64 is 1866 STB/D, and the fluid flow rate corresponding to the second flow unit corresponding to the second division mark 65 is 953 STB/D. The first division mark 64 and the second division mark 65 are respectively located at the positions shown in FIG. 7 (indicated by the thick horizontal lines).

步骤3062a,根据第一流体总流量和各个流动单元对应的流量比例确定各个流动单元中的流体流量。Step 3062a, determining the fluid flow rate in each flow unit according to the total flow rate of the first fluid and the flow rate ratio corresponding to each flow unit.

由表四可知,各个流动单元对应的归一化结果,通过第一流体总流量分别与各个流动单元对应的归一化结果相乘,得到各个流动单元对应的流体流量。根据各个流动单元对应的流体流量计算出如图7所示的两个流动单元对应的流体流量,分别为1833STB/D和985STB/D。由此可知,本申请实施例计算的各个流动单元对应的流体流量与生产测井过程中从井筒中流入到每个水嘴的流体流量相近。As can be seen from Table 4, the normalized results corresponding to each flow unit are obtained by multiplying the normalized results corresponding to each flow unit by the total flow of the first fluid, respectively, to obtain the fluid flow corresponding to each flow unit. According to the fluid flow corresponding to each flow unit, the fluid flow corresponding to the two flow units shown in Figure 7 is calculated, which are 1833STB/D and 985STB/D respectively. It can be seen that the fluid flow corresponding to each flow unit calculated in the embodiment of the present application is similar to the fluid flow flowing from the wellbore to each water nozzle during the production logging process.

2、根据地面流量信息计算各流动单元对应的流体流量,步骤306可替换为如下步骤:2. Calculate the fluid flow rate corresponding to each flow unit according to the surface flow rate information. Step 306 can be replaced by the following steps:

步骤3061b,响应于接收到地面流量信息,根据地面流量信息和各个流体信息对应的流量比例确定注入各个流动单元的流体流量,地面流量信息用于表征向各个流动单元中注入流体时对应的总注入量。Step 3061b, in response to receiving the surface flow information, determine the fluid flow rate injected into each flow unit according to the surface flow information and the flow ratio corresponding to each fluid information, and the surface flow information is used to characterize the total injection amount corresponding to the injection of fluid into each flow unit.

地面流量信息是指外界注入井中的流体流量对应的信息,示意性的,进行注水的工作人员能够确定向井中注入的流体流量。The surface flow rate information refers to the information corresponding to the flow rate of the fluid injected into the well from the outside. Schematically, the staff performing water injection can determine the flow rate of the fluid injected into the well.

通过地面流量信息计算各个流动单元注入的流体流量与步骤3072a的实施方式一致,此处不再赘述。Calculating the fluid flow rate injected into each flow unit using the surface flow information is consistent with the implementation of step 3072a and will not be repeated here.

综上所述,本实施例的方法,通过第一测试点数据集得到的第二测试点数据集来合成频率能谱曲线,利用频率能谱曲线对井下的各个地质层进行划分,从而结合频率能谱曲线确定各个流动单元对应的流量比例,以及流动单元中的流体流量。使得本领域技术人员无需基于肉眼识别噪声的大小来确定井下流体的分布情况,直观且高效地计算井下各层的流动量,从而实现对流动单元中的流体流量进行定量分析。In summary, the method of this embodiment synthesizes a frequency spectrum curve through the second test point data set obtained from the first test point data set, and uses the frequency spectrum curve to divide each geological layer in the well, so as to determine the flow ratio corresponding to each flow unit and the fluid flow in the flow unit in combination with the frequency spectrum curve. This allows those skilled in the art to intuitively and efficiently calculate the flow volume of each layer in the well without having to identify the size of the noise based on the naked eye, thereby achieving quantitative analysis of the fluid flow in the flow unit.

利用第二测试点数据集中的深度位置数据和噪声振幅数据之间的关系合成频率能量谱图,利用频率能谱曲线描绘频率能量谱图中随着深度位置的变化,测试点的噪声振幅数据的变化,从而能够更加准确地划分流动单元。The relationship between the depth position data and the noise amplitude data in the second test point data set is used to synthesize a frequency energy spectrum, and the frequency energy spectrum curve is used to depict the changes in the noise amplitude data of the test point in the frequency energy spectrum as the depth position changes, so that the flow unit can be divided more accurately.

利用几何均值处理的方式对第一噪声振幅值进行处理,利用处理后的噪声振幅值合成频率能谱曲线,使得合成的频率能谱曲线更加准确,从而保证依赖于频率能谱曲线划分出的流动单元更加准确。The first noise amplitude value is processed by means of geometric mean processing, and the processed noise amplitude value is used to synthesize the frequency spectrum curve, so that the synthesized frequency spectrum curve is more accurate, thereby ensuring that the flow unit divided by relying on the frequency spectrum curve is more accurate.

通过流量比例以及生产测井过程中测试得到的第一流体总流量能够计算各个流动单元中的流体流量,实现对各个流动单元的流体流量进行定量分析。The fluid flow in each flow unit can be calculated through the flow ratio and the total flow of the first fluid obtained by testing during the production logging process, thereby achieving quantitative analysis of the fluid flow of each flow unit.

通过对第一测试点数据集进行筛选处理以及叠加平均处理,得到第二测试点数据集,从而实现将采集到的时间域下对应的噪声振幅数据转化为是深度域下的噪声振幅数据,保证后续准确合成频率能谱曲线。The second test point data set is obtained by screening and superimposing the first test point data set, thereby converting the corresponding noise amplitude data collected in the time domain into noise amplitude data in the depth domain, ensuring the subsequent accurate synthesis of the frequency energy spectrum curve.

在一个示例中,以向井中注水为例进行说明本申请实施例提供的基于噪声测井的流体流量确定方法,如图8所示,该方法包括如下步骤:In one example, taking water injection into a well as an example, the method for determining fluid flow rate based on noise logging provided in an embodiment of the present application is described. As shown in FIG8 , the method includes the following steps:

步骤801,加载噪声原始点测数据。Step 801, loading the original noise point measurement data.

将噪声原始点数据(第一测试点数据集)加载到数据处理应用程序中。Load the noisy raw point data (first test point data set) into a data processing application.

步骤802,优先数据中频谱幅度稳定段。Step 802, prioritize the stable spectrum amplitude segments in the data.

数据处理应用程序从第一测试点数据集中优先选取频谱幅度稳定的数据。在一些实施例中,在井中采集到的噪声稳定的情况下,数据处理应用程序对采集到的噪声频谱数据进行“掐头去尾”处理,即选取中间频段的振幅数据。该中间频段的振幅数据为第二测试点数据集。The data processing application preferentially selects data with stable spectrum amplitude from the first test point data set. In some embodiments, when the noise collected in the well is stable, the data processing application performs a "cut-off" process on the collected noise spectrum data, that is, selects the amplitude data of the middle frequency band. The amplitude data of the middle frequency band is the second test point data set.

步骤803,按照深度组合成频率能量谱图。Step 803, combining into a frequency energy spectrum according to the depth.

将选取后的振幅数据(第二测试点数据集)按照深度值大小进行排序,得到排序后的第二测试点数据集,根据排序后的测试点数据集合成频率能量谱图。The selected amplitude data (second test point data set) are sorted according to the depth value to obtain a sorted second test point data set, and a frequency energy spectrum is synthesized according to the sorted test point data set.

步骤804,求取频率能量的几何均值(FSE)并将其归一化。Step 804, obtain the geometric mean of frequency energy (FSE) and normalize it.

根据上述实施例中的公式对同一深度位置处的噪声幅度值进行几何均值计算,得到同一深度位置处的测试点对应的FSE值。对FSE值进行归一化处理后得到频谱能量所占比。According to the formula in the above embodiment, the geometric mean of the noise amplitude values at the same depth position is calculated to obtain the FSE value corresponding to the test point at the same depth position. The FSE value is normalized to obtain the proportion of spectrum energy.

步骤805,按照频率能量谱图划分层位,累计计算各层位频谱能量所占比。Step 805, dividing the layers according to the frequency energy spectrum, and cumulatively calculating the proportion of the spectrum energy of each layer.

频率能量谱图中显示有频率能谱曲线,用于指示对地质层划分后的各个流动单元,按照各个流动单元计算各层位的频谱能量所占比(对FSE值进行归一化处理后得到的百分比)。参见步骤305的实施方式,此处不再赘述。The frequency energy spectrum diagram displays a frequency energy spectrum curve, which is used to indicate each flow unit after the geological layer is divided, and the frequency spectrum energy proportion of each layer is calculated according to each flow unit (the percentage obtained after normalizing the FSE value). See the implementation method of step 305, which will not be repeated here.

步骤806,是否有生产测井流量资料。Step 806: Is there any production logging flow data?

数据处理应用程序判断是否接收到生产测井流量资料,生产测井流量资料包括水的总注入量。若数据处理应用程序未接收到生产测井流量资料,进入步骤807;若数据处理应用程序接收到生产测井流量资料,进入步骤808。The data processing application determines whether the production logging flow data is received, and the production logging flow data includes the total water injection volume. If the data processing application does not receive the production logging flow data, the process proceeds to step 807; if the data processing application receives the production logging flow data, the process proceeds to step 808.

步骤807,若无生产测井流量资料,则接收地面流量信息。Step 807: If there is no production logging flow data, then receive surface flow information.

在井外注水的工作人员可确定向井中注入水的总流量,根据该总流量和步骤805计算得到的各层为频谱能量所占比确定各个层位对应的注入井内的流体流量。The staff who inject water outside the well can determine the total flow rate of water injected into the well, and determine the fluid flow rate of the injection well corresponding to each layer based on the total flow rate and the proportion of spectrum energy of each layer calculated in step 805.

步骤808,若有生产测井流量资料,则按照总流量和各层位频谱能量占比进行总流量分配。Step 808: If there is production logging flow data, the total flow is distributed according to the total flow and the proportion of spectrum energy of each layer.

若数据处理应用程序接收到生产测井流量资料,根据生产测井资料中的总注入量和步骤805计算得到的各层为频谱能量所占比确定各个层位对应的注入井内的流体流量。If the data processing application receives production logging flow data, the fluid flow in the injection well corresponding to each layer is determined based on the total injection volume in the production logging data and the proportion of spectrum energy of each layer calculated in step 805.

综上所述,本实施例提供的方法,通过基于对各层位频谱能量占比能够计算出各层位对应的流体流量,从而实现了对流体流量的定量分析。In summary, the method provided in this embodiment can calculate the fluid flow corresponding to each layer based on the proportion of the spectrum energy of each layer, thereby realizing quantitative analysis of the fluid flow.

需要说明的是,即使没有生产测井流量资料或地面流量信息等相关信息,也能够根据频率能谱曲线指示的百分比去调节剖面和优化设计井中油管等结构的尺寸,达到灵活调节流量的目的。It should be noted that even without relevant information such as production logging flow data or surface flow information, the profile can be adjusted and the size of the structure such as the oil pipe in the well can be optimized according to the percentage indicated by the frequency spectrum curve to achieve the purpose of flexible flow adjustment.

目前国际上对管外流体流动情况的定量评价主要还是基于温度建模,而非使用噪声频谱数据本身。因此对噪声资料的评价还是停留在定性评价阶段。本申请实施例的方法将噪声资料从定性实质提升到定量阶段;通过本申请实施例提供的方法实现的数据处理应用程序能够直观、高效地求取管外各层的流动量,给出具体值;彻底摒弃基于温度建模来定量评价注水井管外分层吸水量。温度建模会遇到诸多不确定性因素的影响,定量评价的偏差难以控制。温度建模本身具有温度受干扰因素多的多解性问题,而且还会带来很多其他的问题。比如,必须要关井测井温进行对比,而且多次测量,看温度相对于原始地温梯度的变化速度。这种情况效率极低,同时,温度还受到无法预知的影响,比如串槽,临井的开发等,而本申请实施例提供的方法能够避免温度因素的干扰,无需关闭测井即可确定各个流动单元的流体流量,提高测量效率。At present, the quantitative evaluation of the flow of fluid outside the pipe is mainly based on temperature modeling, rather than using the noise spectrum data itself. Therefore, the evaluation of noise data still remains in the qualitative evaluation stage. The method of the embodiment of the present application elevates the noise data from the qualitative essence to the quantitative stage; the data processing application implemented by the method provided by the embodiment of the present application can intuitively and efficiently obtain the flow of each layer outside the pipe and give a specific value; and completely abandon the quantitative evaluation of the water absorption of the layer outside the pipe of the injection well based on temperature modeling. Temperature modeling will be affected by many uncertain factors, and the deviation of quantitative evaluation is difficult to control. Temperature modeling itself has the problem of multiple solutions of temperature being affected by many interference factors, and it will also bring many other problems. For example, it is necessary to shut down the well logging temperature for comparison, and measure it multiple times to see the speed of temperature change relative to the original geothermal gradient. This situation is extremely inefficient. At the same time, the temperature is also affected by unpredictable factors, such as stringing, the development of adjacent wells, etc., and the method provided by the embodiment of the present application can avoid the interference of temperature factors, and the fluid flow of each flow unit can be determined without shutting down the logging, thereby improving the measurement efficiency.

图9示出了本申请一个示例性实施例提供的基于噪声测井的流体流量的确定装置的结构框图,该装置包括如下部分:FIG9 shows a structural block diagram of a device for determining fluid flow based on noise logging provided by an exemplary embodiment of the present application, the device comprising the following parts:

获取模块910,用于获取噪声测井过程中的n个深度位置处的第一测试点数据集,第一测试点数据集包括时间数据和时间域下的噪声频谱数据,n为正整数;An acquisition module 910 is used to acquire a first test point data set at n depth positions in a noise logging process, where the first test point data set includes time data and noise spectrum data in the time domain, and n is a positive integer;

处理模块920,用于对第一测试点数据集进行处理,得到第二测试点数据集,第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据;A processing module 920 is used to process the first test point data set to obtain a second test point data set, where the second test point data set includes depth position data and noise spectrum data in a depth domain;

所述处理模块920,用于根据第二测试点数据集合成频率能谱曲线,频率能谱曲线用于指示对井下的地质层进行划分后的各个流动单元;The processing module 920 is used to synthesize a frequency spectrum curve according to the second test point data set, and the frequency spectrum curve is used to indicate each flow unit after the geological layer under the well is divided;

所述处理模块920,用于根据频率能谱曲线确定各个流动单元对应的流量比例;The processing module 920 is used to determine the flow ratio corresponding to each flow unit according to the frequency spectrum curve;

所述处理模块920,用于根据流量比例确定各个流动单元中的流体流量。The processing module 920 is used to determine the fluid flow in each flow unit according to the flow ratio.

在一个可选的实施例中,所述处理模块920,用于根据第二测试点数据集合成频率能量谱图,频率能量谱图包括第二测试点数据集中处于不同的深度位置的测试点对应的噪声频谱数据;从频率能量谱图中提取频率能谱曲线。In an optional embodiment, the processing module 920 is used to synthesize a frequency energy spectrum diagram based on the second test point data set, the frequency energy spectrum diagram including noise spectrum data corresponding to test points at different depth positions in the second test point data set; and extract a frequency energy spectrum curve from the frequency energy spectrum diagram.

在一个可选的实施例中,所述处理模块920,用于从频率能量谱图中提取同一深度域下的第一噪声频谱数据;对各个深度域下的第一噪声频谱数据进行几何均值处理,得到各个深度域下的第二噪声频谱数据;根据第二噪声频谱数据得到频率能谱曲线。In an optional embodiment, the processing module 920 is used to extract first noise spectrum data in the same depth domain from the frequency energy spectrum diagram; perform geometric mean processing on the first noise spectrum data in each depth domain to obtain second noise spectrum data in each depth domain; and obtain a frequency energy spectrum curve based on the second noise spectrum data.

在一个可选的实施例中,所述处理模块920,用于根据频率能谱曲线指示的各个流动单元,将各个流动单元对应的噪声频谱数据分别进行累加处理,得到第三测试点数据集;对第三测试点数据集进行归一化处理,得到各个流动单元对应的流量比例。In an optional embodiment, the processing module 920 is used to accumulate the noise spectrum data corresponding to each flow unit according to the flow unit indicated by the frequency spectrum curve to obtain a third test point data set; and normalize the third test point data set to obtain the flow ratio corresponding to each flow unit.

在一个可选的实施例中,所述获取模块910,用于获取生产测井过程中对应的第一流体总流量;所述处理模块920,用于根据第一流体总流量和各个流动单元对应的流量比例确定各个流动单元中的流体流量。In an optional embodiment, the acquisition module 910 is used to obtain the total flow rate of the first fluid corresponding to the production logging process; the processing module 920 is used to determine the fluid flow rate in each flow unit based on the total flow rate of the first fluid and the flow rate ratio corresponding to each flow unit.

在一个可选的实施例中,所述处理模块920,用于响应于接收到地面流量信息,根据地面流量信息和各个流动单元对应的流量比例确定注入各个流动单元中的流体流量,地面流量信息用于表征向各个流动单元中注入流体时对应的总注入量。In an optional embodiment, the processing module 920 is used to determine the fluid flow rate injected into each flow unit in response to receiving ground flow information, based on the ground flow information and the flow ratio corresponding to each flow unit, and the ground flow information is used to characterize the total injection amount corresponding to the injection of fluid into each flow unit.

在一个可选的实施例中,所述处理模块920,用于对第一测试点数据集进行筛选处理,得到筛选后的第一测试点数据集;对筛选后的第一测试点数据集中处于同一深度位置处的m个测试点对应的测试点数据进行叠加平均处理,得到第二测试点数据集,m为正整数。In an optional embodiment, the processing module 920 is used to filter the first test point data set to obtain a filtered first test point data set; and to perform superposition and averaging processing on the test point data corresponding to m test points at the same depth position in the filtered first test point data set to obtain a second test point data set, where m is a positive integer.

综上所述,本实施例提供的装置,通过第一测试点数据得到的第二测试点数据集来合成频率能谱曲线,利用频率能谱曲线对井下的各个地质层进行划分,从而结合第一测试点数据集和频率能谱曲线确定各个流动单元对应的流量比例,以及流动单元中的流体流量。无需基于肉眼识别噪声的大小来确定井下流体的分布情况,直观且高效地计算井下各层的流动量,从而实现对流动单元中的流体流量进行定量分析。In summary, the device provided in this embodiment synthesizes a frequency spectrum curve through the second test point data set obtained from the first test point data, and uses the frequency spectrum curve to divide the various geological layers in the well, so as to determine the flow ratio corresponding to each flow unit and the fluid flow in the flow unit by combining the first test point data set and the frequency spectrum curve. There is no need to determine the distribution of the fluid in the well based on the size of the noise identified by the naked eye, and the flow amount of each layer in the well is calculated intuitively and efficiently, thereby realizing quantitative analysis of the fluid flow in the flow unit.

利用第二测试点数据集中的深度位置数据和噪声振幅数据之间的关系合成频率能量谱图,利用频率能谱曲线描绘频率能量谱图中随着深度位置的变化,测试点的噪声振幅数据的变化,从而能够更加准确地划分流动单元。The relationship between the depth position data and the noise amplitude data in the second test point data set is used to synthesize a frequency energy spectrum, and the frequency energy spectrum curve is used to depict the changes in the noise amplitude data of the test point in the frequency energy spectrum as the depth position changes, so that the flow unit can be divided more accurately.

利用几何均值处理的方式对第一噪声振幅值进行处理,利用处理后的噪声振幅值合成频率能谱曲线,使得合成的频率能谱曲线更加准确,从而保证依赖于频率能谱曲线划分出的流动单元更加准确。The first noise amplitude value is processed by means of geometric mean processing, and the processed noise amplitude value is used to synthesize the frequency spectrum curve, so that the synthesized frequency spectrum curve is more accurate, thereby ensuring that the flow unit divided by relying on the frequency spectrum curve is more accurate.

通过流量比例以及生产测井过程中测试得到的第一流体总流量能够计算各个流动单元中的流体流量,实现对各个流动单元的流体流量进行定量分析。The fluid flow in each flow unit can be calculated through the flow ratio and the total flow of the first fluid obtained by testing during the production logging process, thereby achieving quantitative analysis of the fluid flow of each flow unit.

通过对第一测试点数据集进行筛选处理以及叠加平均处理,得到第二测试点数据集,从而实现将采集到的时间域下对应的噪声振幅数据转化为是深度域下的噪声振幅数据,保证后续准确合成频率能谱曲线。The second test point data set is obtained by screening and superimposing the first test point data set, so as to convert the corresponding noise amplitude data collected in the time domain into noise amplitude data in the depth domain, thereby ensuring the subsequent accurate synthesis of the frequency energy spectrum curve.

需要说明的是:上述实施例提供的基于噪声测井的流体流量的确定装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的基于噪声测井的流体流量的确定装置与基于噪声测井的流体流量的确定方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that: the device for determining fluid flow based on noise logging provided in the above embodiment is only illustrated by the division of the above functional modules. In practical applications, the above functions can be assigned to different functional modules as needed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. In addition, the device for determining fluid flow based on noise logging provided in the above embodiment and the method for determining fluid flow based on noise logging belong to the same concept. The specific implementation process is detailed in the method embodiment and will not be repeated here.

图10示出了本申请一个示例性实施例提供的计算机设备1000的结构框图。该计算机设备1000可以是便携式移动终端,比如:智能手机、平板电脑、MP3播放器(MovingPicture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器。计算机设备1000还可能被称为用户设备、便携式终端等其他名称。FIG10 shows a block diagram of a computer device 1000 provided by an exemplary embodiment of the present application. The computer device 1000 may be a portable mobile terminal, such as a smart phone, a tablet computer, an MP3 player (Moving Picture Experts Group Audio Layer III), an MP4 player (Moving Picture Experts Group Audio Layer IV). The computer device 1000 may also be called a user device, a portable terminal, or other names.

通常,计算机设备1000包括有:处理器1001和存储器1002。Typically, the computer device 1000 includes a processor 1001 and a memory 1002 .

处理器1001可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器1001可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器1001也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central ProcessingUnit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器1001可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器1001还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。The processor 1001 may include one or more processing cores, such as a 4-core processor, an 8-core processor, etc. The processor 1001 may be implemented in at least one hardware form of DSP (Digital Signal Processing), FPGA (Field-Programmable Gate Array), and PLA (Programmable Logic Array). The processor 1001 may also include a main processor and a coprocessor. The main processor is a processor for processing data in the awake state, also known as a CPU (Central Processing Unit); the coprocessor is a low-power processor for processing data in the standby state. In some embodiments, the processor 1001 may be integrated with a GPU (Graphics Processing Unit), which is responsible for rendering and drawing the content to be displayed on the display screen. In some embodiments, the processor 1001 may also include an AI (Artificial Intelligence) processor, which is used to process computing operations related to machine learning.

存储器1002可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是有形的和非暂态的。存储器1002还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器1002中的非暂态的计算机可读存储介质用于存储至少一个指令,该至少一个指令用于被处理器1001所执行以实现本申请实施例中提供的基于噪声测井的流体流量的确定方法。The memory 1002 may include one or more computer-readable storage media, which may be tangible and non-transitory. The memory 1002 may also include a high-speed random access memory, and a non-volatile memory, such as one or more disk storage devices, flash memory storage devices. In some embodiments, the non-transitory computer-readable storage medium in the memory 1002 is used to store at least one instruction, which is used to be executed by the processor 1001 to implement the method for determining the fluid flow rate based on noise logging provided in the embodiments of the present application.

在一些实施例中,计算机设备1000还可选包括有:外围设备接口1003和至少一个外围设备。具体地,外围设备包括:射频电路1004、触摸显示屏1005、摄像头组件1006、音频电路1007、定位组件1008和电源1009中的至少一种。In some embodiments, the computer device 1000 may further include: a peripheral device interface 1003 and at least one peripheral device. Specifically, the peripheral device includes: at least one of a radio frequency circuit 1004, a touch display screen 1005, a camera assembly 1006, an audio circuit 1007, a positioning assembly 1008 and a power supply 1009.

外围设备接口1003可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器1001和存储器1002。在一些实施例中,处理器1001、存储器1002和外围设备接口1003被集成在同一芯片或电路板上;在一些其他实施例中,处理器1001、存储器1002和外围设备接口1003中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。The peripheral device interface 1003 may be used to connect at least one peripheral device related to I/O (Input/Output) to the processor 1001 and the memory 1002. In some embodiments, the processor 1001, the memory 1002, and the peripheral device interface 1003 are integrated on the same chip or circuit board; in some other embodiments, any one or two of the processor 1001, the memory 1002, and the peripheral device interface 1003 may be implemented on a separate chip or circuit board, which is not limited in this embodiment.

射频电路1004用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路1004通过电磁信号与通信网络以及其他通信设备进行通信。射频电路1004将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路1004包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等。射频电路1004可以通过至少一种无线通信协议来与其它终端进行通信。该无线通信协议包括但不限于:万维网、城域网、内联网、各代移动通信网络(2G、3G、4G、5G及它们的组合)、无线局域网和无线保真网络(Wireless Fidelity,WiFi)。在一些实施例中,射频电路1004还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本申请对此不加以限定。The radio frequency circuit 1004 is used to receive and transmit RF (Radio Frequency) signals, also known as electromagnetic signals. The radio frequency circuit 1004 communicates with the communication network and other communication devices through electromagnetic signals. The radio frequency circuit 1004 converts the electrical signal into an electromagnetic signal for transmission, or converts the received electromagnetic signal into an electrical signal. Optionally, the radio frequency circuit 1004 includes: an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a user identity module card, etc. The radio frequency circuit 1004 can communicate with other terminals through at least one wireless communication protocol. The wireless communication protocol includes but is not limited to: the World Wide Web, a metropolitan area network, an intranet, various generations of mobile communication networks (2G, 3G, 4G, 5G and combinations thereof), a wireless local area network, and a wireless fidelity network (Wireless Fidelity, WiFi). In some embodiments, the radio frequency circuit 1004 may also include circuits related to NFC (Near Field Communication, short-range wireless communication), which is not limited in this application.

触摸显示屏1005用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。触摸显示屏1005还具有采集在触摸显示屏1005的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器1001进行处理。触摸显示屏1005用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,触摸显示屏1005可以为一个,设置计算机设备1000的前面板;在另一些实施例中,触摸显示屏1005可以为至少两个,分别设置在计算机设备1000的不同表面或呈折叠设计;在另一些实施例中,触摸显示屏1005可以是柔性显示屏,设置在计算机设备1000的弯曲表面上或折叠面上。甚至,触摸显示屏1005还可以设置成非矩形的不规则图形,也即异形屏。触摸显示屏1005可以采用LCD(Liquid Crystal Display,液晶显示器)、OLED(OrganicLight-Emitting Diode,有机发光二极管)等材质制备。The touch display screen 1005 is used to display a UI (User Interface). The UI may include graphics, text, icons, videos, and any combination thereof. The touch display screen 1005 also has the ability to collect touch signals on the surface or above the surface of the touch display screen 1005. The touch signal may be input to the processor 1001 as a control signal for processing. The touch display screen 1005 is used to provide virtual buttons and/or virtual keyboards, also known as soft buttons and/or soft keyboards. In some embodiments, the touch display screen 1005 may be one, and the front panel of the computer device 1000 is set; in other embodiments, the touch display screen 1005 may be at least two, which are respectively set on different surfaces of the computer device 1000 or are folded; in other embodiments, the touch display screen 1005 may be a flexible display screen, which is set on a curved surface or a folded surface of the computer device 1000. Even, the touch display screen 1005 can also be set to a non-rectangular irregular shape, that is, a special-shaped screen. The touch display screen 1005 can be made of materials such as LCD (Liquid Crystal Display) and OLED (Organic Light-Emitting Diode).

摄像头组件1006用于采集图像或视频。可选地,摄像头组件1006包括前置摄像头和后置摄像头。通常,前置摄像头用于实现视频通话或自拍,后置摄像头用于实现照片或视频的拍摄。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能,主摄像头和广角摄像头融合实现全景拍摄以及VR(Virtual Reality,虚拟现实)拍摄功能。在一些实施例中,摄像头组件1006还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。The camera assembly 1006 is used to capture images or videos. Optionally, the camera assembly 1006 includes a front camera and a rear camera. Typically, the front camera is used to realize video calls or selfies, and the rear camera is used to realize the shooting of photos or videos. In some embodiments, there are at least two rear cameras, which are any one of a main camera, a depth of field camera, and a wide-angle camera, so as to realize the fusion of the main camera and the depth of field camera to realize the background blur function, and the fusion of the main camera and the wide-angle camera to realize panoramic shooting and VR (Virtual Reality) shooting functions. In some embodiments, the camera assembly 1006 may also include a flash. The flash can be a monochrome temperature flash or a dual-color temperature flash. A dual-color temperature flash refers to a combination of a warm light flash and a cold light flash, which can be used for light compensation at different color temperatures.

音频电路1007用于提供用户和计算机设备1000之间的音频接口。音频电路1007可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器1001进行处理,或者输入至射频电路1004以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在计算机设备1000的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器1001或射频电路1004的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路1007还可以包括耳机插孔。The audio circuit 1007 is used to provide an audio interface between the user and the computer device 1000. The audio circuit 1007 may include a microphone and a speaker. The microphone is used to collect sound waves from the user and the environment, and convert the sound waves into electrical signals and input them into the processor 1001 for processing, or input them into the radio frequency circuit 1004 to achieve voice communication. For the purpose of stereo acquisition or noise reduction, there may be multiple microphones, which are respectively arranged at different parts of the computer device 1000. The microphone may also be an array microphone or an omnidirectional acquisition microphone. The speaker is used to convert the electrical signal from the processor 1001 or the radio frequency circuit 1004 into sound waves. The speaker may be a traditional film speaker or a piezoelectric ceramic speaker. When the speaker is a piezoelectric ceramic speaker, it can not only convert the electrical signal into sound waves audible to humans, but also convert the electrical signal into sound waves inaudible to humans for purposes such as distance measurement. In some embodiments, the audio circuit 1007 may also include a headphone jack.

定位组件1008用于定位计算机设备1000的当前地理位置,以实现导航或LBS(Location Based Service,基于位置的服务)。定位组件1008可以是基于美国的GPS(Global Positioning System,全球定位系统)、中国的北斗系统或俄罗斯的伽利略系统的定位组件。The positioning component 1008 is used to locate the current geographical location of the computer device 1000 to implement navigation or LBS (Location Based Service). The positioning component 1008 can be a positioning component based on the US GPS (Global Positioning System), China's Beidou system or Russia's Galileo system.

电源1009用于为计算机设备1000中的各个组件进行供电。电源1009可以是交流电、直流电、一次性电池或可充电电池。当电源1009包括可充电电池时,该可充电电池可以是有线充电电池或无线充电电池。有线充电电池是通过有线线路充电的电池,无线充电电池是通过无线线圈充电的电池。该可充电电池还可以用于支持快充技术。The power supply 1009 is used to power various components in the computer device 1000. The power supply 1009 can be an alternating current, a direct current, a disposable battery, or a rechargeable battery. When the power supply 1009 includes a rechargeable battery, the rechargeable battery can be a wired rechargeable battery or a wireless rechargeable battery. A wired rechargeable battery is a battery that is charged through a wired line, and a wireless rechargeable battery is a battery that is charged through a wireless coil. The rechargeable battery can also be used to support fast charging technology.

本领域技术人员可以理解,图10中示出的结构并不构成对计算机设备1000的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。Those skilled in the art will appreciate that the structure shown in FIG. 10 does not limit the computer device 1000 , and may include more or fewer components than shown in the figure, or combine certain components, or adopt a different component arrangement.

本申请实施例还提供了一种计算机设备,该计算机设备包括处理器和存储器,存储器中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上所述的基于噪声测井的流体流量的确定方法。An embodiment of the present application also provides a computer device, which includes a processor and a memory, wherein the memory stores at least one instruction, at least one program, a code set or an instruction set, and the at least one instruction, at least one program, a code set or an instruction set is loaded and executed by the processor to implement the method for determining fluid flow based on noise logging as described above.

本申请实施例还提供了一种计算机可读存储介质,该存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上所述的基于噪声测井的流体流量的确定方法。An embodiment of the present application also provides a computer-readable storage medium, which stores at least one instruction, at least one program, code set or instruction set, and the at least one instruction, at least one program, code set or instruction set is loaded and executed by a processor to implement the method for determining fluid flow based on noise logging as described above.

本申请实施例还提供了一种计算机程序产品或计算机程序,所述计算机程序产品或计算机程序包括计算机指令,所述计算机指令存储在计算机可读存储介质中。计算机设备的处理器从所述计算机可读存储介质读取所述计算机指令,所述处理器执行所述计算机指令,使得所述计算机设备执行如上方面所述的基于噪声测井的流体流量的确定方法。The embodiment of the present application also provides a computer program product or a computer program, wherein the computer program product or the computer program includes computer instructions, and the computer instructions are stored in a computer-readable storage medium. A processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the method for determining fluid flow based on noise logging as described above.

本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。A person skilled in the art will understand that all or part of the steps to implement the above embodiments may be accomplished by hardware or by instructing related hardware through a program, and the program may be stored in a computer-readable storage medium, and the above-mentioned storage medium may be a read-only memory, a disk or an optical disk, etc.

以上所述仅为本申请的可选的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above description is only an optional embodiment of the present application and is not intended to limit the present application. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present application shall be included in the protection scope of the present application.

Claims (5)

1.一种基于噪声测井的流体流量的确定方法,其特征在于,所述方法包括:1. A method for determining fluid flow based on noise logging, characterized in that the method comprises: 获取噪声测井过程中的n个深度位置中每一深度位置的多个测试点的第一测试点数据集,所述第一测试点数据集包括时间数据和时间域下的噪声频谱数据,n为正整数;Acquire a first test point data set of multiple test points at each depth position of n depth positions in the noise logging process, wherein the first test point data set includes time data and noise spectrum data in the time domain, and n is a positive integer; 将所述第一测试点数据集中的噪声频谱数据按照噪声频率进行划分,得到各个噪声频率区间;将所述噪声频谱数据的振幅按照各个噪声频率区间绘制噪声数据图像,将噪声存在异常波动时的噪声频率区间对应的噪声频谱数据进行滤除,得到筛选后的第一测试点数据集;The noise spectrum data in the first test point data set is divided according to the noise frequency to obtain various noise frequency intervals; the amplitude of the noise spectrum data is plotted according to each noise frequency interval to draw a noise data image, and the noise spectrum data corresponding to the noise frequency interval when the noise has abnormal fluctuations is filtered out to obtain a filtered first test point data set; 对所述筛选后的第一测试点数据集中处于同一深度位置处的m个测试点对应的测试点数据进行叠加平均处理,得到第二测试点数据集,所述第二测试点数据集包括多个深度位置处的测试点对应的噪声频谱数据,m为正整数,所述第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据;Performing superposition and averaging processing on the test point data corresponding to m test points at the same depth position in the filtered first test point data set to obtain a second test point data set, wherein the second test point data set includes noise spectrum data corresponding to the test points at multiple depth positions, m is a positive integer, and the second test point data set includes depth position data and noise spectrum data in a depth domain; 根据所述第二测试点数据集合成频率能量谱图,所述频率能量谱图包括所述第二测试点数据集中处于不同的深度位置的测试点对应的噪声频谱数据;synthesizing a frequency energy spectrum according to the second test point data set, wherein the frequency energy spectrum includes noise spectrum data corresponding to test points at different depth positions in the second test point data set; 从所述频率能量谱图中提取同一深度域下的第一噪声频谱数据;Extracting first noise spectrum data in the same depth domain from the frequency energy spectrum; 对各个深度域下的第一噪声频谱数据进行几何均值处理,得到各个所述深度域下的第二噪声频谱数据;Performing geometric mean processing on the first noise spectrum data in each depth domain to obtain the second noise spectrum data in each depth domain; 根据所述第二噪声频谱数据得到频率能谱曲线,所述频率能谱曲线用于指示对井下的地质层进行划分后的各个流动单元;Obtaining a frequency energy spectrum curve according to the second noise spectrum data, wherein the frequency energy spectrum curve is used to indicate each flow unit after the geological layer under the well is divided; 根据所述频率能谱曲线指示的各个所述流动单元,将各个所述流动单元对应的噪声频谱数据分别进行累加处理,得到第三测试点数据集;对所述第三测试点数据集进行归一化处理,得到各个所述流动单元对应的流量比例;According to each of the flow units indicated by the frequency spectrum curve, the noise spectrum data corresponding to each of the flow units are respectively accumulated to obtain a third test point data set; the third test point data set is normalized to obtain a flow ratio corresponding to each of the flow units; 根据所述流量比例确定各个所述流动单元中的流体流量,所述流体流量包括流动单元中存储的流体的流量和外界注入流动单元的流体的流量中的至少一种;Determining the fluid flow rate in each of the flow units according to the flow rate ratio, wherein the fluid flow rate includes at least one of the flow rate of the fluid stored in the flow unit and the flow rate of the fluid injected into the flow unit from the outside; 其中所述根据所述流量比例确定各个所述流动单元中的流体流量,包括:The step of determining the fluid flow rate in each of the flow units according to the flow rate ratio includes: 响应于接收到地面流量信息,根据所述地面流量信息和各个所述流动单元对应的流量比例确定注入各个所述流动单元中的流体流量,所述地面流量信息用于表征向各个所述流动单元中注入流体时对应的总注入量。In response to receiving the surface flow information, the fluid flow injected into each of the flow units is determined according to the surface flow information and the flow ratio corresponding to each of the flow units, and the surface flow information is used to characterize the total injection amount corresponding to the injection of fluid into each of the flow units. 2.根据权利要求1所述的方法,其特征在于,所述根据所述流量比例确定各个所述流动单元中的流体流量,还包括:2. The method according to claim 1, characterized in that the step of determining the fluid flow in each of the flow units according to the flow ratio further comprises: 获取生产测井过程中对应的第一流体总流量;Obtaining the total flow rate of the first fluid corresponding to the production logging process; 根据所述第一流体总流量和各个所述流动单元对应的流量比例确定各个所述流动单元中的流体流量。The fluid flow rate in each of the flow units is determined according to the total flow rate of the first fluid and the flow rate ratio corresponding to each of the flow units. 3.一种基于噪声测井的流体流量的确定装置,其特征在于,所述装置包括:3. A device for determining fluid flow based on noise logging, characterized in that the device comprises: 获取模块,用于获取噪声测井过程中的n个深度位置中每一深度位置的多个测试点的第一测试点数据集,所述第一测试点数据集包括时间数据和时间域下的噪声频谱数据,n为正整数;An acquisition module, used to acquire a first test point data set of multiple test points at each depth position of n depth positions in a noise logging process, wherein the first test point data set includes time data and noise spectrum data in the time domain, and n is a positive integer; 处理模块,用于将所述第一测试点数据集中的噪声频谱数据按照噪声频率进行划分,得到各个噪声频率区间;将所述噪声频谱数据的振幅按照各个噪声频率区间绘制噪声数据图像,将噪声存在异常波动时的噪声频率区间对应的噪声频谱数据进行滤除,得到筛选后的第一测试点数据集;对所述筛选后的第一测试点数据集中处于同一深度位置处的m个测试点对应的测试点数据进行叠加平均处理,得到第二测试点数据集,所述第二测试点数据集包括多个深度位置处的测试点对应的噪声频谱数据,m为正整数,所述第二测试点数据集包括深度位置数据和深度域下的噪声频谱数据;A processing module is used to divide the noise spectrum data in the first test point data set according to the noise frequency to obtain various noise frequency intervals; draw noise data images according to the amplitudes of the noise spectrum data in various noise frequency intervals, and filter out the noise spectrum data corresponding to the noise frequency interval when the noise has abnormal fluctuations to obtain a screened first test point data set; perform superposition and averaging processing on the test point data corresponding to m test points at the same depth position in the screened first test point data set to obtain a second test point data set, wherein the second test point data set includes noise spectrum data corresponding to the test points at multiple depth positions, m is a positive integer, and the second test point data set includes depth position data and noise spectrum data in the depth domain; 所述处理模块,用于根据所述第二测试点数据集合成频率能量谱图,所述频率能量谱图包括所述第二测试点数据集中处于不同的深度位置的测试点对应的噪声频谱数据;从所述频率能量谱图中提取同一深度域下的第一噪声频谱数据;对各个深度域下的第一噪声频谱数据进行几何均值处理,得到各个所述深度域下的第二噪声频谱数据;根据所述第二噪声频谱数据得到频率能谱曲线,所述频率能谱曲线用于指示对井下的地质层进行划分后的各个流动单元;The processing module is used to synthesize a frequency energy spectrum according to the second test point data set, wherein the frequency energy spectrum includes noise spectrum data corresponding to test points at different depth positions in the second test point data set; extract first noise spectrum data in the same depth domain from the frequency energy spectrum; perform geometric mean processing on the first noise spectrum data in each depth domain to obtain second noise spectrum data in each depth domain; obtain a frequency energy spectrum curve according to the second noise spectrum data, wherein the frequency energy spectrum curve is used to indicate each flow unit after the geological layer in the well is divided; 所述处理模块,用于根据所述频率能谱曲线指示的各个所述流动单元,将各个所述流动单元对应的噪声频谱数据分别进行累加处理,得到第三测试点数据集;对所述第三测试点数据集进行归一化处理,得到各个所述流动单元对应的流量比例;The processing module is used to perform accumulation processing on the noise spectrum data corresponding to each of the flow units indicated by the frequency spectrum curve to obtain a third test point data set; perform normalization processing on the third test point data set to obtain a flow ratio corresponding to each of the flow units; 所述处理模块,用于根据所述流量比例确定各个所述流动单元中的流体流量,所述流体流量包括流动单元中存储的流体的流量和外界注入流动单元的流体的流量中的至少一种;The processing module is used to determine the fluid flow rate in each of the flow units according to the flow rate ratio, and the fluid flow rate includes at least one of the flow rate of the fluid stored in the flow unit and the flow rate of the fluid injected into the flow unit from the outside; 所述处理模块,用于:响应于接收到地面流量信息,根据所述地面流量信息和各个所述流动单元对应的流量比例确定注入各个所述流动单元中的流体流量,所述地面流量信息用于表征向各个所述流动单元中注入流体时对应的总注入量。The processing module is used to: in response to receiving ground flow information, determine the fluid flow rate injected into each flow unit according to the ground flow information and the flow ratio corresponding to each flow unit, and the ground flow information is used to characterize the total injection amount corresponding to the injection of fluid into each flow unit. 4.一种计算机设备,其特征在于,所述计算机设备包括处理器和存储器,所述存储器中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如权利要求1至2任一所述的基于噪声测井的流体流量的确定方法。4. A computer device, characterized in that the computer device includes a processor and a memory, wherein the memory stores at least one instruction, at least one program, a code set or an instruction set, and the at least one instruction, the at least one program, the code set or the instruction set is loaded and executed by the processor to implement the method for determining fluid flow based on noise logging as described in any one of claims 1 to 2. 5.一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由处理器加载并执行以实现如权利要求1至2任一所述的基于噪声测井的流体流量的确定方法。5. A computer-readable storage medium, characterized in that the readable storage medium stores at least one instruction, at least one program, a code set or an instruction set, and the at least one instruction, the at least one program, the code set or the instruction set is loaded and executed by a processor to implement the method for determining fluid flow based on noise logging as described in any one of claims 1 to 2.
CN202011228597.7A 2020-11-06 2020-11-06 Method, device, equipment and medium for determining fluid flow based on noise logging Active CN114458306B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011228597.7A CN114458306B (en) 2020-11-06 2020-11-06 Method, device, equipment and medium for determining fluid flow based on noise logging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011228597.7A CN114458306B (en) 2020-11-06 2020-11-06 Method, device, equipment and medium for determining fluid flow based on noise logging

Publications (2)

Publication Number Publication Date
CN114458306A CN114458306A (en) 2022-05-10
CN114458306B true CN114458306B (en) 2024-10-29

Family

ID=81404355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011228597.7A Active CN114458306B (en) 2020-11-06 2020-11-06 Method, device, equipment and medium for determining fluid flow based on noise logging

Country Status (1)

Country Link
CN (1) CN114458306B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148222B (en) * 2022-08-31 2023-01-03 安徽声讯信息技术有限公司 Industrial fluid detection method and system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173473A (en) * 1982-04-06 1983-10-12 Tech Res & Dev Inst Of Japan Def Agency Sonar signal display processing system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2382196C1 (en) * 2008-06-20 2010-02-20 Государственное образовательное учреждение высшего профессионального образования "Тюменский государственный нефтегазовый университет" Individual oil reservoirs production rate continuous control method during multi zone production
GB2511657B (en) * 2009-05-27 2014-12-31 Optasense Holdings Ltd Fracture monitoring
GB201116816D0 (en) * 2011-09-29 2011-11-09 Qintetiq Ltd Flow monitoring
US10808522B2 (en) * 2014-07-10 2020-10-20 Schlumberger Technology Corporation Distributed fiber optic monitoring of vibration to generate a noise log to determine characteristics of fluid flow
BR112017012769A2 (en) * 2015-01-13 2017-12-26 Halliburton Energy Services Inc method and system for detecting one or more underground acoustic sources.
US10095828B2 (en) * 2016-03-09 2018-10-09 Conocophillips Company Production logs from distributed acoustic sensors
US10126448B2 (en) * 2016-04-20 2018-11-13 Baker Hughes Oilfield Operations Llc Formation measurements using downhole noise sources
EA034881B1 (en) * 2017-01-11 2020-04-01 Общество С Ограниченной Ответственностью "Сонограм" Method for the hydrodynamic characterisation of multi-reservoir wells
RU2728119C1 (en) * 2019-12-20 2020-07-28 Шлюмберже Текнолоджи Б.В. Method of determining distribution of fluid volume fractions along well bore
CN111350496A (en) * 2020-03-19 2020-06-30 西安石油大学 System and method for fracture characterization in underground hydraulic fracturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58173473A (en) * 1982-04-06 1983-10-12 Tech Res & Dev Inst Of Japan Def Agency Sonar signal display processing system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
频谱噪声测井技术及应用;田延妮;戴家才;陈猛;杨国锋;秦昊;黄文奥;;石油管材与仪器;20200425(第02期);第64-67页 *

Also Published As

Publication number Publication date
CN114458306A (en) 2022-05-10

Similar Documents

Publication Publication Date Title
CN108708695B (en) Method and device for determining dominant seepage channel and storage medium
CN105372166B (en) Method and device for obtaining permeability of argillaceous sandstone
CN111255434B (en) Well testing method, device and computer storage medium for gas well
CN114458306B (en) Method, device, equipment and medium for determining fluid flow based on noise logging
Vrysis et al. jReporter: A smart voice-recording mobile application
CN114622875B (en) Drainage and production control method and device based on high-rank coal bed methane fracturing horizontal well
CN108733902B (en) Method and device for determining permeability of oil reservoir and storage medium
CN115840918A (en) Method and device for determining abnormal daily production data and storage medium
CN114721046B (en) Crack detection method, device, and computer storage medium
CN111852453B (en) Early warning method and device for seepage channel and storage medium
CN111861780B (en) Method, device and storage medium for determining yield of production layer in production well
CN111426813A (en) Method and device for determining sand body communication quality and storage medium
CN110824566B (en) Seismic attribute fusion method and device and storage medium
CN114737957A (en) Bottom hole temperature acquisition method, device, equipment and medium
CN112987105B (en) Method, device, terminal and storage medium for quantitatively predicting underground rock salt layer distribution
CN115126480B (en) Method, device, equipment and storage medium for identifying shale oil sweet spot
CN112412444B (en) Injection and production communication strength determining method and device, computer equipment and storage medium
CN114165219B (en) Method and device for determining working fluid level depth of oil well and storage medium
CN115182718B (en) Method, device, terminal and storage medium for identifying water intrusion layer
CN117852913B (en) Method and device for predicting daily gas production of single well of tight sandstone gas reservoir
CN110894782A (en) Method and device for determining gas storage capacity of oil reservoir and storage medium
CN111932045B (en) Method, device and storage medium for determining oil well cleaning mode
CN111305812A (en) Method and device for carrying out abnormity detection on coal-bed gas well and storage medium
CN113107449B (en) Method and device for determining fracturing parameters of shale reservoir multi-stage fractured horizontal well
CN112780235A (en) Drainage and production control method and device for coal-bed gas well, control equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant