CN114354512A - Quantum dot thin film spectrum detection instrument and application method thereof - Google Patents
Quantum dot thin film spectrum detection instrument and application method thereof Download PDFInfo
- Publication number
- CN114354512A CN114354512A CN202111524172.5A CN202111524172A CN114354512A CN 114354512 A CN114354512 A CN 114354512A CN 202111524172 A CN202111524172 A CN 202111524172A CN 114354512 A CN114354512 A CN 114354512A
- Authority
- CN
- China
- Prior art keywords
- quantum dot
- electric field
- electrode
- light
- field element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 85
- 238000001514 detection method Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000010409 thin film Substances 0.000 title claims abstract description 11
- 238000001228 spectrum Methods 0.000 title claims abstract description 9
- 230000005684 electric field Effects 0.000 claims abstract description 43
- 230000003595 spectral effect Effects 0.000 claims abstract description 20
- 239000010408 film Substances 0.000 claims abstract description 19
- 229920006254 polymer film Polymers 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 18
- 230000003287 optical effect Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 238000000411 transmission spectrum Methods 0.000 claims description 6
- 239000012780 transparent material Substances 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 3
- 238000012417 linear regression Methods 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 2
- 239000000084 colloidal system Substances 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 238000001035 drying Methods 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 claims 1
- 238000001259 photo etching Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 2
- 238000002360 preparation method Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Landscapes
- Light Receiving Elements (AREA)
Abstract
本发明属于光电检测技术领域,涉及一种量子点薄膜光谱检测仪器和使用方法,该仪器由量子点电场调控元件和安装在量子点电场元件上的光强探测元件组成,所述量子点电场调控元件,包括两块电极、设置在两电极间的聚合物薄膜,以及嵌入在聚合物薄膜内的胶体量子点,后两者共同组成量子点薄膜;所述光强探测元件,包括外框和安装在外框侧的透光面,其中,透光面置于量子点电场元件方向。本发明能够在光谱检测中实现微型化、便携化,具有制备速度快,测量精度高,加工成本低,使用范围广等特点。
The invention belongs to the technical field of photoelectric detection, and relates to a quantum dot thin film spectral detection instrument and a method of use. The instrument is composed of a quantum dot electric field control element and a light intensity detection element installed on the quantum dot electric field element. The element includes two electrodes, a polymer film arranged between the two electrodes, and colloidal quantum dots embedded in the polymer film, the latter two together form a quantum dot film; the light intensity detection element includes an outer frame and a mounting The light-transmitting surface on the outer frame side, wherein the light-transmitting surface is placed in the direction of the quantum dot electric field element. The invention can realize miniaturization and portability in spectrum detection, and has the characteristics of fast preparation speed, high measurement accuracy, low processing cost, wide application range and the like.
Description
技术领域technical field
本发明属于光电检测技术领域,涉及一种量子点薄膜光谱检测仪器及其使用方法。The invention belongs to the technical field of photoelectric detection, and relates to a quantum dot thin film spectral detection instrument and a use method thereof.
背景技术Background technique
量子点是三个维度尺寸都在100纳米以下的准零维的纳米材料,由有限数目的原子组成,其电子各方向上的运动都受到局限,相对于量子阱、线而言,其量子限域效应会更加明显,光学效应会显著增强,量子点具有库伦阻塞效应、量子隧道效应、量子尺寸效应、表面效应等,这些效应使得由量子点构成的微观纳米材料在物理应用方面不同于宏观的体材料。Quantum dots are quasi-zero-dimensional nanomaterials with three dimensions below 100 nanometers. They are composed of a limited number of atoms, and the movement of their electrons in all directions is limited. Compared with quantum wells and wires, their quantum limit is The domain effect will be more obvious, and the optical effect will be significantly enhanced. Quantum dots have Coulomb blocking effect, quantum tunneling effect, quantum size effect, surface effect, etc. These effects make the microscopic nanomaterials composed of quantum dots different in physical applications from macroscopic ones. body material.
现有市场上的光谱测量仪器主要分为两类,一类基于色散的原理,利用光栅等色散光学元件将被测光中不同的波长成分在空间上分开,再利用光电传感器测量每种波长成分的光强度,从而得到被测光的光谱信息, 另一类基于光学干涉原理,利用光学薄膜、标准具等干涉光学元件,形成一系列窄带光学滤波器只允许被测光中特定的波长成分穿过滤波器,再用光电传感器测量其强度,通过扫描光学薄膜或标准具的透射光波长,可以获得被测光的完整光谱信息。Spectral measuring instruments on the existing market are mainly divided into two categories. One is based on the principle of dispersion. Dispersive optical elements such as gratings are used to spatially separate different wavelength components in the measured light, and then photoelectric sensors are used to measure each wavelength component. The other type is based on the principle of optical interference, using optical films, etalons and other interfering optical elements to form a series of narrow-band optical filters that only allow specific wavelength components in the measured light to pass through. Pass the filter, and then measure its intensity with a photoelectric sensor. By scanning the wavelength of the transmitted light of the optical film or etalon, the complete spectral information of the measured light can be obtained.
基于色散原理的光谱测量仪器,由于不同波长成分的光需要传输一定距离后才能发生明显的分离,因此其尺寸受到有效光程的限制,难以实现微型化。Spectroscopic measuring instruments based on the principle of dispersion, because the light of different wavelength components needs to travel a certain distance before they can be clearly separated, so its size is limited by the effective optical path, and it is difficult to achieve miniaturization.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中存在的上述技术问题,本发明提出了一种量子点薄膜光谱检测仪器及其使用方法,该仪器在外加电压下工作,能够在光谱检测中实现微型化、便携化,具有制备速度快,测量精度高,加工成本低,使用范围广等特点,其具体技术方案如下:In order to solve the above technical problems existing in the prior art, the present invention proposes a quantum dot thin film spectral detection instrument and a method for using the same. The instrument works under an applied voltage, can achieve miniaturization and portability in spectral detection, and has The preparation speed is fast, the measurement accuracy is high, the processing cost is low, and the application range is wide. The specific technical solutions are as follows:
一种量子点薄膜光谱检测仪器,由量子点电场元件和安装在量子点电场元件上的光强探测元件组成,所述量子点电场元件,包括两块电极、设置在两电极间的聚合物薄膜,以及嵌入在聚合物薄膜内的胶体量子点,后两者共同组成量子点薄膜;所述光强探测元件,包括外框和安装在外框侧的透光面,其中,透光面置于量子点电场元件方向。A quantum dot film spectral detection instrument is composed of a quantum dot electric field element and a light intensity detection element installed on the quantum dot electric field element. The quantum dot electric field element includes two electrodes and a polymer film arranged between the two electrodes. , and colloidal quantum dots embedded in a polymer film, the latter two together form a quantum dot film; the light intensity detection element includes an outer frame and a light-transmitting surface installed on the side of the outer frame, wherein the light-transmitting surface is placed on the quantum dot film. Point electric field element direction.
进一步的,所述电极包括电极基底和电极引脚,所述电极基底选取透明材料,透明材料包括玻璃,所述电极引脚选取金属或金属氧化物,通过光刻、溅射、蚀刻方式进行加工在电极基底的一角上。Further, the electrode includes an electrode base and electrode pins, the electrode base is made of transparent materials, the transparent material includes glass, the electrode pins are made of metal or metal oxide, and are processed by photolithography, sputtering, and etching. on the corner of the electrode substrate.
进一步的,所述量子点包括一个或多个性质相同的胶体量子点单元;两电极长度为0.1mm~12mm,宽度为0.1mm~12mm,厚度约为100μm,两块电极之间的间距约为1μm ~50μm。Further, the quantum dots include one or more colloidal quantum dot units with the same properties; the length of the two electrodes is 0.1mm~12mm, the width is 0.1mm~12mm, the thickness is about 100μm, and the distance between the two electrodes is about 1μm ~50μm.
进一步的,所述量子点电场元件外涂有一层透明的绝缘材料。Further, the quantum dot electric field element is coated with a layer of transparent insulating material.
一种量子点薄膜光谱检测仪器的使用方法,具体包括以下步骤:A method for using a quantum dot thin film spectral detection instrument, which specifically includes the following steps:
步骤一:选取玻璃材料作为仪器两电极的基底材料,金属或金属氧化物作为电极引脚(3),将电极引脚(3)加工在电极基底(1)上,电极制作完成后用丙酮和去离子水各清洗一遍并进行干燥处理;Step 1: Select glass material as the base material of the two electrodes of the instrument, metal or metal oxide as the electrode pin (3), process the electrode pin (3) on the electrode substrate (1), and use acetone and Deionized water is washed once and dried;
步骤二:在两电极间放入嵌入有胶体量子点(2)的量子点薄膜,构成量子点电场元件;Step 2: put a quantum dot film embedded with colloidal quantum dots (2) between the two electrodes to form a quantum dot electric field element;
步骤三:在通过上述步骤得到的量子点电场元件外涂上一层透明的绝缘材料,进行绝缘封装处理;Step 3: coating a layer of transparent insulating material on the quantum dot electric field element obtained by the above steps, and performing insulating encapsulation processing;
步骤四:在电极引脚(3)处引出导线,分别连接外接电源的正负极给予量子点电场元件电场;Step 4: Lead out wires at the electrode pins (3), respectively connect the positive and negative electrodes of the external power supply to give the quantum dot electric field element an electric field;
步骤五:利用标准光源及光谱仪,标定在不同外接电压时,量子点电场元件的透射谱;Step 5: Use standard light source and spectrometer to calibrate at different external voltages When , the transmission spectrum of the quantum dot electric field element ;
步骤六:将光强探测元件安装在所述量子点电场元件上,安装时将光强探测元件透光表面置于量子点电场元件方向;Step 6: install the light intensity detection element on the quantum dot electric field element, and place the light-transmitting surface of the light intensity detection element in the direction of the quantum dot electric field element during installation;
步骤七: 设备工作时,入射光(6)依次穿透过前侧的透明电极基底、量子点薄膜(2)、后侧的透明电极基底、光谱探测元件的透光面(5);Step 7: When the device is working, the incident light (6) penetrating through the transparent electrode substrate on the front side, the quantum dot film (2), the transparent electrode substrate on the rear side, and the light-transmitting surface (5) of the spectral detection element in sequence;
步骤八:对量子点电场元件施加不同外接电压,量子点薄膜(2)透射光投影投射在光强探测元件的透光面(5),透射光强度被转换为电信号输出,探测到光学强度为;Step 8: Apply different external voltages to the quantum dot electric field element , The transmitted light of the quantum dot film (2) is projected on the light-transmitting surface (5) of the light intensity detection element, the transmitted light intensity is converted into an electrical signal output, and the detected optical intensity is ;
步骤九:根据,利用线性回归方法,由标定的透射谱和测到得光学强度,可以得到入射光的光谱。Step 9: According to , using the linear regression method, from the calibrated transmission spectrum and the measured optical intensity , the spectrum of incident light can be obtained .
有益效果:Beneficial effects:
本发明中所提出的在外加电压下工作的量子点薄膜光谱检测元件,可以通过封装绝缘微结构保证光谱检测的精度,相比传统的光谱检测装置,本元件通过量子点薄膜的配合,能够实现在光谱检测时也能实现波长分辨率高,空间分辨率高,体积小的效果,为光谱检测仪器提供一种便携化,微型化的设计方案。The quantum dot thin film spectral detection element proposed in the present invention that works under an applied voltage can ensure the accuracy of spectral detection by encapsulating the insulating microstructure. Compared with the traditional spectral detection device, the element can realize the It can also achieve high wavelength resolution, high spatial resolution, and small volume in spectral detection, providing a portable and miniaturized design scheme for spectral detection instruments.
附图说明Description of drawings
图1为量子点薄膜与透明电极组合的量子点电场元件剖析图;Fig. 1 is the anatomical view of quantum dot electric field element of quantum dot film and transparent electrode combination;
图2为图1的前视图;Fig. 2 is the front view of Fig. 1;
图3为光强探测元件;Figure 3 is a light intensity detection element;
图4为在外加电压下量子点薄膜光谱检测器工作示意图;Fig. 4 is the working schematic diagram of quantum dot thin film spectral detector under the applied voltage;
图中,1为电极基底,2为量子点薄膜,3为电极引脚,4为外框,5为透光面,6为入射光线。In the figure, 1 is the electrode substrate, 2 is the quantum dot film, 3 is the electrode pin, 4 is the outer frame, 5 is the light-transmitting surface, and 6 is the incident light.
具体实施方式Detailed ways
为了使本发明的目的、技术方案和技术效果更加清楚明白,以下结合说明书附图,对本发明作进一步详细说明。In order to make the objectives, technical solutions and technical effects of the present invention clearer, the present invention will be described in further detail below with reference to the accompanying drawings.
如图4所示,一种量子点薄膜光谱检测仪器,由量子点电场元件和安装在量子点电场元件上的光强探测元件组成。As shown in Figure 4, a quantum dot thin film spectral detection instrument is composed of a quantum dot electric field element and a light intensity detection element installed on the quantum dot electric field element.
如图1和2所示,所述量子点电场元件,包括两块电极、设置在两电极间的聚合物薄膜,以及嵌入在聚合物薄膜内的胶体量子点,后两者共同组成量子点薄膜2,所述电极包括电极基底1和电极引脚3,所述电极基底1选取透明材料,例如玻璃,所述电极引脚3选取金属或金属氧化物,通过光刻、溅射、蚀刻方式进行加工在电极基底1上。其中,所述量子点包括一个或多个性质相同的胶体量子点单元;两电极长度为0.1 mm~12 mm,宽度为0.1 mm~12mm,厚度约为100μm,两块电极之间的间距约为50μm。As shown in Figures 1 and 2, the quantum dot electric field element includes two electrodes, a polymer film disposed between the two electrodes, and colloidal quantum dots embedded in the polymer film, and the latter two together form a
所述量子点电场元件外涂有一层透明的绝缘材料。The quantum dot electric field element is coated with a layer of transparent insulating material.
如图3所示,所述光强探测元件,包括外框4和安装在外框4侧的透光面5,其中,透光面5置于量子点电场元件方向。As shown in FIG. 3 , the light intensity detection element includes an
本发明的一种量子点薄膜光谱检测仪器的使用方法,具体包括以下步骤:A method of using a quantum dot film spectral detection instrument of the present invention specifically includes the following steps:
步骤一:选取玻璃材料作为仪器两电极的基底材料,金属或金属氧化物作为电极引脚(3),将电极引脚(3)加工在电极基底(1)上,电极制作完成后用丙酮和去离子水各清洗一遍并进行干燥处理;Step 1: Select glass material as the base material of the two electrodes of the instrument, metal or metal oxide as the electrode pin (3), process the electrode pin (3) on the electrode substrate (1), and use acetone and Deionized water is washed once and dried;
步骤二:在两电极间放入嵌入有胶体量子点(2)的量子点薄膜,构成量子点电场元件;Step 2: put a quantum dot film embedded with colloidal quantum dots (2) between the two electrodes to form a quantum dot electric field element;
步骤三:在通过上述步骤得到的量子点电场元件外涂上一层透明的绝缘材料,进行绝缘封装处理;Step 3: coating a layer of transparent insulating material on the quantum dot electric field element obtained by the above steps, and performing insulating encapsulation processing;
步骤四:在电极引脚(3)处引出导线,分别连接外接电源的正负极给予量子点电场元件电场;Step 4: Lead out wires at the electrode pins (3), respectively connect the positive and negative electrodes of the external power supply to give the quantum dot electric field element an electric field;
步骤五:利用标准光源及光谱仪,标定在不同外接电压时,量子点电场元件的透射谱;Step 5: Use standard light source and spectrometer to calibrate at different external voltages When , the transmission spectrum of the quantum dot electric field element ;
步骤六:将光强探测元件安装在所述量子点电场元件上,安装时将光强探测元件透光表面置于量子点电场元件方向;Step 6: install the light intensity detection element on the quantum dot electric field element, and place the light-transmitting surface of the light intensity detection element in the direction of the quantum dot electric field element during installation;
步骤七: 设备工作时,入射光(6)依次穿透过前侧的透明电极基底、量子点薄膜(2)、后侧的透明电极基底、光谱探测元件的透光面(5);Step 7: When the device is working, the incident light (6) penetrating through the transparent electrode substrate on the front side, the quantum dot film (2), the transparent electrode substrate on the rear side, and the light-transmitting surface (5) of the spectral detection element in sequence;
步骤八:对量子点电场元件施加不同外接电压,量子点薄膜(2)透射光投影投射在光强探测元件的透光面(5),透射光强度被转换为电信号输出,探测到光学强度为;Step 8: Apply different external voltages to the quantum dot electric field element , The transmitted light of the quantum dot film (2) is projected on the light-transmitting surface (5) of the light intensity detection element, the transmitted light intensity is converted into an electrical signal output, and the detected optical intensity is ;
步骤九:根据,利用线性回归方法,由标定的透射谱和测到得光学强度,可以得到入射光的光谱。Step 9: According to , using the linear regression method, from the calibrated transmission spectrum and the measured optical intensity , the spectrum of incident light can be obtained .
以上所述,仅为本发明的优选实施案例,并非对本发明做任何形式上的限制。虽然前文对本发明的实施过程进行了详细说明,对于熟悉本领域的人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行同等替换。凡在本发明精神和原则之内所做修改、同等替换等,均应包含在本发明的保护范围之内。The above descriptions are only preferred implementation examples of the present invention, and do not limit the present invention in any form. Although the implementation process of the present invention has been described in detail above, those skilled in the art can still modify the technical solutions described in the foregoing examples, or perform equivalent replacements for some of the technical features. All modifications, equivalent replacements, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111524172.5A CN114354512A (en) | 2021-12-14 | 2021-12-14 | Quantum dot thin film spectrum detection instrument and application method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111524172.5A CN114354512A (en) | 2021-12-14 | 2021-12-14 | Quantum dot thin film spectrum detection instrument and application method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114354512A true CN114354512A (en) | 2022-04-15 |
Family
ID=81098823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111524172.5A Pending CN114354512A (en) | 2021-12-14 | 2021-12-14 | Quantum dot thin film spectrum detection instrument and application method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114354512A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006228994A (en) * | 2005-02-18 | 2006-08-31 | Fujitsu Ltd | Light detector |
US20170062139A1 (en) * | 2015-08-31 | 2017-03-02 | The University Of Akron | Photodetector utilizing quantum dots and perovskite hybrids as light harvesters |
CN106768331A (en) * | 2016-12-22 | 2017-05-31 | 陈明烨 | Quantum dot array spectrum sensor |
CN107275421A (en) * | 2017-06-07 | 2017-10-20 | 华中科技大学 | A kind of quantum dot light electric explorer and preparation method thereof |
CN108155294A (en) * | 2017-12-25 | 2018-06-12 | 上海集成电路研发中心有限公司 | Photodetector and preparation method thereof, photodetector fabric |
CN108444927A (en) * | 2018-03-12 | 2018-08-24 | 华中科技大学 | A kind of spectrum analysis chip and preparation method thereof |
CN110088910A (en) * | 2017-11-07 | 2019-08-02 | 华为技术有限公司 | Optical waveguide, single photon source and method for manufacturing optical waveguide |
CN110954510A (en) * | 2019-11-15 | 2020-04-03 | 温州森佰生物科技有限公司 | Nano plasma spectrum technology |
CN214583655U (en) * | 2021-02-07 | 2021-11-02 | 芯视界(北京)科技有限公司 | Spectrum chip and spectrum device comprising same |
-
2021
- 2021-12-14 CN CN202111524172.5A patent/CN114354512A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006228994A (en) * | 2005-02-18 | 2006-08-31 | Fujitsu Ltd | Light detector |
US20170062139A1 (en) * | 2015-08-31 | 2017-03-02 | The University Of Akron | Photodetector utilizing quantum dots and perovskite hybrids as light harvesters |
CN106768331A (en) * | 2016-12-22 | 2017-05-31 | 陈明烨 | Quantum dot array spectrum sensor |
CN107275421A (en) * | 2017-06-07 | 2017-10-20 | 华中科技大学 | A kind of quantum dot light electric explorer and preparation method thereof |
CN110088910A (en) * | 2017-11-07 | 2019-08-02 | 华为技术有限公司 | Optical waveguide, single photon source and method for manufacturing optical waveguide |
CN108155294A (en) * | 2017-12-25 | 2018-06-12 | 上海集成电路研发中心有限公司 | Photodetector and preparation method thereof, photodetector fabric |
CN108444927A (en) * | 2018-03-12 | 2018-08-24 | 华中科技大学 | A kind of spectrum analysis chip and preparation method thereof |
CN110954510A (en) * | 2019-11-15 | 2020-04-03 | 温州森佰生物科技有限公司 | Nano plasma spectrum technology |
CN214583655U (en) * | 2021-02-07 | 2021-11-02 | 芯视界(北京)科技有限公司 | Spectrum chip and spectrum device comprising same |
Non-Patent Citations (1)
Title |
---|
JIE BAO ET AL: "A colloidal quantum dot spectrometer", NATURE, vol. 523, 1 July 2015 (2015-07-01), pages 67 - 70, XP055465070, DOI: 10.1038/nature14576 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107561028B (en) | Metal-graphene plasmonic components for enhanced infrared spectroscopy detection and preparation method | |
CN108414603B (en) | A kind of humidity sensor based on electric double layer thin film transistor and preparation method thereof | |
US6388455B1 (en) | Method and apparatus for simulating a surface photo-voltage in a substrate | |
CN104596683A (en) | Pressure sensor based on stratified materials and piezoelectric effect measuring system | |
CN109416279B (en) | UV dosimeter with color change | |
TW201531682A (en) | Improved pressure sensor structure | |
CN110057446A (en) | A kind of light power meter with wide spectral range and machine with wide range | |
CN107421681B (en) | A kind of pressure sensor and preparation method thereof | |
CN110734036B (en) | On-chip spectrometer integrated on nanowire and preparation method of detector array of on-chip spectrometer | |
US11435310B2 (en) | Humidity sensor | |
CN103557944B (en) | A kind of carbon nano-tube infrared sensor of low-power-consumptiohigh-sensitivity high-sensitivity | |
JP2021067690A (en) | Inorganic humidity sensor device | |
US7495307B2 (en) | Columnar electric device | |
CN114354512A (en) | Quantum dot thin film spectrum detection instrument and application method thereof | |
Shen et al. | Direct electronical readout of surface plasmon resonance biosensor enabled by on-fiber Graphene/PMMA photodetector | |
CN111649821B (en) | Superconducting nanowire single-pixel spectrometer with programmable responsivity | |
CN114784128A (en) | Topology-enhanced antimony telluride terahertz photoelectric detector based on butterfly antenna structure and preparation method thereof | |
CN105097981B (en) | Ultraviolet light-sensitive device, preparation method and application its detection ultraviolet light method | |
CN101408514B (en) | Gas sensor based on gas discharge spectral analysis and method for testing gas thereof | |
CN118315470A (en) | Lead selenide thin film phototransistor with electric grid self-rolling lead sulfide quantum dot interlayer | |
CN108871219A (en) | Strain sensing material, preparation method and strain sensing system | |
CN103063299A (en) | A miniature spectrometer | |
CN104236710B (en) | A kind of spectrum ultra-resolution method of hand-hold light source color illumination photometry instrument | |
CN107064022A (en) | A kind of luminescent spectrum for measuring quantum dot varies with temperature the device and method of rule | |
CN113155281B (en) | Metal resistance detector and nuclear fusion plasma physical research device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20220415 |