CN114326104B - Augmented reality glasses with structured light detection function - Google Patents
Augmented reality glasses with structured light detection function Download PDFInfo
- Publication number
- CN114326104B CN114326104B CN202011041233.8A CN202011041233A CN114326104B CN 114326104 B CN114326104 B CN 114326104B CN 202011041233 A CN202011041233 A CN 202011041233A CN 114326104 B CN114326104 B CN 114326104B
- Authority
- CN
- China
- Prior art keywords
- optical element
- light
- light beam
- augmented reality
- detection function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000011521 glass Substances 0.000 title claims abstract description 58
- 230000003190 augmentative effect Effects 0.000 title claims abstract description 53
- 238000001514 detection method Methods 0.000 title claims abstract description 48
- 230000003287 optical effect Effects 0.000 claims abstract description 87
- 239000003086 colorant Substances 0.000 claims description 17
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 3
- 206010020675 Hypermetropia Diseases 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000004305 hyperopia Effects 0.000 description 1
- 201000006318 hyperopia Diseases 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 230000004379 myopia Effects 0.000 description 1
Abstract
Description
技术领域technical field
本发明涉及一种扩增实境显示器,尤其涉及一种具有结构光检测功能的扩增实境眼镜。The invention relates to an augmented reality display, in particular to augmented reality glasses with a structured light detection function.
背景技术Background technique
随着显示技术的进步,虚拟现实(virtual reality)显示技术与扩增实境(augmented reality)显示技术逐渐普及,且被充分地研究与发展。虚拟现实显示技术可让用户沉浸在显示器所显示的虚拟世界,且可显示有立体感的图像。扩增实境显示技术则除了让用户可以看到虚拟世界的图像之外,还可以看到真实世界的物体,甚至使虚拟世界的图像与真实世界的物体可以达到互动的效果。With the progress of display technology, virtual reality (virtual reality) display technology and augmented reality (augmented reality) display technology are gradually popularized, and have been fully researched and developed. Virtual reality display technology allows users to immerse themselves in the virtual world displayed on the monitor, and can display images with a three-dimensional effect. Augmented reality display technology not only allows users to see images in the virtual world, but also objects in the real world, and even enables the images in the virtual world to interact with objects in the real world.
当显示器对用户的眼睛提供虚拟世界的图像(即虚像)时,若系统能得知眼睛的位置与转动的角度,则可提供对应的虚像,而有更佳的显示效果。然而,欲在扩增实境显示设备加装眼球追踪器时,则有元件数量过多,系统过于复杂的缺点。When the display provides images of the virtual world (ie, virtual images) to the user's eyes, if the system can know the position and rotation angle of the eyes, it can provide corresponding virtual images and have a better display effect. However, when adding an eye tracker to an augmented reality display device, there are disadvantages that the number of components is too large and the system is too complicated.
发明内容Contents of the invention
本发明是针对一种具有结构光检测功能的扩增实境眼镜,其将结构光的光源整合至用以显示图像的激光投影器中,因而可具有较为简单的架构及较小数量的元件。The present invention is directed to an augmented reality glasses with a structured light detection function, which integrates a structured light light source into a laser projector for displaying images, thus having a relatively simple structure and a small number of components.
本发明的一实施例提出一种具有结构光检测功能的扩增实境眼镜,适于配戴于眼睛前方。具有结构光检测功能的扩增实境眼镜包括激光投影器、眼镜镜片、至少一第一衍射光学元件(diffractive optical element,DOE)膜、不可见光相机及第二衍射光学元件膜。激光投影器用以发出至少一不可见光束与图像光束,眼镜镜片配置于不可见光束与图像光束的路径上。此至少一第一衍射光学元件膜配置于眼镜镜片上,且位于不可见光束的路径上。第一衍射光学元件用以将不可见光束衍射成结构光束,其中结构光束传递至待测物,以在待测物上形成光图案。不可见光相机用以拍摄待测物上的光图案。第二衍射光学元件膜配置于眼镜镜片上,且位于图像光束的路径上,第二衍射光学元件膜用以将图像光束传递至眼睛。An embodiment of the present invention provides an augmented reality glasses with a structured light detection function, which is suitable for wearing in front of the eyes. The augmented reality glasses with structured light detection function include a laser projector, glasses lenses, at least one first diffractive optical element (DOE) film, an invisible light camera and a second diffractive optical element film. The laser projector is used to emit at least one invisible beam and image beam, and the spectacle lens is arranged on the paths of the invisible beam and the image beam. The at least one first diffractive optical element film is disposed on the spectacle lens and is located on the path of the invisible light beam. The first diffractive optical element is used for diffracting the invisible beam into a structured beam, wherein the structured beam is transmitted to the object to be tested to form a light pattern on the object to be tested. The invisible light camera is used to capture the light pattern on the object under test. The second diffractive optical element film is arranged on the spectacle lens and is located on the path of the image beam, and the second diffractive optical element film is used to transmit the image beam to the eyes.
在本发明的实施例的具有结构光检测功能的扩增实境眼镜中,激光投影器除了发出图像光束外,还发出了不可见光束,且不可见光束经由第一衍射光学元件的衍射作用而形成结构光束,其用以检测待测物。也就是说,本发明的实施例将结构光的光源整合至用以显示图像的激光投影器中,因而具有结构光检测功能的扩增实境眼镜可具有较为简单的架构及较少数量的元件,且同时达到显示图像与检测待测物的功能。In the augmented reality glasses with a structured light detection function according to the embodiment of the present invention, the laser projector emits an invisible beam in addition to the image beam, and the invisible beam is diffracted by the first diffractive optical element to form a structured beam, which is used to detect the object to be tested. That is to say, the embodiment of the present invention integrates the light source of structured light into the laser projector for displaying images, so the augmented reality glasses with structured light detection function can have a relatively simple structure and a small number of components, and simultaneously achieve the functions of displaying images and detecting objects under test.
附图说明Description of drawings
图1为本发明的一实施例的具有结构光检测功能的扩增实境眼镜的光路示意图;FIG. 1 is a schematic diagram of the optical path of augmented reality glasses with a structured light detection function according to an embodiment of the present invention;
图2为图1中的激光投影器的光路示意图;Fig. 2 is a schematic diagram of the optical path of the laser projector in Fig. 1;
图3为图1的结构光束在眼睛上形成光图案的示意图;Fig. 3 is a schematic diagram of the structured beam of Fig. 1 forming a light pattern on the eye;
图4示出图2的红色光束、绿色光束、蓝色光束及红外光束在眼镜镜片上的扫描路径与位置;Fig. 4 shows the scanning paths and positions of the red light beam, green light beam, blue light beam and infrared light beam on the spectacle lens of Fig. 2;
图5为图1中的第一衍射光学元件膜的一个实施例的立体示意图;FIG. 5 is a schematic perspective view of an embodiment of the first diffractive optical element film in FIG. 1;
图6为图1中的第一衍射光学元件的另一个实施例的立体示意图;FIG. 6 is a schematic perspective view of another embodiment of the first diffractive optical element in FIG. 1;
图7为本发明的另一实施例的具有结构光检测功能的扩增实境眼镜的光路示意图;7 is a schematic diagram of the optical path of augmented reality glasses with structured light detection function according to another embodiment of the present invention;
图8为图7中的眼镜镜片从眼睛的视线方向看过去的正视示意图;Fig. 8 is a schematic front view of the spectacle lens in Fig. 7 viewed from the line of sight of the eyes;
图9为图7中的激光投影器的光路示意图;Fig. 9 is a schematic diagram of the optical path of the laser projector in Fig. 7;
图10为另一实施例的具有结构光检测功能的扩增实境眼镜中的眼镜镜片从眼睛的视线方向看过去的正视示意图;Fig. 10 is a schematic front view of the glasses lens in the augmented reality glasses with structured light detection function viewed from the line of sight of the eyes according to another embodiment;
图11为又一实施例的具有结构光检测功能的扩增实境眼镜中的眼镜镜片从眼睛的视线方向看过去的正视示意图;Fig. 11 is a schematic front view of the spectacle lens in the augmented reality glasses with structured light detection function viewed from the line of sight of the eyes according to another embodiment;
图12为本发明的再一实施例的具有结构光检测功能的扩增实境眼镜的光路示意图。FIG. 12 is a schematic diagram of an optical path of augmented reality glasses with a structured light detection function according to another embodiment of the present invention.
附图标记说明Explanation of reference signs
50:眼睛50: eyes
60:外界物体60: External objects
100、100b、100d:具有结构光检测功能的扩增实境眼镜100, 100b, 100d: AR glasses with structured light detection
110:眼镜镜片110: spectacle lens
112:表面112: surface
120、120a、120b、120c、120d、124b、124c、126b、126c、128c、129c:第一衍射光学元件膜120, 120a, 120b, 120c, 120d, 124b, 124c, 126b, 126c, 128c, 129c: first diffractive optical element film
122、122a:微结构122, 122a: microstructure
130:不可见光相机130: Invisible light camera
140:第二衍射光学元件膜140: Second diffractive optical element film
150:眼镜架150: spectacle frame
160:处理器160: Processor
200:激光投影器200:Laser projector
201:光图案201: light pattern
202、202b、2021、2022:不可见光束202, 202b, 2021, 2022: invisible beams
202’:红外光束202': Infrared beam
203:结构光束203: Structured Beam
204:图像光束204: image beam
210:红外光激光源210: Infrared laser light source
220:激光源220: laser source
221:红色光束221: red beam
222:红光激光源222: red laser source
223:绿色光束223: Green Beam
224:绿光激光源224: Green laser source
225:蓝色光束225: blue beam
226:蓝光激光源226: Blu-ray laser source
230:合光模块230: Combined light module
232、234、236:分色镜232, 234, 236: dichroic mirror
240:扫描镜240: scanning mirror
I1:光点I1: light spot
I2:红光扫描路径I2: Red light scanning path
I3:绿光扫描路径I3: Green light scanning path
I4:蓝光扫描路径I4: Blu-ray scanning path
具体实施方式Detailed ways
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。Reference will now be made in detail to the exemplary embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used in the drawings and description to refer to the same or like parts.
图1为本发明的一实施例的具有结构光检测功能的扩增实境眼镜的光路示意图,图2为图1中的激光投影器的光路示意图,而图3为图1的结构光束在眼睛形成上光图案的示意图。请参照图1至图3,本实施例的具有结构光检测功能的扩增实境眼镜100适于配戴于眼睛50前方,具有结构光检测功能的扩增实境眼镜100包括激光投影器200、眼镜镜片110、至少一第一衍射光学元件膜120(在图1中是以一个第一衍射光学元件膜120为例)、不可见光相机130及第二衍射光学元件膜140。激光投影器200用以发出至少一不可见光束202(在图1中是以发出一个不可见光束202为例)与图像光束204,眼镜镜片110配置于不可见光束202与图像光束204的路径上。第一衍射光学元件膜120配置于眼镜镜片110上,且位于不可见光束202的路径上。第一衍射光学元件120用以将不可见光束202衍射成结构光束203,此衍射例如是反射式衍射,其中结构光束203传递至待测物,以在待测物上形成光图案。在本实施例中,待测物为眼睛50,而结构光束203在眼睛50上形成光图案201。FIG. 1 is a schematic diagram of the optical path of augmented reality glasses with structured light detection function according to an embodiment of the present invention. FIG. 2 is a schematic diagram of the optical path of the laser projector in FIG. 1 , and FIG. 3 is a schematic diagram of the structured light beam in FIG. 1 forming a glazing pattern on the eye. Referring to FIGS. 1 to 3 , the augmented reality glasses 100 with structured light detection function of this embodiment are suitable for wearing in front of eyes 50 . The augmented reality glasses 100 with structured light detection function include a laser projector 200 , spectacle lenses 110 , at least one first diffractive optical element film 120 (a first diffractive optical element film 120 is taken as an example in FIG. 1 ), an invisible light camera 130 and a second diffractive optical element film 140. The laser projector 200 is used to emit at least one invisible beam 202 (in FIG. 1 , an invisible beam 202 is taken as an example) and an image beam 204 . The spectacle lens 110 is disposed on the path of the invisible beam 202 and the image beam 204 . The first diffractive optical element film 120 is disposed on the spectacle lens 110 and located on the path of the invisible light beam 202 . The first diffractive optical element 120 is used to diffract the invisible beam 202 into a structured beam 203 , such as reflective diffraction, wherein the structured beam 203 is transmitted to the object to form a light pattern on the object. In this embodiment, the object to be measured is the eye 50 , and the structured light beam 203 forms a light pattern 201 on the eye 50 .
不可见光相机130用以拍摄待测物上的光图案201。第二衍射光学元件膜140配置于眼镜镜片110上,且位于图像光束204的路径上,第二衍射光学元件膜140用以将图像光束204传递至眼睛50,例如是衍射至眼睛50,以使眼睛50看到激光投影器200所欲显示的图像画面,其以位于眼睛50前方的虚像来呈现。第二衍射光学元件膜140对图像光束204的衍射例如是反射式衍射。此外,在本实施例中,第一衍射光学元件膜120与第二衍射光学元件膜140配置于眼镜镜片110的朝向眼睛50的表面112上。此外,第二衍射光学元件膜140可以是一般的衍射光学元件膜或是全像光学元件(holographic optical element,HOE)膜。The invisible light camera 130 is used to photograph the light pattern 201 on the object under test. The second diffractive optical element film 140 is disposed on the spectacle lens 110 and is located on the path of the image beam 204. The second diffractive optical element film 140 is used to transmit the image beam 204 to the eye 50, for example, to diffract the image beam to the eye 50, so that the eye 50 can see the image frame to be displayed by the laser projector 200, which is presented as a virtual image located in front of the eye 50. The diffraction of the image beam 204 by the second diffractive optical element film 140 is, for example, reflective diffraction. In addition, in this embodiment, the first diffractive optical element film 120 and the second diffractive optical element film 140 are disposed on the surface 112 of the spectacle lens 110 facing the eye 50 . In addition, the second diffractive optical element film 140 may be a general diffractive optical element film or a holographic optical element (HOE) film.
在本实施例中,激光投影器包括红外光激光源210、多个不同颜色的激光源220、合光模块230及扫描镜240。红外光激光源210用以发出红外光束202’,这些不同颜色的激光源220用以发出多个不同颜色的光束。在本实施例中,这些不同颜色的激光源220包括红光激光源222、绿光激光源224及蓝光激光源226,分别发出红色光束221、绿色光束223及蓝色光束225。在本实施例中,红外光激光源210与这些不同颜色的激光源220皆为激光二极管(laser diode),而其所发出的光束皆为激光束。In this embodiment, the laser projector includes an infrared laser source 210 , multiple laser sources 220 of different colors, a light combining module 230 and a scanning mirror 240 . The infrared laser source 210 is used to emit infrared beams 202', and the laser sources 220 of different colors are used to emit multiple beams of different colors. In this embodiment, the laser sources 220 of different colors include a red laser source 222 , a green laser source 224 and a blue laser source 226 , which respectively emit a red beam 221 , a green beam 223 and a blue beam 225 . In this embodiment, the infrared laser source 210 and the laser sources 220 of different colors are all laser diodes, and the beams emitted by them are all laser beams.
合光模块230配置于红外光束202’与这些不同颜色的光束(例如红色光束221、绿色光束223及蓝色光束225)的路径上,以合并红外光束202’与这些不同颜色的光束的路径。扫描镜240配置于来自合光模块230的红外光束202’与这些不同颜色的光束的路径上,其中扫描镜240适于转动,以使红外光束202’形成照射于第一衍射光学元件膜120上的不可见光束202,且使这些不同颜色的光束形成在第二衍射光学元件膜140上扫描的图像光束204。此外,在本实施例中,不可见光相机130例如为红外光相机。The light combining module 230 is disposed on the path of the infrared beam 202' and the beams of different colors (such as the red beam 221, the green beam 223, and the blue beam 225) to combine the paths of the infrared beam 202' and the beams of different colors. The scanning mirror 240 is arranged on the path of the infrared beam 202' from the light combination module 230 and the beams of different colors, wherein the scanning mirror 240 is suitable for rotation, so that the infrared beam 202' forms an invisible beam 202 irradiated on the first diffractive optical element film 120, and makes these beams of different colors form an image beam 204 scanned on the second diffractive optical element film 140. In addition, in this embodiment, the invisible light camera 130 is, for example, an infrared light camera.
图4示出图2的红色光束、绿色光束、蓝色光束及红外光束在眼镜镜片上的扫描路径与位置。请参照图1、图2及图4,借着扫描镜240的转动,当扫描镜240转动到适当的角度时,红外光激光源210可在此时发出红外光束202’,但这些不同颜色的激光源220不发出红色光束221、绿色光束223及蓝色光束225,此时红外光束202’即照射于第一衍射光学元件膜120上的不可见光束202,且在第一衍射光学元件膜120上形成光点I1,然后第一衍射光学元件膜120再将红外光束202’衍射成结构光束203。此外,在其他大部分的时间中,扫描镜240不断地在其他角度转动,此时,这些不同颜色的激光源220可发出红色光束221、绿色光束223及蓝色光束225,而红外光激光源210不发出红外光束202’,则红色光束221、绿色光束223及蓝色光束225可在第二衍射光学元件膜140上分别形成红光扫描路径I2、绿光扫描路径I3及蓝光扫描路径I4。此外,随着扫描镜240的不断转动,红色光束221、绿色光束223及蓝色光束225的各自强度可以不断地变化,使得这些扫描路径上的颜色与亮度可以有所变化,而第二衍射光学元件膜140再将红色光束221、绿色光束223及蓝色光束225衍射至眼睛50,如此眼睛50便能够看到彩色图像画面。FIG. 4 shows the scanning paths and positions of the red light beams, green light beams, blue light beams and infrared light beams on the spectacle lens in FIG. 2 . Please refer to Fig. 1, Fig. 2 and Fig. 4, by the rotation of scanning mirror 240, when scanning mirror 240 rotates to appropriate angle, infrared light laser source 210 can emit infrared beam 202 ' at this moment, but these laser sources 220 of different colors do not emit red beam 221, green beam 223 and blue beam 225, and infrared beam 202 ' is the invisible beam 202 that irradiates on the first diffractive optical element film 120 at this moment, and on the first diffractive optical element film 120 The light spot I1 is formed, and then the first diffractive optical element film 120 diffracts the infrared beam 202' into a structured beam 203. In addition, in most other time, the scanning mirror 240 is constantly rotating from other angles. At this time, these different colors of laser sources 220 can emit red beam 221, green beam 223 and blue beam 225, while the red light laser source 210 does not emit infrared beam 202 ', then red beam 221, green beam 223 and blue beam 225 can be in The second diffraction optical component 140 forms red light scanning path i2, green light scanning path i3, and Blu -ray scanning path i4, respectively. In addition, with the continuous rotation of the scanning mirror 240, the respective intensities of the red light beam 221, the green light beam 223, and the blue light beam 225 can be continuously changed, so that the color and brightness on these scanning paths can be changed, and the second diffractive optical element film 140 diffracts the red light beam 221, the green light beam 223, and the blue light beam 225 to the eye 50, so that the eye 50 can see a color image.
此外,眼睛50除了能看到彩色图像画面之外,也能够通过眼镜镜片110看到外界的景物,以达到扩增实境的效果。眼镜镜片110例如是近视眼镜镜片、远视眼镜镜片、老花眼镜镜片或平光眼镜镜片。In addition, besides being able to see the color image, the eyes 50 can also see the external scene through the spectacle lens 110, so as to achieve the effect of augmented reality. The spectacle lens 110 is, for example, a myopia spectacle lens, a hyperopia spectacle lens, a presbyopic spectacle lens, or a plano spectacle lens.
在本实施例中,合光模块230可包括多个分色镜(dichroic mirror)或多个分色棱镜(dichroic prism)。举例而言,合光模块230包括分色镜232、分色镜234及分色镜236,其中分色镜232适于让红外光束202’穿透而传递至分色镜234,且分色镜232适于将蓝色光束225反射至分色镜234。分色镜234适于让红外光束202’与蓝色光束225穿透而传递至分色镜236,且分色镜234适于将绿色光束223反射至分色镜236。分色镜236适于让红外光束202’、蓝色光束225及绿色光束223穿透而传递至扫描镜240,且分色镜236适于将红色光束221反射至扫描镜240。如此一来,合光模块230便能够将红色光束221、绿色光束223、蓝色光束225及红外光束202’的路径合并。In this embodiment, the light combination module 230 may include a plurality of dichroic mirrors or a plurality of dichroic prisms. For example, the light combining module 230 includes a dichroic mirror 232, a dichroic mirror 234, and a dichroic mirror 236, wherein the dichroic mirror 232 is adapted to allow the infrared beam 202′ to pass through to the dichroic mirror 234, and the dichroic mirror 232 is adapted to reflect the blue beam 225 to the dichroic mirror 234. The dichroic mirror 234 is adapted to transmit the infrared beam 202' and the blue beam 225 to the dichroic mirror 236, and the dichroic mirror 234 is adapted to reflect the green beam 223 to the dichroic mirror 236. The dichroic mirror 236 is adapted to transmit the infrared beam 202', the blue beam 225, and the green beam 223 to the scanning mirror 240, and the dichroic mirror 236 is adapted to reflect the red beam 221 to the scanning mirror 240. In this way, the light combination module 230 can combine the paths of the red light beam 221, the green light beam 223, the blue light beam 225 and the infrared light beam 202'.
在本实施例中,具有结构光检测功能的扩增实境眼镜100还包括眼镜架150,且激光投影器200、眼镜镜片110与不可见光相机130配置于眼镜架150上,其中激光投影器200可配置于眼镜架150的眼镜脚上,而不可见光相机130可配置于眼镜架150的中央附近接近鼻垫处。此外,在本实施例中,具有结构光检测功能的扩增实境眼镜100还包括处理器160,电性连接至不可见光相机130,且用以根据不可见光相机所130拍摄到的光图案201(如图3所示出)计算出待测物(在本实施例中即为眼睛50)的位置,例如计算出眼睛50的位置及其注视方向。由于光图案201会随着眼睛50的凹凸曲面而有变形或偏移,处理器160根据这些变形或偏移便能够计算出眼睛上各位置在三维空间中的位置。处理器160也可以配置于眼镜架150上,例如配置于眼镜架150的眼镜脚上。In this embodiment, the augmented reality glasses 100 with structured light detection function further include a spectacle frame 150, and the laser projector 200, the spectacle lens 110 and the invisible light camera 130 are disposed on the spectacle frame 150, wherein the laser projector 200 can be disposed on the temple of the spectacle frame 150, and the invisible light camera 130 can be disposed near the center of the spectacle frame 150 near the nose pad. In addition, in this embodiment, the augmented reality glasses 100 with a structured light detection function further includes a processor 160, which is electrically connected to the invisible light camera 130, and is used to calculate the position of the object under test (the eye 50 in this embodiment) according to the light pattern 201 captured by the invisible light camera 130 (as shown in FIG. 3 ), for example, calculate the position of the eye 50 and its gaze direction. Since the light pattern 201 will be deformed or shifted along with the concave-convex surface of the eye 50 , the processor 160 can calculate the position of each position on the eye in the three-dimensional space according to these deformations or shifts. The processor 160 can also be configured on the spectacle frame 150 , for example, on the temple of the spectacle frame 150 .
在一实施例中,处理器160例如为中央处理单元(central processing unit,CPU)、微处理器(microprocessor)、数字信号处理器(digital signal processor,DSP)、可程序化控制器、可程序化逻辑设备(programmable logic device,PLD)或其他类似装置或这些装置的组合,本发明并不加以限制。此外,在一实施例中,处理器160的各功能可被实作为多个程序代码。这些程序代码会被储存在一个内存中,由处理器160来执行这些程序代码。或者,在一实施例中,处理器160的各功能可被实作为一或多个电路。本发明并不限制用软件或硬件的方式来实作处理器160的各功能。In one embodiment, the processor 160 is, for example, a central processing unit (central processing unit, CPU), a microprocessor (microprocessor), a digital signal processor (digital signal processor, DSP), a programmable controller, a programmable logic device (programmable logic device, PLD) or other similar devices or a combination of these devices, the present invention is not limited thereto. In addition, in one embodiment, each function of the processor 160 may be implemented as a plurality of program codes. These program codes are stored in a memory, and are executed by the processor 160 . Alternatively, in one embodiment, each function of the processor 160 may be implemented as one or more circuits. The present invention does not limit the implementation of the functions of the processor 160 by means of software or hardware.
在本实施例的具有结构光检测功能的扩增实境眼镜100中,激光投影器200除了发出图像光束204外,还发出了不可见光束202,且不可见光束202经由第一衍射光学元件120的衍射作用而形成结构光束203,其用以检测待测物。也就是说,本实施例将结构光203的光源整合至用以显示图像的激光投影器200中,也就是将眼球追踪器(eye tracker)的光源整合至激光投影器200中,因而具有结构光检测功能的扩增实境眼镜100可具有较为简单的架构及较少数量的元件,且同时达到显示图像与检测待测物的功能。In the augmented reality glasses 100 with structured light detection function in this embodiment, the laser projector 200 emits an invisible beam 202 in addition to the image beam 204, and the invisible beam 202 forms a structured beam 203 through the diffraction of the first diffractive optical element 120, which is used to detect the object to be tested. That is to say, in this embodiment, the light source of the structured light 203 is integrated into the laser projector 200 for displaying images, that is, the light source of an eye tracker is integrated into the laser projector 200. Therefore, the augmented reality glasses 100 with a structured light detection function can have a relatively simple structure and a small number of components, and simultaneously achieve the functions of displaying images and detecting objects under test.
图5为图1中的第一衍射光学元件膜的一个实施例的立体示意图,而图6为图1中的第一衍射光学元件的另一个实施例的立体示意图。请先参照图1与图5,第一衍射光学元件膜120可具有多个微结构122,在图5中例如为条状凸起,每一微结构122可沿垂直于图1的图面的方向延伸,且这些微结构122可沿着图1的水平方向排列,如此产生的光图案例如为条纹状光图案。请再参照图1与图6,在另一实施例中,可以采用如图6的第一衍射光学元件膜120a来取代图5的第一衍射光学元件膜120。图6的第一衍射光学元件膜120a具有在两个维度上排列的多个微结构122a,这些微结构122a例如为点状凸起,如此产生的光图案例如如同图3的阵列排列的点状光图案201。图5的第一衍射光学元件膜120及图6的第一衍射光学元件膜120a例如为衍射光栅。FIG. 5 is a schematic perspective view of an embodiment of the first diffractive optical element film in FIG. 1 , and FIG. 6 is a schematic perspective view of another embodiment of the first diffractive optical element in FIG. 1 . Please refer to FIG. 1 and FIG. 5 first. The first diffractive optical element film 120 can have a plurality of microstructures 122. In FIG. 5, for example, it is a strip-shaped protrusion. Each microstructure 122 can extend along a direction perpendicular to the drawing surface of FIG. 1, and these microstructures 122 can be arranged along the horizontal direction of FIG. Please refer to FIG. 1 and FIG. 6 again. In another embodiment, the first diffractive optical element film 120a shown in FIG. 6 may be used instead of the first diffractive optical element film 120 in FIG. 5 . The first diffractive optical element film 120a in FIG. 6 has a plurality of microstructures 122a arranged in two dimensions. These microstructures 122a are, for example, dot-like protrusions. The light pattern thus generated is, for example, the dot-like light pattern 201 arranged in an array in FIG. 3 . The first diffractive optical element film 120 in FIG. 5 and the first diffractive optical element film 120a in FIG. 6 are, for example, diffraction gratings.
图7为本发明的另一实施例的具有结构光检测功能的扩增实境眼镜的光路示意图,图8为图7中的眼镜镜片从眼睛的视线方向看过去的正视示意图,而图9为图7中的激光投影器的光路示意图。请参照图7至图9,本实施例的具有结构光检测功能的扩增实境眼镜100b类似于图1的具有结构光检测功能的扩增实境眼镜100,而两者的主要差异如下所述。本实施例的具有结构光检测功能的扩增实境眼镜100b包括分别配置于第二衍射光学元件膜140的两侧的两个第一衍射光学元件膜120b,例如位于第二衍射光学元件膜140的右侧的第一衍射光学元件膜124b及位于第二衍射光学元件膜140的左侧的第一衍射光学元件膜126b。此外,当激光投影器200的扫描镜240在不同的时间转到两个不同的角度时,红外光激光源210发出红外光束202’,而在两个不同时间中在两个不同角度的扫描镜240分别将红外光束202’反射往不同的方向,以分别形成两个往不同方向传递的不可见光束202b,例如是不可见光束2021与不可见光束2022。其中,不可见光束2021照射于第一衍射光学元件膜124b上,以形成结构光束203,而不可见光束2022照射于第一衍射光学元件膜126b上,以形成另一结构光束203,而两个结构光束203均传递至眼睛50,以在眼睛上形成两个光图案。两个光图案可以涵盖眼睛50的更多角度,以使处理器160在计算眼睛50的位置及其注视方向时更为精确。7 is a schematic diagram of the optical path of augmented reality glasses with a structured light detection function according to another embodiment of the present invention. FIG. 8 is a schematic front view of the spectacle lens in FIG. Please refer to FIG. 7 to FIG. 9 , the augmented reality glasses 100b with structured light detection function in this embodiment are similar to the augmented reality glasses with structured light detection function 100 in FIG. 1 , and the main differences between the two are as follows. The augmented reality glasses 100b with a structured light detection function in this embodiment include two first diffractive optical element films 120b respectively arranged on both sides of the second diffractive optical element film 140, for example, the first diffractive optical element film 124b located on the right side of the second diffractive optical element film 140 and the first diffractive optical element film 126b located on the left side of the second diffractive optical element film 140. In addition, when the scanning mirror 240 of the laser projector 200 turns to two different angles at different times, the infrared laser source 210 emits an infrared beam 202', and the scanning mirror 240 at two different angles at two different times reflects the infrared beam 202' in different directions to form two invisible beams 202b, such as an invisible beam 2021 and an invisible beam 2022, respectively. Wherein, the invisible beam 2021 is irradiated on the first diffractive optical element film 124b to form a structured beam 203, and the invisible beam 2022 is irradiated on the first diffractive optical element film 126b to form another structured beam 203, and both structured beams 203 are transmitted to the eye 50 to form two light patterns on the eye. The two light patterns can cover more angles of the eye 50 so that the processor 160 can calculate the position of the eye 50 and its gaze direction more accurately.
图10为另一实施例的具有结构光检测功能的扩增实境眼镜中的眼镜镜片从眼睛的视线方向看过去的正视示意图。请参照图7、图8及图10,图10的实施例的具有结构光检测功能的扩增实境眼镜与图7的具有结构光检测功能的扩增实境眼镜100b类似,而两者的差异在于图10的实施例中的第一衍射光学元件膜124b与第一衍射光学元件膜126b是分别配置于第二衍射光学元件膜140的上侧与下侧,而不可见光束2021与不可见光束2022则分别照射于第一衍射光学元件膜124b与第一衍射光学元件膜126b上。Fig. 10 is a schematic front view of the glasses lens in the augmented reality glasses with structured light detection function viewed from the line of sight of the eyes according to another embodiment. Please refer to FIG. 7, FIG. 8 and FIG. 10, the augmented reality glasses with structured light detection function in the embodiment of FIG. 10 is similar to the augmented reality glasses 100b with structured light detection function in FIG. 7, and the difference between the two is that in the embodiment of FIG. The first diffractive optical element film 124b is on the first diffractive optical element film 126b.
图11为又一实施例的具有结构光检测功能的扩增实境眼镜中的眼镜镜片从眼睛的视线方向看过去的正视示意图。请参照图7、图8及图11,图11的实施例的具有结构光检测功能的扩增实境眼镜与图7的具有结构光检测功能的扩增实境眼镜100b类似,而两者的差异在于图11的实施例中的具有结构光检测功能的扩增实境眼镜具有分别配置于该第二衍射光学元件膜140的四周的四个第一衍射光学元件膜120c,例如分别配置于第二衍射光学元件膜140的右侧、左侧、上侧及下侧的第一衍射光学元件膜124c、126c、128c及129c,而激光投影器的扫描镜在四个不同的时间转动到四个不同的角度而将红外光束反射往四个不同的方向,以形成分别照射于第一衍射光学元件膜124c、126c、128c及129c的四个不可见光束。第一衍射光学元件膜124c、126c、128c及129c将四个不可见光束衍射成四个结构光束,此四个结构光束均传递至眼睛,以在眼睛上形成四个光图案。四个光图案可以涵盖眼睛50的更多角度,以使处理器160在计算眼睛50的位置及其注视方向时更为精确。Fig. 11 is a schematic front view of the glasses lens in the augmented reality glasses with structured light detection function viewed from the line of sight of the eyes according to another embodiment. Please refer to FIG. 7, FIG. 8 and FIG. 11, the augmented reality glasses with structured light detection function in the embodiment of FIG. 11 is similar to the augmented reality glasses with structured light detection function 100b in FIG. 7, and the difference between the two is that the augmented reality glasses with structured light detection function in the embodiment of FIG. The first diffractive optical element films 124c, 126c, 128c, and 129c on the lower side, and the scanning mirror of the laser projector rotates to four different angles at four different times to reflect the infrared beams to four different directions, so as to form four invisible beams that irradiate the first diffractive optical element films 124c, 126c, 128c, and 129c respectively. The first diffractive optical element films 124c, 126c, 128c and 129c diffract the four invisible light beams into four structured light beams, and all the four structured light beams are delivered to the eyes to form four light patterns on the eyes. The four light patterns can cover more angles of the eye 50 so that the processor 160 can calculate the position of the eye 50 and its gaze direction more accurately.
图12为本发明的再一实施例的具有结构光检测功能的扩增实境眼镜的光路示意图。请参照图12,本实施例的具有结构光检测功能的扩增实境眼镜100d类似于图1的具有结构光检测功能的扩增实境眼镜100,而两者的差异如下所述。在本实施例的具有结构光检测功能的扩增实境眼镜100d,待测物为外界物体60,其中眼镜镜片110位于外界物体60与眼睛50之间。此外,第一衍射光学元件膜120d使不可见光束202往外界衍射成结构光束203,此衍射例如是穿透式衍射。结构光束203传递至外界物体60,以在外界物体60上形成光图案。借由不可见光相机130拍摄光图案,便能够让处理器160计算出外界物体60的位置。在本实施例中,不可见光相机130可以有多个,例如两个,分别配置于眼镜架150的中央与一侧。但本发明不限制不可见光相机130的数量。在另一实施例中,不可见光相机130的数量也可以是一个。FIG. 12 is a schematic diagram of an optical path of augmented reality glasses with a structured light detection function according to another embodiment of the present invention. Please refer to FIG. 12 , the augmented reality glasses 100 d with structured light detection function in this embodiment are similar to the augmented reality glasses 100 with structured light detection function in FIG. 1 , and the differences between the two are as follows. In the augmented reality glasses 100d with structured light detection function of this embodiment, the object to be tested is the external object 60 , wherein the spectacle lens 110 is located between the external object 60 and the eye 50 . In addition, the first diffractive optical element film 120d diffracts the invisible light beam 202 into a structured light beam 203 to the outside, such as transmission diffraction. The structured beam 203 is delivered to the external object 60 to form a light pattern on the external object 60 . The processor 160 can calculate the position of the external object 60 by using the light pattern captured by the invisible light camera 130 . In this embodiment, there may be multiple invisible light cameras 130 , for example two, which are respectively arranged at the center and one side of the spectacle frame 150 . But the present invention does not limit the number of invisible light cameras 130 . In another embodiment, the number of the invisible light camera 130 may also be one.
综上所述,在本发明的实施例的具有结构光检测功能的扩增实境眼镜中,激光投影器除了发出图像光束外,还发出了不可见光束,且不可见光束经由第一衍射光学元件的衍射作用而形成结构光束,其用以检测待测物。也就是说,本发明的实施例将结构光的光源整合至用以显示图像的激光投影器中,因而具有结构光检测功能的扩增实境眼镜可具有较为简单的架构及较少数量的元件,且同时达到显示图像与检测待测物的功能。To sum up, in the augmented reality glasses with structured light detection function according to the embodiment of the present invention, the laser projector emits not only image beams but also invisible beams, and the invisible beams are diffracted by the first diffractive optical element to form structured beams, which are used to detect objects to be tested. That is to say, the embodiment of the present invention integrates the light source of structured light into the laser projector for displaying images, so the augmented reality glasses with structured light detection function can have a relatively simple structure and a small number of components, and simultaneously achieve the functions of displaying images and detecting objects under test.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, but not to limit them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it can still modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions depart from the scope of the technical solutions of the embodiments of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011041233.8A CN114326104B (en) | 2020-09-28 | 2020-09-28 | Augmented reality glasses with structured light detection function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011041233.8A CN114326104B (en) | 2020-09-28 | 2020-09-28 | Augmented reality glasses with structured light detection function |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114326104A CN114326104A (en) | 2022-04-12 |
CN114326104B true CN114326104B (en) | 2023-07-25 |
Family
ID=81011763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011041233.8A Active CN114326104B (en) | 2020-09-28 | 2020-09-28 | Augmented reality glasses with structured light detection function |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114326104B (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105676454A (en) * | 2014-12-08 | 2016-06-15 | 精工爱普生株式会社 | image display device |
WO2016112128A1 (en) * | 2015-01-06 | 2016-07-14 | Vuzix Corporation | Head mounted imaging apparatus with curved lenslet array |
CN106164743A (en) * | 2014-03-03 | 2016-11-23 | 埃韦视觉有限公司 | Eyes optical projection system |
DE102015213376A1 (en) * | 2015-07-16 | 2017-01-19 | Robert Bosch Gmbh | Projection device for data glasses, data glasses and methods for operating a projection device for a data glasses |
WO2017037708A1 (en) * | 2015-09-02 | 2017-03-09 | Eyeway Vision Ltd. | Eye projection system and method |
CN206696529U (en) * | 2017-03-31 | 2017-12-01 | 及至微机电股份有限公司 | Image projection device with pupil tracking function and pupil position tracking device thereof |
CN207488622U (en) * | 2017-12-08 | 2018-06-12 | 深圳创维新世界科技有限公司 | Augmented reality display optical system and augmented reality glasses |
CN108387960A (en) * | 2018-03-22 | 2018-08-10 | 上海鲲游光电科技有限公司 | It can be used for the multilayered structure grating of augmented reality glasses |
CN110494793A (en) * | 2017-04-04 | 2019-11-22 | 国立大学法人福井大学 | Video generation device and image generating method |
US10598938B1 (en) * | 2018-11-09 | 2020-03-24 | Facebook Technologies, Llc | Angular selective grating coupler for waveguide display |
CN111399248A (en) * | 2019-01-03 | 2020-07-10 | 宏星技术股份有限公司 | Augmented reality devices, laptops and smart glasses |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9370302B2 (en) * | 2014-07-08 | 2016-06-21 | Wesley W. O. Krueger | System and method for the measurement of vestibulo-ocular reflex to improve human performance in an occupational environment |
US11126000B2 (en) * | 2019-02-06 | 2021-09-21 | Google Llc | Systems, devices, and methods for increasing resolution in wearable heads-up displays |
-
2020
- 2020-09-28 CN CN202011041233.8A patent/CN114326104B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106164743A (en) * | 2014-03-03 | 2016-11-23 | 埃韦视觉有限公司 | Eyes optical projection system |
CN105676454A (en) * | 2014-12-08 | 2016-06-15 | 精工爱普生株式会社 | image display device |
WO2016112128A1 (en) * | 2015-01-06 | 2016-07-14 | Vuzix Corporation | Head mounted imaging apparatus with curved lenslet array |
DE102015213376A1 (en) * | 2015-07-16 | 2017-01-19 | Robert Bosch Gmbh | Projection device for data glasses, data glasses and methods for operating a projection device for a data glasses |
WO2017037708A1 (en) * | 2015-09-02 | 2017-03-09 | Eyeway Vision Ltd. | Eye projection system and method |
CN206696529U (en) * | 2017-03-31 | 2017-12-01 | 及至微机电股份有限公司 | Image projection device with pupil tracking function and pupil position tracking device thereof |
CN110494793A (en) * | 2017-04-04 | 2019-11-22 | 国立大学法人福井大学 | Video generation device and image generating method |
CN207488622U (en) * | 2017-12-08 | 2018-06-12 | 深圳创维新世界科技有限公司 | Augmented reality display optical system and augmented reality glasses |
CN108387960A (en) * | 2018-03-22 | 2018-08-10 | 上海鲲游光电科技有限公司 | It can be used for the multilayered structure grating of augmented reality glasses |
US10598938B1 (en) * | 2018-11-09 | 2020-03-24 | Facebook Technologies, Llc | Angular selective grating coupler for waveguide display |
CN111399248A (en) * | 2019-01-03 | 2020-07-10 | 宏星技术股份有限公司 | Augmented reality devices, laptops and smart glasses |
Also Published As
Publication number | Publication date |
---|---|
CN114326104A (en) | 2022-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI746169B (en) | Augmented reality eyeglasses having structured light detecting function | |
US20230077228A1 (en) | Holographic in-field illuminator | |
US10592739B2 (en) | Gaze-tracking system and method of tracking user's gaze | |
US20180157908A1 (en) | Gaze-tracking system and method of tracking user's gaze | |
US20240388785A1 (en) | Augmented reality device including variable focus lenses and operating method thereof | |
KR20190126880A (en) | Method and system for tracking eye movement with an optical scanning projector | |
US10725292B2 (en) | Gaze-tracking system and aperture device | |
US10726257B2 (en) | Gaze-tracking system and method of tracking user's gaze | |
CN113454504B (en) | Holographic pattern generation for Head Mounted Display (HMD) eye tracking using diffractive optical elements | |
US11256213B2 (en) | Holographic pattern generation for head-mounted display (HMD) eye tracking using an array of parabolic mirrors | |
US10948873B2 (en) | Holographic pattern generation for head-mounted display (HMD) eye tracking using a lens array | |
US11841510B1 (en) | Scene camera | |
US10527858B1 (en) | Scanning waveguide display | |
US10838362B2 (en) | Holographic pattern generation for head-mounted display (HMD) eye tracking using a prism array | |
JP2023509305A (en) | Optical systems and methods for eye tracking based on redirecting light from the eye using optical arrangements associated with light guide optics | |
KR20220046494A (en) | Eye tracking method and eye tracking sensor | |
CN114326104B (en) | Augmented reality glasses with structured light detection function | |
KR20220170336A (en) | An augmented reality device comprising variable focus lenses and a method for operating the same | |
US11281160B2 (en) | Holographic pattern generation for head-mounted display (HMD) eye tracking using a fiber exposure | |
US20230152578A1 (en) | Multi-view eye tracking system with a holographic optical element combiner | |
JP7168025B2 (en) | phase modulation type projector | |
US10942489B2 (en) | Wide-field holographic pattern generation for head-mounted display (HMD) eye tracking | |
CN118525238A (en) | TIR prism and use of backlight for LCOS microdisplay illumination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |