CN114385342A - Container cloud overload protection method and device, computer device and storage medium - Google Patents
Container cloud overload protection method and device, computer device and storage medium Download PDFInfo
- Publication number
- CN114385342A CN114385342A CN202011111525.4A CN202011111525A CN114385342A CN 114385342 A CN114385342 A CN 114385342A CN 202011111525 A CN202011111525 A CN 202011111525A CN 114385342 A CN114385342 A CN 114385342A
- Authority
- CN
- China
- Prior art keywords
- logical host
- current
- resource
- standby
- service
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 238000013468 resource allocation Methods 0.000 claims description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 5
- 238000007726 management method Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004451 qualitative analysis Methods 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 206010033799 Paralysis Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5027—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resource being a machine, e.g. CPUs, Servers, Terminals
Landscapes
- Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Debugging And Monitoring (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本公开涉及一种容器云过载保护方法和装置、计算机装置和存储介质。该容器云过载保护方法包括:获取容器云中当前逻辑主机和当前业务的相关数据;判断当前逻辑主机的资源使用情况是否达到过载条件;在当前逻辑主机的资源使用情况达到过载条件的情况下,创建备用逻辑主机;根据当前逻辑主机和当前业务的相关数据,确定备用逻辑主机的资源空间;按照备用逻辑主机的资源空间,为备用逻辑主机分配资源。本公开通过在容器中建立动态的备用资源池,可以利用当前Pod及业务的相关数据设定动态分配算法,定量计算备用Pod的资源。
The present disclosure relates to a container cloud overload protection method and device, a computer device and a storage medium. The container cloud overload protection method includes: obtaining the relevant data of the current logical host and the current business in the container cloud; judging whether the resource usage of the current logical host reaches the overload condition; when the resource usage of the current logical host reaches the overload condition, Create a standby logical host; determine the resource space of the standby logical host according to the relevant data of the current logical host and the current business; allocate resources to the standby logical host according to the resource space of the standby logical host. In the present disclosure, by establishing a dynamic standby resource pool in the container, a dynamic allocation algorithm can be set by using the relevant data of the current Pod and the service, and the resources of the standby Pod can be quantitatively calculated.
Description
技术领域technical field
本公开涉及安全领域,特别涉及一种容器云过载保护方法和装置、计算机装置和存储介质。The present disclosure relates to the field of security, and in particular, to a container cloud overload protection method and device, a computer device and a storage medium.
背景技术Background technique
MEC(Multi-access Edge Computing,多接入边缘计算)为企业和客户在网络边缘提供服务,将计算能力和存储能力下沉到边缘节点,有利于降低时延并提升传输速率,能够改善用户体验、提供第三方应用集成、提升网络价值,为电信运营商带来极大的经济效益。MEC (Multi-access Edge Computing, multi-access edge computing) provides services for enterprises and customers at the edge of the network, sinking computing power and storage capacity to edge nodes, which is conducive to reducing delay and increasing transmission rate, and can improve user experience , Provide third-party application integration, enhance network value, and bring great economic benefits to telecom operators.
MEC中各业务基于容器运行,运行计算效率与资源空间大小紧密相关。MEC系统使用K8S(Kubernetes集群)统一管理编排容器,且以Pod(是Kubernetes中最小的资源管理组件,逻辑主机)为单位进行资源分配。Each business in MEC is run based on containers, and the operational computing efficiency is closely related to the size of the resource space. The MEC system uses K8S (Kubernetes cluster) to uniformly manage and orchestrate containers, and allocate resources in units of Pod (the smallest resource management component in Kubernetes, logical host).
发明内容SUMMARY OF THE INVENTION
发明人通过研发发现:相关技术容器资源的分配多以定性分析和自动启用为主,无法精准地为Pod进行动态划分合理资源,将造成资源浪费或利用率低的问题。The inventor found through research and development that the allocation of container resources in related technologies is mainly based on qualitative analysis and automatic activation, and it is impossible to accurately and dynamically divide reasonable resources for Pods, which will cause resource waste or low utilization.
鉴于以上技术问题中的至少一项,本公开提供了一种容器云过载保护方法和装置、计算机装置和存储介质,在容器中建立动态的备用资源池,可以利用当前Pod及业务的相关数据设定动态分配算法,定量计算备用Pod的资源。In view of at least one of the above technical problems, the present disclosure provides a container cloud overload protection method and device, a computer device, and a storage medium, and a dynamic backup resource pool is established in the container, which can utilize the current Pod and related data devices of services. Determine the dynamic allocation algorithm to quantitatively calculate the resources of the standby Pod.
根据本公开的一个方面,提供一种容器云过载保护方法,包括:According to one aspect of the present disclosure, there is provided a container cloud overload protection method, including:
获取容器云中当前逻辑主机和当前业务的相关数据;Obtain the relevant data of the current logical host and the current business in the container cloud;
判断当前逻辑主机的资源使用情况是否达到过载条件;Determine whether the resource usage of the current logical host reaches the overload condition;
在当前逻辑主机的资源使用情况达到过载条件的情况下,创建备用逻辑主机;When the resource usage of the current logical host reaches the overload condition, create a standby logical host;
根据当前逻辑主机和当前业务的相关数据,确定备用逻辑主机的资源空间;Determine the resource space of the standby logical host according to the relevant data of the current logical host and the current business;
按照备用逻辑主机的资源空间,为备用逻辑主机分配资源。Allocate resources to the standby logical host according to the resource space of the standby logical host.
在本公开的一些实施例中,所述当前逻辑主机和当前业务的相关数据包括:系统中的业务量、业务权重、业务实际占用资源,当前逻辑主机数目和当前逻辑主机资源空间的五元组参数。In some embodiments of the present disclosure, the data related to the current logical host and the current service include: the traffic volume in the system, the service weight, the resources actually occupied by the service, the current number of logical hosts and the quintuple of the current logical host resource space parameter.
在本公开的一些实施例中,所述根据当前逻辑主机和当前业务的相关数据,确定备用逻辑主机的资源空间包括:In some embodiments of the present disclosure, the determining of the resource space of the standby logical host according to the relevant data of the current logical host and the current service includes:
根据系统中的业务量、每个业务的业务权重和实际占用资源确定业务资源占用量;Determine the service resource occupancy according to the service volume in the system, the service weight of each service and the actual occupied resources;
根据当前逻辑主机数目和每个当前逻辑主机的资源空间确定当前所有逻辑主机的资源总空间;Determine the total resource space of all current logical hosts according to the current number of logical hosts and the resource space of each current logical host;
根据业务资源占用量和当前所有逻辑主机的资源总空间确定备用逻辑主机的资源空间。Determine the resource space of the standby logical host according to the service resource occupancy and the total resource space of all current logical hosts.
在本公开的一些实施例中,所述根据系统中的业务量、每个业务的业务权重和实际占用资源确定业务资源占用量包括:In some embodiments of the present disclosure, the determining the service resource occupancy according to the service volume in the system, the service weight of each service and the actual occupied resources includes:
对每个业务的业务权重和实际占用资源的乘积求和,作为业务资源占用量。The sum of the product of the service weight of each service and the actual occupied resources is taken as the service resource occupancy.
在本公开的一些实施例中,所述根据业务资源占用量和当前所有逻辑主机的资源总空间确定备用逻辑主机的资源空间包括:In some embodiments of the present disclosure, the determining the resource space of the standby logical host according to the occupancy of service resources and the total resource space of all current logical hosts includes:
将业务资源占用量和当前所有逻辑主机的资源总空间中的最大值除以系统中的业务量,作为备用逻辑主机的资源空间。Divide the maximum value of the business resource occupancy and the total resource space of all current logical hosts by the business volume in the system, as the resource space of the standby logical host.
在本公开的一些实施例中,所述获取容器云中当前逻辑主机和当前业务的相关数据包括:In some embodiments of the present disclosure, the obtaining the relevant data of the current logical host and the current business in the container cloud includes:
启动逻辑主机提供服务,在业务进入系统的情况下,根据用户输入设置该业务的业务权重;Start the logical host to provide services, and set the business weight of the business according to user input when the business enters the system;
将不同的业务分散到不同的逻辑主机上执行;Disperse different services to different logical hosts for execution;
初始化逻辑主机数目和当前逻辑主机资源空间;Initialize the number of logical hosts and the current logical host resource space;
统计各业务在系统中实际占用的资源。Statistics on the resources actually occupied by each service in the system.
在本公开的一些实施例中,在当前逻辑主机的资源使用情况达到过载条件的情况下,所述容器云过载保护方法还包括:In some embodiments of the present disclosure, when the resource usage of the current logical host reaches an overload condition, the container cloud overload protection method further includes:
将新进入系统的业务请求存放在缓存区,之后执行创建备用逻辑主机的步骤;Store the business request newly entering the system in the cache area, and then perform the steps of creating a standby logical host;
在为备用逻辑主机分配资源后,判断是否开启备用逻辑主机并将缓存区请求纳入该备用逻辑主机。After allocating resources to the standby logical host, it is determined whether to enable the standby logical host and include the buffer request into the standby logical host.
在本公开的一些实施例中,所述容器云过载保护方法还包括:In some embodiments of the present disclosure, the container cloud overload protection method further includes:
在开启备用逻辑主机并将缓存区请求纳入该备用逻辑主机的情况下,各个逻辑主机正常运行,更新当前逻辑主机和当前业务的相关数据。When the standby logical host is turned on and the buffer request is included in the standby logical host, each logical host operates normally, and the related data of the current logical host and the current service is updated.
根据本公开的另一方面,提供一种容器云过载保护装置,包括:According to another aspect of the present disclosure, a container cloud overload protection device is provided, including:
数据获取模块,用于获取容器云中当前逻辑主机和当前业务的相关数据;The data acquisition module is used to acquire the relevant data of the current logical host and the current business in the container cloud;
过载判断模块,用于判断当前逻辑主机的资源使用情况是否达到过载条件;The overload judgment module is used to judge whether the resource usage of the current logical host reaches the overload condition;
备用主机创建模块,用于在当前逻辑主机的资源使用情况达到过载条件的情况下,创建备用逻辑主机;The standby host creation module is used to create a standby logical host when the resource usage of the current logical host reaches the overload condition;
资源空间确定模块,用于根据当前逻辑主机和当前业务的相关数据,确定备用逻辑主机的资源空间;The resource space determination module is used to determine the resource space of the standby logical host according to the relevant data of the current logical host and the current business;
资源分配模块,用于按照备用逻辑主机的资源空间,为备用逻辑主机分配资源。The resource allocation module is used for allocating resources to the standby logical host according to the resource space of the standby logical host.
在本公开的一些实施例中,所述容器云过载保护装置用于执行实现如上述任一实施例所述的容器云过载保护方法的操作。In some embodiments of the present disclosure, the container cloud overload protection apparatus is configured to perform the operation of implementing the container cloud overload protection method described in any of the foregoing embodiments.
根据本公开的另一方面,提供一种计算机装置,包括:According to another aspect of the present disclosure, there is provided a computer apparatus, comprising:
存储器,用于存储指令;memory for storing instructions;
处理器,用于执行所述指令,使得所述计算机装置执行实现如上述任一实施例所述的容器云过载保护方法的操作。The processor is configured to execute the instructions, so that the computer apparatus executes the operation of implementing the container cloud overload protection method according to any of the foregoing embodiments.
根据本公开的另一方面,提供一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如上述任一实施例所述的容器云过载保护方法。According to another aspect of the present disclosure, a computer-readable storage medium is provided, wherein the computer-readable storage medium stores computer instructions that, when executed by a processor, implement the container according to any of the above embodiments Cloud overload protection methods.
本公开通过在容器中建立动态的备用资源池,可以利用当前Pod及业务的相关数据设定动态分配算法,定量计算备用Pod的资源。In the present disclosure, by establishing a dynamic standby resource pool in the container, a dynamic allocation algorithm can be set by using the relevant data of the current Pod and the service, and the resources of the standby Pod can be quantitatively calculated.
附图说明Description of drawings
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present disclosure or the technical solutions in the prior art, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the drawings in the following description are only These are some embodiments of the present disclosure, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.
图1为本公开容器云过载保护方法一些实施例的示意图。FIG. 1 is a schematic diagram of some embodiments of the disclosed container cloud overload protection method.
图2为本公开容器云过载保护方法另一些实施例的示意图。FIG. 2 is a schematic diagram of other embodiments of the disclosed container cloud overload protection method.
图3为本公开容器云过载保护装置一些实施例的示意图。FIG. 3 is a schematic diagram of some embodiments of the disclosed container cloud overload protection device.
图4为本公开计算机装置一些实施例的示意图。FIG. 4 is a schematic diagram of some embodiments of the disclosed computer apparatus.
具体实施方式Detailed ways
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。The technical solutions in the embodiments of the present disclosure will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present disclosure. Obviously, the described embodiments are only a part of the embodiments of the present disclosure, but not all of the embodiments. The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the disclosure, its application or uses in any way. Based on the embodiments in the present disclosure, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present disclosure.
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。The relative arrangement of the components and steps, the numerical expressions and numerical values set forth in these embodiments do not limit the scope of the present disclosure unless specifically stated otherwise.
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。Meanwhile, it should be understood that, for the convenience of description, the dimensions of various parts shown in the accompanying drawings are not drawn in an actual proportional relationship.
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。Techniques, methods, and devices known to those of ordinary skill in the relevant art may not be discussed in detail, but where appropriate, such techniques, methods, and devices should be considered part of the authorized description.
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。In all examples shown and discussed herein, any specific value should be construed as illustrative only and not as limiting. Accordingly, other examples of exemplary embodiments may have different values.
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。It should be noted that like numerals and letters refer to like items in the following figures, so once an item is defined in one figure, it does not require further discussion in subsequent figures.
图1为本公开容器云过载保护方法一些实施例的示意图。优选的,本实施例可由本公开容器云过载保护装置或本公开计算机装置或本公开容器管理Manager节点执行。该方法可以包括步骤11-步骤15,其中:FIG. 1 is a schematic diagram of some embodiments of the disclosed container cloud overload protection method. Preferably, this embodiment can be executed by the container cloud overload protection device of the present disclosure, the computer device of the present disclosure, or the container management manager node of the present disclosure. The method may include steps 11-15, wherein:
步骤11,获取容器云中当前逻辑主机Pod和当前业务的相关数据。Step 11: Acquire data related to the current logical host Pod and the current business in the container cloud.
在本公开的一些实施例中,所述当前逻辑主机和当前业务的相关数据可以包括:系统中的业务量ω、业务权重γe、业务实际占用资源βe,当前逻辑主机数目τ和当前逻辑主机资源空间μi的五元组参数{ω,τ,μi,βe,γe}。In some embodiments of the present disclosure, the data related to the current logical host and the current service may include: the traffic volume ω in the system, the service weight γ e , the resource actually occupied by the service β e , the current logical host number τ and the current logical The quintuple parameters {ω, τ, μ i , β e , γ e } of the host resource space μ i .
在本公开的一些实施例中,步骤11可以包括步骤111-步骤114,其中:In some embodiments of the present disclosure,
步骤111,K8S启动逻辑主机Pod提供服务,在业务进入系统的情况下,根据用户输入设置该业务的业务权重γe。Step 111 , K8S starts the logical host Pod to provide services, and when the business enters the system, the business weight γ e of the business is set according to the user input.
在本公开的一些实施例中,步骤111可以包括:业务在进入系统时由用户自定义业务的权重γe,其中γe∈(0,1),该值可以由用户根据业务的优先级和重要性来自定义,权重越大代表优先级越高。In some embodiments of the present disclosure, step 111 may include: when the service enters the system, the user defines the service weight γ e , where γ e ∈(0,1), the value may be defined by the user according to the priority and The importance is customized, the higher the weight, the higher the priority.
步骤112,将不同的业务分散到不同的逻辑主机上执行。Step 112: Disperse different services to different logical hosts for execution.
步骤113,初始化逻辑主机数目τ和当前逻辑主机资源空间μi。Step 113: Initialize the number of logical hosts τ and the current logical host resource space μ i .
在本公开的一些实施例中,步骤113可以包括:依据定义Pod资源的Yaml文件(一种配置文件类型)来初始化Pod数目τ和Pod资源μi。In some embodiments of the present disclosure, step 113 may include: initializing the Pod number τ and the Pod resource μ i according to a Yaml file (a type of configuration file) defining Pod resources.
步骤114,统计各业务在系统中实际占用的资源βe。Step 114: Count the resources β e actually occupied by each service in the system.
在本公开的一些实施例中,该资源βe可以包含CPU使用率、内存使用量、磁盘I/O使用率和网络带宽使用量等。In some embodiments of the present disclosure, the resource β e may include CPU usage, memory usage, disk I/O usage, network bandwidth usage, and the like.
在本公开的一些实施例中,步骤114可以包括:容器中的node节点包含监控程序,利用监控程序持续监控Pod的资源使用情况并报告给Manager节点进行分析,Pod的资源使用涉及到不同的业务,故各业务占用的资源βe同样使用Manager节点进行分析统计。这里的资源使用情况包含CPU使用率、内存使用量、磁盘I/O使用率和网络带宽使用量等。In some embodiments of the present disclosure, step 114 may include: the node node in the container includes a monitoring program, and the monitoring program is used to continuously monitor the resource usage of the Pod and report it to the Manager node for analysis, and the resource usage of the Pod involves different services , so the resource β e occupied by each service also uses the Manager node for analysis and statistics. The resource usage here includes CPU usage, memory usage, disk I/O usage, and network bandwidth usage.
步骤12,判断当前逻辑主机的资源使用情况是否达到过载条件。
步骤13,在当前逻辑主机的资源使用情况达到过载条件的情况下,创建备用逻辑主机。Step 13: Create a standby logical host when the resource usage of the current logical host reaches the overload condition.
步骤14,根据当前逻辑主机和当前业务的相关数据,确定备用逻辑主机的资源空间。Step 14: Determine the resource space of the standby logical host according to the relevant data of the current logical host and the current service.
在本公开的一些实施例中,步骤14可以包括步骤141-步骤143,其中:In some embodiments of the present disclosure,
步骤141,根据系统中的业务量、每个业务的业务权重和实际占用资源确定业务资源占用量A。Step 141: Determine the service resource occupancy A according to the service volume in the system, the service weight of each service, and the actual occupied resources.
在本公开的一些实施例中,步骤141可以包括:对每个业务的业务权重和实际占用资源的乘积求和,作为业务资源占用量A。In some embodiments of the present disclosure, step 141 may include: summing the product of the service weight of each service and the actual occupied resources, as the service resource occupancy A.
在本公开的一些实施例中,步骤141可以包括:根据公式(1)确定业务资源占用量A。In some embodiments of the present disclosure, step 141 may include: determining the service resource occupancy A according to formula (1).
步骤142,根据当前逻辑主机数目和每个当前逻辑主机的资源空间确定当前所有逻辑主机的资源总空间B。Step 142: Determine the total resource space B of all current logical hosts according to the current number of logical hosts and the resource space of each current logical host.
在本公开的一些实施例中,步骤142可以包括:根据公式(2)确定当前所有逻辑主机的资源总空间B。In some embodiments of the present disclosure, step 142 may include: determining the total resource space B of all current logical hosts according to formula (2).
步骤143,根据业务资源占用量A和当前所有逻辑主机的资源总空间B确定备用逻辑主机的资源空间kpod。Step 143: Determine the resource space k pod of the standby logical host according to the service resource occupancy A and the total resource space B of all current logical hosts.
在本公开的一些实施例中,步骤143可以包括:将业务资源占用量A和当前所有逻辑主机的资源总空间B中的最大值除以系统中的业务量,作为备用逻辑主机的资源空间kpod。In some embodiments of the present disclosure, step 143 may include: dividing the maximum value among the service resource occupancy A and the total resource space B of all current logical hosts by the service volume in the system, as the resource space k of the standby logical host pods .
在本公开的一些实施例中,步骤143可以包括:根据公式(3)确定备用逻辑主机的资源空间kpod。In some embodiments of the present disclosure, step 143 may include: determining the resource space k pod of the standby logical host according to formula (3).
本公开上述实施例考虑到备用Pod的空间应能够实现缓存区请求的部分或全部处理,故应选取两项计算结果最大值作为备用Pod资源池的参考值。In the above embodiments of the present disclosure, considering that the space of the spare Pod should be able to process part or all of the cache request, the maximum value of the two calculation results should be selected as the reference value of the spare Pod resource pool.
步骤15,按照备用逻辑主机的资源空间,为备用逻辑主机分配资源。Step 15: Allocate resources to the standby logical host according to the resource space of the standby logical host.
在本公开的一些实施例中,创建完成的备用Pod可纳入缓存区请求。In some embodiments of the present disclosure, the created standby Pod may be included in the cache request.
基于本公开上述实施例提供的容器云过载保护方法,提供了一种容器云由于过载而进行资源动态分配的改进思路,本公开上述实施例在容器中建立动态的备用资源池,利用现有Pod及业务的相关数据设定动态分配算法,定量计算备用Pod的资源,从而解决了资源不足时的容器瘫痪和请求无效的问题,及自动分配情况下的资源浪费或不足问题,为容器云的稳定性和安全性提供保障。Based on the container cloud overload protection method provided by the above embodiments of the present disclosure, an improved idea for dynamic resource allocation of container clouds due to overload is provided. and business-related data to set a dynamic allocation algorithm to quantitatively calculate the resources of spare Pods, thus solving the problems of container paralysis and invalid requests when resources are insufficient, as well as the waste or shortage of resources in the case of automatic allocation, which contributes to the stability of the container cloud. security and safety.
本公开上述实施例提供的动态分配资源的容器云过载保护方法。针对容器云资源不足的问题和固定分配资源的缺陷,提出一种用于定量计算资源的动态分配算法。本公开上述实施例利用容器云中的业务数量、优先级、占用资源量以及Pod的数目和Pod资源等5个元素所组成的五元组{ω,τ,μi,βe,γe},构造动态的定量的备用Pod资源池,能够实现资源的灵活分配和合理使用。The container cloud overload protection method for dynamically allocating resources provided by the above embodiments of the present disclosure. Aiming at the shortage of container cloud resources and the defects of fixed resource allocation, a dynamic allocation algorithm for quantitative computing resources is proposed. The above-mentioned embodiments of the present disclosure utilize the quintuple {ω,τ,μi, βe , γe } composed of five elements, such as the number of services, the priority, the amount of occupied resources, the number of Pods, and the Pod resources in the container cloud . , to construct a dynamic and quantitative standby Pod resource pool, which can realize flexible allocation and rational use of resources.
图2为本公开容器云过载保护方法另一些实施例的示意图。优选的,本实施例可由本公开容器云过载保护装置或本公开计算机装置或本公开容器管理Manager节点执行。图2实施例的步骤21和步骤22分别与图1实施例的步骤11和步骤12相同或类似。图2实施例的方法可以包括步骤21-步骤24,其中:FIG. 2 is a schematic diagram of other embodiments of the disclosed container cloud overload protection method. Preferably, this embodiment can be executed by the container cloud overload protection device of the present disclosure, the computer device of the present disclosure, or the container management manager node of the present disclosure.
步骤21,获取容器云中当前逻辑主机Pod和当前业务的相关数据。Step 21: Acquire data related to the current logical host Pod and the current business in the container cloud.
在本公开的一些实施例中,所述当前逻辑主机和当前业务的相关数据包括:系统中的业务量ω、业务权重γe、业务实际占用资源βe,当前逻辑主机数目τ和当前逻辑主机资源空间μi的五元组参数{ω,τ,μi,βe,γe}。In some embodiments of the present disclosure, the data related to the current logical host and the current service include: the traffic volume ω in the system, the service weight γ e , the resource actually occupied by the service β e , the current logical host number τ and the current logical host The quintuple parameters {ω,τ,μ i ,β e ,γ e } of the resource space μ i .
步骤22,判断当前逻辑主机的资源使用情况是否达到过载条件。
步骤23,在当前逻辑主机的资源使用情况达到过载条件的情况下,对容器进行过载保护。Step 23: In the case that the resource usage of the current logical host reaches the overload condition, overload protection is performed on the container.
在本公开的一些实施例中,步骤23可以包括:若Manager的分析结果显示Pod的资源使用已达到过载条件,则Manager下发指令对容器进行过载保护。In some embodiments of the present disclosure,
在本公开的一些实施例中,在当前逻辑主机的资源使用情况达到过载条件的情况下,所述容器云过载保护方法还包括:In some embodiments of the present disclosure, when the resource usage of the current logical host reaches an overload condition, the container cloud overload protection method further includes:
在本公开的一些实施例中,步骤23中,对容器进行过载保护的步骤可以包括步骤231-步骤233,其中:In some embodiments of the present disclosure, in
步骤231,将新进入系统的业务请求存放在缓存区。Step 231: Store the service request newly entering the system in the cache area.
步骤232,创建备用逻辑主机;根据当前逻辑主机和当前业务的相关数据,确定备用逻辑主机的资源空间;按照备用逻辑主机的资源空间,为备用逻辑主机分配资源。Step 232: Create a standby logical host; determine the resource space of the standby logical host according to the current logical host and relevant data of the current service; allocate resources to the standby logical host according to the resource space of the standby logical host.
在本公开的一些实施例中,步骤232可以包括图1实施例的步骤13-步骤15。In some embodiments of the present disclosure, step 232 may include steps 13-15 in the embodiment of FIG. 1 .
在本公开的一些实施例中,步骤232可以包括:过载保护进入判定模块,Manager节点利用动态分配算法,并采用公式(3)根据五元组参数{ω,τ,μi,βe,γe}为备用Pod定量地动态分配资源。In some embodiments of the present disclosure, step 232 may include: the overload protection enters the judgment module, the Manager node uses the dynamic allocation algorithm, and adopts the formula (3) according to the quintuple parameters {ω,τ,μ i ,β e ,γ e } Quantitatively and dynamically allocate resources to spare Pods.
步骤233,在为备用逻辑主机分配资源后,判断是否开启备用逻辑主机并将缓存区请求纳入该备用逻辑主机。Step 233, after allocating resources to the standby logical host, determine whether to enable the standby logical host and include the buffer request into the standby logical host.
在本公开的一些实施例中,步骤233可以包括:Manager节点为备用Pod分配资源后,决定是否此时开启备用Pod并将缓存区请求纳入该Pod。In some embodiments of the present disclosure, step 233 may include: after the Manager node allocates resources to the standby Pod, determining whether to enable the standby Pod at this time and include the buffer request in the Pod.
步骤24,在完成过载保护机制(开启备用逻辑主机并将缓存区请求纳入该备用逻辑主机)的情况下,各个逻辑主机正常运行,更新当前逻辑主机和当前业务的相关数据。
在本公开的一些实施例中,步骤24可以包括:经过备用Pod的动态资源分配后完成过载保护机制,各Pod正常运行业务。此时需更新五元组{ω,τ,μi,βe,γe},为下次Pod资源的扩展提供参数支持。In some embodiments of the present disclosure,
在本公开的一些实施例中,步骤24可以包括:依据上述过程,更新五元组参数{ω,τ,μi,βe,γe},其中ω、βe、γe应根据更进入系统的业务和业务资源确定并更新,τ=τ+1,μi应计入此备用Pod的资源kpod。由于各参数与系统中的业务、Pod相关,故本公开上述实施例可实现动态的可计算的备用Pod资源容量。In some embodiments of the present disclosure,
本公开上述实施例改进了容器云的动态分配资源方法,利用动态分配算法对备用Pod的资源进行定量计算,具有合理性和科学性。针对容器云动态分配资源方案中定性分析或固定分配资源的缺陷,本方案利用业务数目、业务权重、业务资源、Pod数目及Pod资源组成五元组{ω,τ,μi,βe,γe},并依据此五元组提出动态分配算法为备用Pod计算资源容量,解决了目前方案中固定分配资源导致的资源不足或资源浪费现象,同时解决了其他方案中过载保护定性分析科学性不足的问题。The above embodiments of the present disclosure improve the dynamic resource allocation method of the container cloud, and use the dynamic allocation algorithm to quantitatively calculate the resources of the standby Pod, which is reasonable and scientific. Aiming at the defects of qualitative analysis or fixed resource allocation in the container cloud dynamic resource allocation scheme, this scheme uses the number of services, service weights, service resources, the number of Pods and Pod resources to form a quintuple {ω,τ,μ i ,β e ,γ e }, and based on this quintuple, a dynamic allocation algorithm is proposed to calculate resource capacity for the standby Pod, which solves the problem of insufficient resources or waste of resources caused by the fixed allocation of resources in the current scheme, and solves the problem of the lack of scientificity in the qualitative analysis of overload protection in other schemes. The problem.
本公开上述实施例在过载保护机制中的判定模块提出一种动态分配算法,共涉及5个元素,分别为:系统中的业务量ω、业务权重γe、业务实际占用资源βe,以及现有的Pod数目τ和Pod资源μi,本公开上述实施例利用现有数据计算备用Pod应分配到的资源具有合理性。The determination module in the overload protection mechanism of the above embodiments of the present disclosure proposes a dynamic allocation algorithm, which involves five elements in total, namely: the traffic volume ω in the system, the traffic weight γ e , the actual occupied resources β e of the service, and the current Given the number of Pods τ and Pod resources μ i , it is reasonable to use the existing data to calculate the resources that should be allocated to the spare Pod in the above embodiments of the present disclosure.
本公开上述实施例以定量计算的结果为备用Pod分配资源,有利于系统资源的合理使用,且提高Pod内的资源利用率。The above-mentioned embodiments of the present disclosure allocate resources to the spare Pod based on the quantitative calculation result, which is beneficial to the rational use of system resources and improves the resource utilization rate in the Pod.
本公开上述实施例的决策模块是备用Pod的启用“开关”,控制已分配资源的Pod是否开启,并随着Pod的启用将缓存请求进一步处理。The decision-making module of the above-mentioned embodiment of the present disclosure is the enabling "switch" of the standby Pod, which controls whether the Pod that has allocated resources is turned on, and further processes the cache request as the Pod is enabled.
图3为本公开容器云过载保护装置一些实施例的示意图。如图3所示,本公开容器云过载保护装置可以包括数据获取模块31、过载判断模块32、备用主机创建模块33、资源空间确定模块34和资源分配模块35,其中:FIG. 3 is a schematic diagram of some embodiments of the container cloud overload protection device of the present disclosure. As shown in FIG. 3 , the container cloud overload protection device of the present disclosure may include a
数据获取模块31,用于获取容器云中当前逻辑主机和当前业务的相关数据。The
在本公开的一些实施例中,所述当前逻辑主机和当前业务的相关数据可以包括:系统中的业务量ω、业务权重γe、业务实际占用资源βe,当前逻辑主机数目τ和当前逻辑主机资源空间μi的五元组参数{ω,τ,μi,βe,γe}。In some embodiments of the present disclosure, the data related to the current logical host and the current service may include: the traffic volume ω in the system, the service weight γ e , the resource actually occupied by the service β e , the current logical host number τ and the current logical The quintuple parameters {ω, τ, μ i , β e , γ e } of the host resource space μ i .
在本公开的一些实施例中,业务权重γe∈(0,1),该值可以由用户根据业务的优先级和重要性来自定义,权重越大代表优先级越高。In some embodiments of the present disclosure, the service weight γ e ∈ (0, 1), the value can be customized by the user according to the priority and importance of the service, and the higher the weight, the higher the priority.
在本公开的一些实施例中,数据获取模块31可以用于启动逻辑主机提供服务,在业务进入系统的情况下,根据用户输入设置该业务的业务权重;将不同的业务分散到不同的逻辑主机上执行;初始化逻辑主机数目和当前逻辑主机资源空间;统计各业务在系统中实际占用的资源。In some embodiments of the present disclosure, the
在本公开的一些实施例中,数据获取模块31可以用于依据定义Pod资源的Yaml文件(一种配置文件类型)来初始化Pod数目τ和Pod资源μi。In some embodiments of the present disclosure, the
在本公开的一些实施例中,容器中的node节点包含监控程序,利用监控程序持续监控Pod的资源使用情况并报告给Manager节点进行分析,Pod的资源使用涉及到不同的业务,故各业务占用的资源βe同样使用Manager节点进行分析统计。这里的资源使用情况包含CPU使用率、内存使用量、磁盘I/O使用率和网络带宽使用量等。In some embodiments of the present disclosure, the node node in the container includes a monitoring program, and the monitoring program is used to continuously monitor the resource usage of the Pod and report it to the Manager node for analysis. The resource usage of the Pod involves different services, so each service occupies The resource β e also uses the Manager node for analysis and statistics. The resource usage here includes CPU usage, memory usage, disk I/O usage, and network bandwidth usage.
过载判断模块32,用于判断当前逻辑主机的资源使用情况是否达到过载条件。The
备用主机创建模块33,用于在当前逻辑主机的资源使用情况达到过载条件的情况下,创建备用逻辑主机。The standby
资源空间确定模块34,用于根据当前逻辑主机和当前业务的相关数据,确定备用逻辑主机的资源空间。The resource
在本公开的一些实施例中,资源空间确定模块34可以用于根据系统中的业务量、每个业务的业务权重和实际占用资源确定业务资源占用量;根据当前逻辑主机数目和每个当前逻辑主机的资源空间确定当前所有逻辑主机的资源总空间;根据业务资源占用量和当前所有逻辑主机的资源总空间确定备用逻辑主机的资源空间。In some embodiments of the present disclosure, the resource
在本公开的一些实施例中,资源空间确定模块34可以用于对每个业务的业务权重和实际占用资源的乘积求和,作为业务资源占用量A。In some embodiments of the present disclosure, the resource
在本公开的一些实施例中,资源空间确定模块34可以用于根据公式(1)确定业务资源占用量A。In some embodiments of the present disclosure, the resource
在本公开的一些实施例中,资源空间确定模块34可以用于根据公式(2)确定当前所有逻辑主机的资源总空间B。In some embodiments of the present disclosure, the resource
在本公开的一些实施例中,资源空间确定模块34可以用于将业务资源占用量和当前所有逻辑主机的资源总空间中的最大值除以系统中的业务量,作为备用逻辑主机的资源空间。In some embodiments of the present disclosure, the resource
在本公开的一些实施例中,资源空间确定模块34可以用于根据公式(3)确定备用逻辑主机的资源空间kpod。In some embodiments of the present disclosure, the resource
资源分配模块35,用于按照备用逻辑主机的资源空间,为备用逻辑主机分配资源。The
在本公开的一些实施例中,所述容器云过载保护装置还可以用于在当前逻辑主机的资源使用情况达到过载条件的情况下,将新进入系统的业务请求存放在缓存区,之后执行创建备用逻辑主机的操作;在为备用逻辑主机分配资源后,判断是否开启备用逻辑主机并将缓存区请求纳入该备用逻辑主机。In some embodiments of the present disclosure, the container cloud overload protection device can also be used to store the newly entered service request into the system in the cache area when the resource usage of the current logical host reaches the overload condition, and then execute the creation The operation of the standby logical host; after allocating resources to the standby logical host, it is judged whether to start the standby logical host and include the buffer request in the standby logical host.
在本公开的一些实施例中,所述容器云过载保护装置还可以用于在开启备用逻辑主机并将缓存区请求纳入该备用逻辑主机的情况下,各个逻辑主机正常运行,更新当前逻辑主机和当前业务的相关数据。In some embodiments of the present disclosure, the container cloud overload protection device may also be used to enable each logical host to run normally, update the current logical host and Data about the current business.
在本公开的一些实施例中,所述容器云过载保护装置还可以用于经过备用Pod的动态资源分配后完成过载保护机制,各Pod正常运行业务。此时需更新五元组{ω,τ,μi,βe,γe},为下次Pod资源的扩展提供参数支持。In some embodiments of the present disclosure, the container cloud overload protection device can also be used to complete the overload protection mechanism after dynamic resource allocation of spare Pods, and each Pod runs services normally. At this time, the quintuple {ω, τ, μ i , β e , γ e } needs to be updated to provide parameter support for the next expansion of Pod resources.
在本公开的一些实施例中,所述容器云过载保护装置还可以用于依据上述过程,更新五元组参数{ω,τ,μi,βe,γe},其中ω、βe、γe应根据更进入系统的业务和业务资源确定并更新,τ=τ+1,μi应计入此备用Pod的资源kpod。由于各参数与系统中的业务、Pod相关,故本公开上述实施例可实现动态的可计算的备用Pod资源容量。In some embodiments of the present disclosure, the container cloud overload protection device may also be used to update the quintuple parameters {ω, τ, μ i , β e , γ e } according to the above process, where ω, β e , γ e , γ e should be determined and updated according to the business and business resources entering the system, τ=τ+1, and μ i should be included in the resource k pod of this standby Pod. Since each parameter is related to services and Pods in the system, the foregoing embodiments of the present disclosure can implement dynamic and calculable spare Pod resource capacity.
在本公开的一些实施例中,所述容器云过载保护装置可以用于执行实现如上述任一实施例(例如图1或图2实施例)所述的容器云过载保护方法的操作。In some embodiments of the present disclosure, the container cloud overload protection device may be configured to perform operations for implementing the container cloud overload protection method described in any of the foregoing embodiments (eg, the embodiment in FIG. 1 or FIG. 2 ).
在本公开的一些实施例中,所述容器云过载保护装置可以实现为本公开容器管理Manager节点。In some embodiments of the present disclosure, the container cloud overload protection device may be implemented as a container management Manager node of the present disclosure.
基于本公开上述实施例提供的容器云过载保护装置,提供了一种容器云由于过载而进行资源动态分配的改进思路,本公开上述实施例在容器中建立动态的备用资源池,利用现有Pod及业务的相关数据设定动态分配算法,定量计算备用Pod的资源,从而解决了资源不足时的容器瘫痪和请求无效的问题,及自动分配情况下的资源浪费或不足问题,为容器云的稳定性和安全性提供保障。Based on the container cloud overload protection device provided by the above embodiments of the present disclosure, an improved idea for dynamic resource allocation of container clouds due to overload is provided. and business-related data to set a dynamic allocation algorithm to quantitatively calculate the resources of spare Pods, thus solving the problems of container paralysis and invalid requests when resources are insufficient, as well as the waste or shortage of resources in the case of automatic allocation, which contributes to the stability of the container cloud. security and safety.
本公开上述实施例在过载保护机制中的判定模块提出一种动态分配算法,共涉及5个元素,分别为:系统中的业务量ω、业务权重γe、业务实际占用资源βe,以及现有的Pod数目τ和Pod资源μi,本公开上述实施例利用现有数据计算备用Pod应分配到的资源具有合理性。The determination module in the overload protection mechanism of the above embodiments of the present disclosure proposes a dynamic allocation algorithm, which involves five elements in total, namely: the traffic volume ω in the system, the traffic weight γ e , the actual occupied resources β e of the service, and the current Given the number of Pods τ and Pod resources μ i , it is reasonable to use the existing data to calculate the resources that should be allocated to the spare Pod in the above embodiments of the present disclosure.
本公开上述实施例以定量计算的结果为备用Pod分配资源,有利于系统资源的合理使用,且提高Pod内的资源利用率。The above-mentioned embodiments of the present disclosure allocate resources to the spare Pod based on the quantitative calculation result, which is beneficial to the rational use of system resources and improves the resource utilization rate in the Pod.
本公开上述实施例的决策模块是备用Pod的启用“开关”,控制已分配资源的Pod是否开启,并随着Pod的启用将缓存请求进一步处理。The decision-making module of the above-mentioned embodiment of the present disclosure is the enabling "switch" of the standby Pod, which controls whether the Pod that has allocated resources is turned on, and further processes the cache request as the Pod is enabled.
图4为本公开计算机装置一些实施例的示意图。如图4所示,本公开计算机装置可以包括存储器41和处理器42,其中:FIG. 4 is a schematic diagram of some embodiments of the disclosed computer apparatus. As shown in FIG. 4, the computer apparatus of the present disclosure may include a
存储器41,用于存储指令。The
处理器42,用于执行所述指令,使得所述计算机装置执行实现如上述任一实施例(例如图1或图2实施例)所述的容器云过载保护方法的操作。The
在本公开的一些实施例中,所述计算机装置可以实现为本公开容器管理Manager节点。In some embodiments of the present disclosure, the computer apparatus may be implemented as a container management Manager node of the present disclosure.
本公开上述实施例提供的动态分配资源的容器云过载保护方案。针对容器云资源不足的问题和固定分配资源的缺陷,提出一种用于定量计算资源的动态分配方式。本公开上述实施例利用容器云中的业务数量、优先级、占用资源量以及Pod的数目和Pod资源等5个元素所组成的五元组{ω,τ,μi,βe,γe},构造动态的定量的备用Pod资源池,能够实现资源的灵活分配和合理使用。The container cloud overload protection solution for dynamically allocating resources provided by the above embodiments of the present disclosure. Aiming at the shortage of container cloud resources and the shortcomings of fixed resource allocation, a dynamic allocation method for quantitative computing resources is proposed. The above-mentioned embodiments of the present disclosure utilize the quintuple {ω,τ,μi, βe , γe } composed of five elements, such as the number of services, the priority, the amount of occupied resources, the number of Pods, and the Pod resources in the container cloud . , to construct a dynamic and quantitative standby Pod resource pool, which can realize flexible allocation and rational use of resources.
根据本公开的另一方面,提供一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机指令,所述指令被处理器执行时实现如上述任一实施例(例如图1或图2实施例)所述的容器云过载保护方法。According to another aspect of the present disclosure, a computer-readable storage medium is provided, wherein the computer-readable storage medium stores computer instructions that, when executed by a processor, implement any of the foregoing embodiments (eg, FIG. 1 ). or the container cloud overload protection method described in the embodiment of FIG. 2 .
基于本公开上述实施例提供的计算机可读存储介质,利用动态分配算法对备用Pod的资源进行定量计算,具有合理性和科学性。针对容器云动态分配资源方案中定性分析或固定分配资源的缺陷,本方案利用业务数目、业务权重、业务资源、Pod数目及Pod资源组成五元组{ω,τ,μi,βe,γe},并依据此五元组提出动态分配算法为备用Pod计算资源容量,解决了目前方案中固定分配资源导致的资源不足或资源浪费现象,同时解决了其他方案中过载保护定性分析科学性不足的问题。Based on the computer-readable storage medium provided by the above embodiments of the present disclosure, it is reasonable and scientific to use the dynamic allocation algorithm to quantitatively calculate the resources of the spare Pod. Aiming at the defects of qualitative analysis or fixed resource allocation in the container cloud dynamic resource allocation scheme, this scheme uses the number of services, service weights, service resources, the number of Pods and Pod resources to form a quintuple {ω,τ,μ i ,β e ,γ e }, and based on this quintuple, a dynamic allocation algorithm is proposed to calculate resource capacity for the standby Pod, which solves the problem of insufficient resources or waste of resources caused by the fixed allocation of resources in the current scheme, and solves the problem of the lack of scientificity in the qualitative analysis of overload protection in other schemes. The problem.
在上面所描述的容器云过载保护装置可以实现为用于执行本申请所描述功能的通用处理器、可编程逻辑控制器(PLC)、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。The container cloud overload protection device described above can be implemented as a general purpose processor, a programmable logic controller (PLC), a digital signal processor (DSP), an application specific integrated circuit (ASIC), Field Programmable Gate Arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, or any suitable combination thereof.
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。So far, the present disclosure has been described in detail. Some details that are well known in the art are not described in order to avoid obscuring the concept of the present disclosure. Those skilled in the art can fully understand how to implement the technical solutions disclosed herein based on the above description.
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指示相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps of implementing the above embodiments can be completed by hardware, and can also be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium. The storage medium mentioned may be a read-only memory, a magnetic disk or an optical disk, etc.
本公开的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本公开限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本公开的原理和实际应用,并且使本领域的普通技术人员能够理解本公开从而设计适于特定用途的带有各种修改的各种实施例。The description of the present disclosure has been presented for purposes of example and description, and is not intended to be exhaustive or to limit the disclosure to the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to better explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011111525.4A CN114385342B (en) | 2020-10-16 | 2020-10-16 | Container cloud overload protection method and device, computer device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011111525.4A CN114385342B (en) | 2020-10-16 | 2020-10-16 | Container cloud overload protection method and device, computer device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114385342A true CN114385342A (en) | 2022-04-22 |
CN114385342B CN114385342B (en) | 2024-12-24 |
Family
ID=81192604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011111525.4A Active CN114385342B (en) | 2020-10-16 | 2020-10-16 | Container cloud overload protection method and device, computer device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114385342B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116560859A (en) * | 2023-07-11 | 2023-08-08 | 恒辉信达技术有限公司 | Cloud computing-based access equipment resource allocation method and related device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101800762A (en) * | 2009-12-30 | 2010-08-11 | 中兴通讯股份有限公司 | Service cloud system for fusing multiple services and service implementation method |
US20170108261A1 (en) * | 2013-12-09 | 2017-04-20 | Kenneth W. Broussard | Modular temperature controlled shipping container |
CN106879022A (en) * | 2015-12-10 | 2017-06-20 | 上海贝尔股份有限公司 | Resource allocation method and device for baseband unit pool of radio access network |
CN108170507A (en) * | 2017-12-04 | 2018-06-15 | 上海市信息网络有限公司 | Virtual application management method/system, computer readable storage medium and server-side |
CN109039954A (en) * | 2018-07-25 | 2018-12-18 | 广东石油化工学院 | Multi-tenant container cloud platform virtual computing resource self-adapting dispatching method and system |
CN110149394A (en) * | 2019-05-20 | 2019-08-20 | 典基网络科技(上海)有限公司 | Dispatching method, device and the storage medium of system resource |
-
2020
- 2020-10-16 CN CN202011111525.4A patent/CN114385342B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101800762A (en) * | 2009-12-30 | 2010-08-11 | 中兴通讯股份有限公司 | Service cloud system for fusing multiple services and service implementation method |
US20170108261A1 (en) * | 2013-12-09 | 2017-04-20 | Kenneth W. Broussard | Modular temperature controlled shipping container |
CN106879022A (en) * | 2015-12-10 | 2017-06-20 | 上海贝尔股份有限公司 | Resource allocation method and device for baseband unit pool of radio access network |
CN108170507A (en) * | 2017-12-04 | 2018-06-15 | 上海市信息网络有限公司 | Virtual application management method/system, computer readable storage medium and server-side |
CN109039954A (en) * | 2018-07-25 | 2018-12-18 | 广东石油化工学院 | Multi-tenant container cloud platform virtual computing resource self-adapting dispatching method and system |
CN110149394A (en) * | 2019-05-20 | 2019-08-20 | 典基网络科技(上海)有限公司 | Dispatching method, device and the storage medium of system resource |
Non-Patent Citations (2)
Title |
---|
BIN LI ET.AL: "Container Terminal Overland Collection and Distribution Logistics Generalized Computing Model with Computational Logistics and Case", 2019 CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 12 September 2019 (2019-09-12) * |
赖作华: "面向中职教育的个性化资源推荐系统的研究与实现", 中国优秀硕士学位论文全文数据库, 15 March 2019 (2019-03-15) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116560859A (en) * | 2023-07-11 | 2023-08-08 | 恒辉信达技术有限公司 | Cloud computing-based access equipment resource allocation method and related device |
CN116560859B (en) * | 2023-07-11 | 2023-09-22 | 恒辉信达技术有限公司 | Cloud computing-based access equipment resource allocation method and related device |
Also Published As
Publication number | Publication date |
---|---|
CN114385342B (en) | 2024-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9389798B2 (en) | Dynamic reconfiguration of storage system | |
US9405589B2 (en) | System and method of optimization of in-memory data grid placement | |
KR101287448B1 (en) | Fuzzy control based virtual machine auto scaling system and method | |
US20170214634A1 (en) | Joint autoscaling of cloud applications | |
US20180139094A1 (en) | Managing servers with quality of service assurances | |
CN108431796A (en) | Distributed resource management system and method | |
US20150160972A1 (en) | Virtual machine migration management method, apparatus and system | |
CN114915593B (en) | Flow control method, device, electronic equipment and storage medium based on Redis | |
US20120221730A1 (en) | Resource control system and resource control method | |
CN106664259B (en) | Method and device for expanding virtual network function | |
CN107729570B (en) | Data migration method and device for server | |
CN104270421A (en) | A multi-tenant cloud platform task scheduling method supporting bandwidth guarantee | |
US11553047B2 (en) | Dynamic connection capacity management | |
KR101630125B1 (en) | Method for resource provisioning in cloud computing resource management system | |
US10171313B2 (en) | Managing workload to meet execution criterion in a hybrid cloud environment | |
CN113238861A (en) | Task execution method and device | |
CN114385342A (en) | Container cloud overload protection method and device, computer device and storage medium | |
CN112000460A (en) | A method and related equipment for service expansion and contraction based on improved Bayesian algorithm | |
More et al. | Energy-aware VM migration using dragonfly–crow optimization and support vector regression model in Cloud | |
US20180067682A1 (en) | Allocation of Hardware Resources to a Logical Grouping of Software Applications | |
WO2024148864A1 (en) | Virtual machine memory adjustment method and device, non-volatile readable storage medium, and electronic device | |
Portaluri et al. | Multi objective virtual machine allocation in cloud data centers | |
CN114035906B (en) | Virtual machine migration method and device, electronic equipment and storage medium | |
JP6602252B2 (en) | Resource management apparatus and resource management method | |
CN106227600B (en) | A kind of multidimensional virtual resource allocation method based on Energy-aware |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |