CN114122409B - Pole pieces and lithium-ion batteries - Google Patents
Pole pieces and lithium-ion batteries Download PDFInfo
- Publication number
- CN114122409B CN114122409B CN202010879566.1A CN202010879566A CN114122409B CN 114122409 B CN114122409 B CN 114122409B CN 202010879566 A CN202010879566 A CN 202010879566A CN 114122409 B CN114122409 B CN 114122409B
- Authority
- CN
- China
- Prior art keywords
- lithium
- layer
- pole piece
- semiconductor layer
- alkali metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 72
- 239000004065 semiconductor Substances 0.000 claims abstract description 141
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 93
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 93
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 77
- 150000001340 alkali metals Chemical class 0.000 claims abstract description 76
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 40
- 239000013589 supplement Substances 0.000 claims abstract description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims abstract description 8
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 8
- 239000011734 sodium Substances 0.000 claims abstract description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 11
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910000521 B alloy Inorganic materials 0.000 claims description 3
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 3
- 229910000676 Si alloy Inorganic materials 0.000 claims description 3
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 claims description 3
- ZVLDJSZFKQJMKD-UHFFFAOYSA-N [Li].[Si] Chemical compound [Li].[Si] ZVLDJSZFKQJMKD-UHFFFAOYSA-N 0.000 claims description 3
- PPTSBERGOGHCHC-UHFFFAOYSA-N boron lithium Chemical compound [Li].[B] PPTSBERGOGHCHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 3
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 claims description 3
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 3
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 3
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 3
- JXGGISJJMPYXGJ-UHFFFAOYSA-N lithium;oxido(oxo)iron Chemical compound [Li+].[O-][Fe]=O JXGGISJJMPYXGJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910020599 Co 3 O 4 Inorganic materials 0.000 claims description 2
- 239000012530 fluid Substances 0.000 claims 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 claims 1
- 230000001502 supplementing effect Effects 0.000 abstract 3
- 239000007772 electrode material Substances 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 29
- 239000011889 copper foil Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 230000009469 supplementation Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 230000014759 maintenance of location Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001994 activation Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 229940091252 sodium supplement Drugs 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000006138 lithiation reaction Methods 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/664—Ceramic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
技术领域Technical field
本申请涉及电池设备技术领域,具体地,本申请涉及一种极片及锂离子电池。This application relates to the technical field of battery equipment. Specifically, this application relates to a pole piece and a lithium-ion battery.
背景技术Background technique
近年来,随着人们环保意识的不断提高,电动汽车逐渐取代燃油车成为用户追捧的对象。在电动汽车的不断更新换代过程中,锂离子电池作为电动汽车的主要动力组件,对锂离子电池的能量密度、循环寿命等性能提出了更高的要求。In recent years, with the continuous improvement of people's environmental awareness, electric vehicles have gradually replaced fuel vehicles and become the most popular among users. In the process of continuous upgrading of electric vehicles, lithium-ion batteries, as the main power components of electric vehicles, have put forward higher requirements for the energy density, cycle life and other performance of lithium-ion batteries.
锂离子电池在首次充放电过程中,由于负极形成固体电解质界面膜(SEI)会消耗活性锂离子,导致锂离子电池的容量显著降低,以石墨为负极的锂离子电池首次充放电库伦效率约为92-94%,以硅碳为负极的锂离子电池首次库伦效率只有75-85%。During the first charge and discharge process of a lithium-ion battery, active lithium ions are consumed due to the solid electrolyte interface film (SEI) formed on the negative electrode, resulting in a significant reduction in the capacity of the lithium-ion battery. The Coulombic efficiency of the first charge and discharge of a lithium-ion battery using graphite as the negative electrode is approximately 92-94%, the first Coulombic efficiency of lithium-ion batteries using silicon carbon as the negative electrode was only 75-85%.
目前,主要通过预补锂技术来提高锂离子电池的容量,具体可以通过将补锂剂分散或者添加到极片上并将其制成电池,将电池循环充放电活化激活,便可以将添加到极片上的补锂剂所带的活性锂离子释放出来,从而弥补因锂离子电池成膜而损耗的活性锂,实现提升锂离子电池容量。但这种补锂方法一般为一次性补锂,无法对补锂过程进行有效控制。At present, the capacity of lithium-ion batteries is mainly increased through pre-lithium replenishment technology. Specifically, the lithium replenishment agent can be dispersed or added to the pole piece and made into a battery. The battery can be activated by charging and discharging cycles, and then the lithium replenishing agent can be added to the pole piece. The active lithium ions contained in the lithium replenishing agent on the chip are released, thereby making up for the active lithium lost due to the film formation of the lithium-ion battery, thereby increasing the capacity of the lithium-ion battery. However, this method of lithium supplementation is generally a one-time lithium supplementation and cannot effectively control the lithium supplementation process.
发明内容Contents of the invention
本申请实施例提供一种极片及锂离子电池,以解决现有锂离子电池补锂过程难以有效控制的问题。Embodiments of the present application provide a pole piece and a lithium-ion battery to solve the problem of difficulty in effectively controlling the lithium replenishment process of existing lithium-ion batteries.
为了解决上述问题,本申请实施例采用下述技术方案:In order to solve the above problems, the embodiments of this application adopt the following technical solutions:
第一方面,本申请实施例提供了一种极片,包括:In a first aspect, embodiments of the present application provide a pole piece, including:
集流体层;current collector layer;
半导体层,所述半导体层设置于所述集流体层的至少一个表面;A semiconductor layer, the semiconductor layer is provided on at least one surface of the current collector layer;
碱金属补充层,所述碱金属补充层为补锂剂层或补钠剂层,所述碱金属补充层设置于所述半导体层远离所述集流体层的一侧。Alkali metal supplementary layer, the alkali metal supplementary layer is a lithium supplementary agent layer or a sodium supplementary agent layer, and the alkali metal supplementary layer is provided on the side of the semiconductor layer away from the current collector layer.
可选地,所述碱金属补充层的厚度范围为50-300um。Optionally, the thickness of the alkali metal supplementary layer ranges from 50-300um.
可选地,所述碱金属补充层为补锂剂层,所述补锂剂层为负极补锂剂层。Optionally, the alkali metal replenishing layer is a lithium replenishing agent layer, and the lithium replenishing agent layer is a negative electrode lithium replenishing agent layer.
可选地,所述负极补锂剂层包括金属锂、锂硅合金、锂铝合金、锂硼合金和锂镁合金中的至少一种。Optionally, the negative electrode lithium replenishing agent layer includes at least one of metallic lithium, lithium silicon alloy, lithium aluminum alloy, lithium boron alloy and lithium magnesium alloy.
可选地,所述碱金属补充层为补锂剂层,所述补锂剂层为正极补锂剂层。Optionally, the alkali metal replenishing layer is a lithium replenishing agent layer, and the lithium replenishing agent layer is a positive electrode lithium replenishing agent layer.
可选地,所述正极补锂剂层包括氧化锂、铁酸锂、钴酸锂和镍酸锂中的至少一种。Optionally, the positive electrode lithium replenishing agent layer includes at least one of lithium oxide, lithium ferrite, lithium cobalt oxide and lithium nickelate.
可选地,所述半导体层的面电阻范围为10-3至105mΩ·m2。Optionally, the area resistance of the semiconductor layer ranges from 10 -3 to 10 5 mΩ·m 2 .
可选地,所述半导体层的厚度范围为100-500nm。Optionally, the thickness of the semiconductor layer ranges from 100 to 500 nm.
第二方面,本申请实施例提供了一种锂离子电池,包括正极片、负极片和第一方面所述的极片,所述碱金属补充层为补锂剂层;In a second aspect, embodiments of the present application provide a lithium-ion battery, including a positive electrode sheet, a negative electrode sheet and the electrode sheet described in the first aspect, and the alkali metal supplementary layer is a lithium supplementary agent layer;
所述正极片和负极片通过隔膜彼此隔开,至少一个所述极片通过所述隔膜与所述正极片和/或所述负极片隔开。The positive electrode piece and the negative electrode piece are separated from each other by a separator, and at least one of the electrode pieces is separated from the positive electrode piece and/or the negative electrode piece by the separator.
可选地,所述极片为负极极片,所述极片包括从所述集流体层上延伸出的补锂极耳,所述负极片包括负极耳,所述补锂极耳与所述负极耳连接。Optionally, the pole piece is a negative pole piece, and the pole piece includes a lithium-supplementing tab extending from the current collector layer. The negative electrode piece includes a negative electrode tab, and the lithium-supplementing tab is connected to the lithium-supplementing tab. Negative lug connection.
可选地,所述极片为正极极片,所述极片包括补锂极耳,所述正极片包括正极耳,所述补锂极耳与所述正极耳连接。Optionally, the pole piece is a positive pole piece, the pole piece includes a lithium-supplementing tab, the positive electrode piece includes a positive tab, and the lithium-supplementing tab is connected to the positive tab.
本申请实施例采用的技术方案能够达到以下有益效果:The technical solutions adopted in the embodiments of this application can achieve the following beneficial effects:
本申请实施例提供了一种极片,包括集流体层、半导体层和碱金属补充层,所述半导体层设置于所述集流体层的至少一个表面,所述碱金属补充层为补锂剂层或补钠剂层,所述碱金属补充层设置于所述半导体层远离所述集流体层的一侧。本申请实施例提供的极片通过将所述半导体层设置于所述集流体层和碱金属补充层之间,可以根据半导体层触发条件的调节来灵活控制所述半导体层的通断,提高了所述极片的可控性。Embodiments of the present application provide a pole piece, including a current collector layer, a semiconductor layer and an alkali metal supplementary layer. The semiconductor layer is provided on at least one surface of the current collector layer. The alkali metal supplementary layer is a lithium replenishing agent. layer or sodium supplement layer, the alkali metal supplement layer is provided on the side of the semiconductor layer away from the current collector layer. By disposing the semiconductor layer between the current collector layer and the alkali metal supplementary layer, the pole piece provided by the embodiment of the present application can flexibly control the on-off of the semiconductor layer according to the adjustment of the triggering conditions of the semiconductor layer, thereby improving the efficiency of the pole piece. Controllability of the pole pieces.
附图说明Description of the drawings
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described here are used to provide a further understanding of the present application and constitute a part of the present application. The illustrative embodiments of the present application and their descriptions are used to explain the present application and do not constitute an improper limitation of the present application. In the attached picture:
图1为本申请实施例提供的一种极片的结构示意图;Figure 1 is a schematic structural diagram of a pole piece provided by an embodiment of the present application;
图2为本申请实施例提供的一种锂离子电池的结构示意图;Figure 2 is a schematic structural diagram of a lithium-ion battery provided by an embodiment of the present application;
图3为本申请实施例提供的一种补锂前后锂离子电池的容量测试曲线对比图;Figure 3 is a comparison chart of the capacity test curves of a lithium-ion battery before and after lithium replenishment provided by the embodiment of the present application;
图4为本申请实施例提供的一种补锂前后锂离子电池的循环测试曲线对比图。Figure 4 is a comparison chart of cycle test curves of a lithium-ion battery before and after lithium replenishment provided by the embodiment of the present application.
附图标记说明:Explanation of reference symbols:
1-极片;101-集流体层;102-半导体层;103-碱金属补充层;2-正极片;3-负极片;4-隔膜。1-pole piece; 101-current collector layer; 102-semiconductor layer; 103-alkali metal supplementary layer; 2-positive electrode piece; 3-negative electrode piece; 4-separator.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the purpose, technical solutions and advantages of the present application clearer, the technical solutions of the present application will be clearly and completely described below in conjunction with specific embodiments of the present application and corresponding drawings. Obviously, the described embodiments are only some of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”等所区分的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。The terms "first", "second", etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the figures so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in orders other than those illustrated or described herein, and that "first," "second," etc. are distinguished Objects are usually of one type, and the number of objects is not limited. For example, the first object can be one or multiple. In addition, "and/or" in the description and claims indicates at least one of the connected objects, and the character "/" generally indicates that the related objects are in an "or" relationship.
以下结合附图,详细说明本申请各个实施例公开的技术方案。The technical solutions disclosed in various embodiments of the present application will be described in detail below with reference to the accompanying drawings.
参照图1,本申请实施例提供了一种极片1,包括:Referring to Figure 1, an embodiment of the present application provides a pole piece 1, including:
集流体层101、半导体层102和碱金属补充层103,所述半导体层102设置于所述集流体层101的至少一个表面,具体可以是所述半导体层102设置于所述集流体层101的一侧表面,也可以是所述半导体层102设置于所述集流体层101两侧的表面;所述碱金属补充层103为补锂剂层或补钠剂层,所述碱金属补充层103设置于所述半导体层102远离所述集流体层101的一侧。所述半导体层102在常规状态下电阻率较大,所述集流体层1012和碱金属补充层103之间不导通,所述半导体层102在高温或者高压条件下触发时,所述半导体层102的电阻显著降低,所述集流体层101和碱金属补充层103之间导通,这时在所述集流体层101和碱金属补充层103之间便可以形成通路,所述碱金属补充层103中的活性碱金属释放后对需要补碱金属的正极片或负极片进行补充,而且可以根据所述半导体层102的触发条件调节来灵活控制所述碱金属补充层103的补充速率和补充量。Current collector layer 101, semiconductor layer 102 and alkali metal supplementary layer 103. The semiconductor layer 102 is provided on at least one surface of the current collector layer 101. Specifically, the semiconductor layer 102 may be provided on a surface of the current collector layer 101. One side surface may also be the surface on which the semiconductor layer 102 is disposed on both sides of the current collector layer 101; the alkali metal supplementary layer 103 is a lithium replenishing agent layer or a sodium replenishing agent layer. The alkali metal replenishing layer 103 Disposed on the side of the semiconductor layer 102 away from the current collector layer 101 . The semiconductor layer 102 has a large resistivity under normal conditions, and there is no conduction between the current collector layer 1012 and the alkali metal supplementary layer 103. When the semiconductor layer 102 is triggered under high temperature or high pressure conditions, the semiconductor layer The resistance of 102 is significantly reduced, and the current collector layer 101 and the alkali metal supplementary layer 103 are connected. At this time, a path can be formed between the current collector layer 101 and the alkali metal supplementary layer 103. The alkali metal supplementary layer After the active alkali metal in the layer 103 is released, it replenishes the positive electrode sheet or the negative electrode sheet that needs to be replenished with alkali metal, and the replenishment rate and replenishment of the alkali metal replenishment layer 103 can be flexibly controlled according to the trigger condition adjustment of the semiconductor layer 102 quantity.
本申请实施例提供的极片1通过将所述半导体层102设置于所述集流体层101和碱金属补充层103之间,避免了在压紧极片1时碱金属补充层103与电池电极材料之间直接接触而发生反应。更重要的是,所述半导体层102可以根据其触发条件的调节来灵活控制所述半导体层102的通断,并通过电池SOC(系统级芯片)状态、电池温度或者内部压力控制来控制极片1中活性离子释放的速率和释放量,进而控制所述极片1的补充速率和补充量,提高了所述极片1的灵活性。The pole piece 1 provided by the embodiment of the present application disposes the semiconductor layer 102 between the current collector layer 101 and the alkali metal supplementary layer 103 to avoid the contact between the alkali metal supplementary layer 103 and the battery electrode when the pole piece 1 is pressed. Materials react by direct contact with each other. More importantly, the semiconductor layer 102 can flexibly control the on and off of the semiconductor layer 102 according to the adjustment of its triggering conditions, and control the pole pieces through battery SOC (System on Chip) status, battery temperature or internal pressure control. The rate and amount of active ions released in 1 are thereby controlled, and the replenishment rate and amount of the pole piece 1 are controlled, thereby improving the flexibility of the pole piece 1 .
另外,所述半导体层102的灵活通断一定程度上实现了可控的补锂或补钠过程,可以根据需要来实现分阶段、分批次给锂离子电池或钠离子电池释放活性锂或活性钠,使得电池的活性碱金属损耗后可以得到及时补充,大大提升了电池的循环性能。所以,所述半导体层102被触发可以包括第一触发阶段和第二触发阶段,所述第一触发阶段和第二触发阶段不仅仅包括只有两个触发阶段,所述半导体层102还可以包括多个补充阶段,只要在所述极片1仍然含有活性碱金属且所述半导体层102在导通的情况下,该补充阶段均可以实现。In addition, the flexible switching of the semiconductor layer 102 realizes a controllable lithium or sodium replenishment process to a certain extent, and can realize the release of active lithium or active lithium or active materials into lithium-ion batteries or sodium-ion batteries in stages and batches as needed. Sodium allows the battery's active alkali metal to be replenished in time after it is lost, greatly improving the battery's cycle performance. Therefore, the triggering of the semiconductor layer 102 may include a first triggering stage and a second triggering stage. The first triggering stage and the second triggering stage not only include only two triggering stages, but the semiconductor layer 102 may also include multiple triggering stages. This supplementary stage can be realized as long as the pole piece 1 still contains active alkali metal and the semiconductor layer 102 is conductive.
可选地,所述碱金属补充层103的厚度范围为50-300um,优选125-200um。Optionally, the thickness of the alkali metal supplementary layer 103 ranges from 50-300um, preferably 125-200um.
具体地,所述碱金属补充层103的厚度直接关系到所述极片1的补充次数和补充量,如果所述碱金属补充层103太薄,所述极片1的补充量可能达不到电池正极片或者负极片的补充需求,或者所述极片1只能够进行少数几次的补充过程,不能够满足电池长期补锂的需求。但所述碱金属补充层103太厚时有可能造成浪费及电池过多空间的占用。Specifically, the thickness of the alkali metal supplementary layer 103 is directly related to the replenishment times and replenishment amount of the pole piece 1. If the alkali metal replenishment layer 103 is too thin, the replenishment amount of the pole piece 1 may not reach The replenishment needs of the battery's positive electrode plate or negative electrode plate, or the electrode plate 1 can only be replenished a few times, cannot meet the long-term lithium replenishment needs of the battery. However, if the alkali metal supplementary layer 103 is too thick, it may cause waste and occupy too much space of the battery.
可选地,所述碱金属补充层为补锂剂层,所述补锂剂层为负极补锂剂层。Optionally, the alkali metal replenishing layer is a lithium replenishing agent layer, and the lithium replenishing agent layer is a negative electrode lithium replenishing agent layer.
具体地,所述碱金属补充层103为负极补锂剂层时,所述负极补锂剂层可以包括金属锂、锂硅合金、锂铝合金、锂硼合金和锂镁合金中的至少一种。金属锂可以是超薄锂带、稳定化金属锂粉或者锂片。这时所述集流体层101可以为铜箔,负极补锂剂层和铜箔之间设置所述半导体层102。所述极片1可以与锂离子电池的负极片相连,在所述半导体层102导通时,所述极片1可以为负极片补锂。Specifically, when the alkali metal replenishing layer 103 is a negative electrode lithium replenishing agent layer, the negative electrode lithium replenishing agent layer may include at least one of metal lithium, lithium silicon alloy, lithium aluminum alloy, lithium boron alloy and lithium magnesium alloy. . Metal lithium can be ultra-thin lithium ribbons, stabilized metal lithium powder or lithium flakes. In this case, the current collector layer 101 may be a copper foil, and the semiconductor layer 102 is disposed between the negative electrode lithium replenishing agent layer and the copper foil. The pole piece 1 can be connected to the negative electrode piece of the lithium ion battery. When the semiconductor layer 102 is turned on, the pole piece 1 can replenish lithium for the negative electrode piece.
可选地,所述碱金属补充层103为补锂剂层,所述补锂剂层为正极补锂剂层。Optionally, the alkali metal replenishing layer 103 is a lithium replenishing agent layer, and the lithium replenishing agent layer is a positive electrode lithium replenishing agent layer.
具体地,所述碱金属补充层103为正极补锂剂层时,所述正极补锂剂层可以包括氧化锂、铁酸锂、钴酸锂和镍酸锂中的至少一种。这时所述集流体层101可以为铝箔,正极补锂剂层和铝箔之间设置所述半导体层102。所述极片1可以与锂离子电池的正极片相连,在所述半导体层102导通时,所述极片1可以为正极片补锂。Specifically, when the alkali metal supplement layer 103 is a positive electrode lithium supplement layer, the positive electrode lithium supplement layer may include at least one of lithium oxide, lithium ferrite, lithium cobalt oxide, and lithium nickelate. In this case, the current collector layer 101 may be an aluminum foil, and the semiconductor layer 102 is disposed between the positive electrode lithium replenishing agent layer and the aluminum foil. The pole piece 1 can be connected to the positive electrode piece of the lithium ion battery. When the semiconductor layer 102 is turned on, the pole piece 1 can replenish lithium for the positive electrode piece.
可选地,所述半导体层102的面电阻范围为10-3至105mΩ·m2。由此,能够进一步保证半导体层102的灵活通断,实现可控补锂或补钠。Optionally, the surface resistance of the semiconductor layer 102 ranges from 10 -3 to 10 5 mΩ·m 2 . This can further ensure the flexible switching of the semiconductor layer 102 and achieve controllable lithium or sodium supplementation.
具体地,所述半导体层102可以为热敏半导体,该热敏半导体可以由ZnO、CuO、NiO、Al2O3、Fe2O3、Mn3O4和Co3O4中的一种氧化物或者多种氧化物复合得到。所述半导体层102为热敏半导体时,可以通过控制所述半导体层102的温度来控制其通断。具体地,所述半导体层102在温度较低或常温下时,所述半导体层102的面电阻较大,可以将所述集流体层101和碱金属补充层103隔开;所述半导体层102在温度较高时,所述半导体层102的面电阻显著减小,所述集流体层101和碱金属补充层103之间导通,可以实现所述极片1的补充过程,达到灵活控制所述极片1补充的作用。而所述半导体层102在温度较低或常温下的面电阻过大时,所述半导体层102的温度在升高后难以达到导通的状态,不便于所述极片1补充过程的实现。而所述半导体层102在温度较低或常温下的面电阻过小时,可能产生较大的自放电,达不到有效控制所述半导体层102通断的作用;如果在升温后所述半导体层102的面电阻太小时,所述半导体层102的导通则不需要明显的升温过程,就有可能导致所述半导体层102长时间处于导通的状态,达不到灵活控制所述极片1补充的目的,如果在升温后所述半导体层102的面电阻太大时,所述半导体层102的温度在升高后难以达到导通的状态,同样不便于所述极片1补充过程的实现。Specifically, the semiconductor layer 102 may be a heat-sensitive semiconductor, and the heat-sensitive semiconductor may be oxidized by one of ZnO, CuO, NiO, Al 2 O 3 , Fe 2 O 3 , Mn 3 O 4 and Co 3 O 4 Obtained from compounds or multiple oxides. When the semiconductor layer 102 is a heat-sensitive semiconductor, its on-off state can be controlled by controlling the temperature of the semiconductor layer 102 . Specifically, when the temperature of the semiconductor layer 102 is low or at normal temperature, the surface resistance of the semiconductor layer 102 is large, which can separate the current collector layer 101 and the alkali metal supplementary layer 103; the semiconductor layer 102 When the temperature is high, the surface resistance of the semiconductor layer 102 is significantly reduced, and the current collector layer 101 and the alkali metal replenishing layer 103 are connected, which can realize the replenishing process of the pole piece 1 and achieve flexible control. Describe the role of pole piece 1 supplement. When the temperature of the semiconductor layer 102 is low or the surface resistance at room temperature is too large, it is difficult for the semiconductor layer 102 to reach a conductive state after the temperature rises, which is inconvenient for the replenishment process of the pole piece 1 . When the temperature of the semiconductor layer 102 is low or the surface resistance at normal temperature is too small, a large self-discharge may occur, which cannot effectively control the on-off function of the semiconductor layer 102; if the semiconductor layer 102 is heated after heating, If the surface resistance of 102 is too small, the conduction of the semiconductor layer 102 does not require an obvious heating process, which may cause the semiconductor layer 102 to be in a conductive state for a long time, and the flexible control of the pole piece 1 cannot be achieved. For the purpose of supplementation, if the surface resistance of the semiconductor layer 102 is too large after the temperature rises, it will be difficult for the semiconductor layer 102 to reach a conductive state after the temperature rises, and it will also be inconvenient to realize the replenishment process of the pole piece 1 .
在一种具体的实施方式中,通过调控所述半导体层102材料的组分及所述半导体层102涂层的厚度,使得所述半导体层102涂层的面电阻保持在10-3至105mΩ·m2之间。所述半导体层102处在常温断开状态下时,所述半导体层102的面电阻可以达到105mΩ·m2,所述半导体层102两侧基本电子绝缘,漏电流小于0.1μA/m2;所述半导体层102处在高温导通状态下时,比如当锂离子电池内部温度处于60℃时,所述半导体层102涂层的面电阻小于10-3mΩ·m2,这时所述半导体层102涂层两侧电子导通,所述极片1可以为电池极片补锂或补钠。另外,所述半导体层102还可以为压敏半导体,锂离子电池内部设置有压力控制组件,该压力控制组件可以控制压敏半导体的通断。In a specific implementation, by adjusting the composition of the material of the semiconductor layer 102 and the thickness of the coating of the semiconductor layer 102, the sheet resistance of the coating of the semiconductor layer 102 is maintained at 10 -3 to 10 5 between mΩ·m 2 . When the semiconductor layer 102 is in a disconnected state at room temperature, the surface resistance of the semiconductor layer 102 can reach 10 5 mΩ·m 2 , both sides of the semiconductor layer 102 are basically electronically insulated, and the leakage current is less than 0.1 μA/m 2 ; When the semiconductor layer 102 is in a high-temperature conduction state, for example, when the internal temperature of the lithium-ion battery is 60°C, the surface resistance of the coating of the semiconductor layer 102 is less than 10 -3 mΩ·m 2 . At this time, the The electrons on both sides of the coating of the semiconductor layer 102 are conductive, and the pole piece 1 can replenish lithium or sodium for the battery pole piece. In addition, the semiconductor layer 102 can also be a pressure-sensitive semiconductor. A pressure control component is provided inside the lithium-ion battery, and the pressure control component can control the on-off of the pressure-sensitive semiconductor.
可选地,所述半导体层102的厚度范围为100-500nm,优选180-350nm。Optionally, the thickness of the semiconductor layer 102 ranges from 100 to 500 nm, preferably from 180 to 350 nm.
具体地,所述半导体层102在未被触发导通时,也就是所述半导体层102断开的情况下,所述半导体层102的电阻很高,所以只需要所述半导体层102的厚度为几百纳米便可以有效阻断所述集流体层101和碱金属补充层103之间的电子交换。而所述半导体层102太厚时不仅造成浪费,而且会占据电池内部有限的空间。Specifically, when the semiconductor layer 102 is not triggered to conduct, that is, when the semiconductor layer 102 is disconnected, the resistance of the semiconductor layer 102 is very high, so the thickness of the semiconductor layer 102 only needs to be A few hundred nanometers can effectively block the electron exchange between the current collector layer 101 and the alkali metal supplementary layer 103 . When the semiconductor layer 102 is too thick, it not only causes waste, but also occupies the limited space inside the battery.
参见图2,本申请实施例还提供了一种锂离子电池,包括正极片2、负极片3和所述的极片1;所述极片1的所述碱金属补充层103为补锂剂层,所述正极片2和负极片3通过隔膜4彼此隔开,至少一个所述极片1通过所述隔膜4与所述正极片2和/或所述负极片3隔开。Referring to Figure 2, embodiments of the present application also provide a lithium ion battery, including a positive electrode piece 2, a negative electrode piece 3 and the electrode piece 1; the alkali metal supplementary layer 103 of the electrode piece 1 is a lithium replenishing agent layer, the positive electrode sheet 2 and the negative electrode sheet 3 are separated from each other by a separator 4 , and at least one of the pole sheets 1 is separated from the positive electrode sheet 2 and/or the negative electrode sheet 3 by the separator 4 .
具体地,所述极片1通过将所述半导体层102设置于所述集流体层101和碱金属补充层103之间,避免了在压紧极片1时碱金属补充层103与电池的负极材料之间发生反应而产热。同时,锂离子电池在注电解液后,碱金属补充层103与电池的负极材料也不会发生剧烈反应而产生SEI膜残留物,降低了锂离子电池析锂的风险。另外,所述极片1的所述碱金属补充层103为补钠剂层的情况下,所述正极片2、负极片3和所述的极片1可以采用类似于上述锂离子电池的结构来制备钠离子电池。Specifically, by arranging the semiconductor layer 102 between the current collector layer 101 and the alkali metal supplementary layer 103 of the pole piece 1, the alkali metal supplementary layer 103 avoids contact with the negative electrode of the battery when the pole piece 1 is pressed. Materials react with each other to produce heat. At the same time, after the electrolyte is injected into the lithium-ion battery, the alkali metal supplementary layer 103 will not react violently with the negative electrode material of the battery to produce SEI film residue, which reduces the risk of lithium precipitation in the lithium-ion battery. In addition, when the alkali metal supplement layer 103 of the electrode piece 1 is a sodium supplement layer, the positive electrode piece 2, the negative electrode piece 3 and the electrode piece 1 can adopt a structure similar to the above-mentioned lithium ion battery. to prepare sodium-ion batteries.
更重要的是,所述半导体层102的灵活通断一定程度上实现了可控的预锂化过程,可以根据需要实现分阶段、分批次给锂离子电池释放活性锂,使得锂离子电池活性锂损耗后可以得到及时补充,大大提升了锂离子电池的循环性能,提高了锂离子电池的使用寿命。More importantly, the flexible switching of the semiconductor layer 102 realizes a controllable pre-lithiation process to a certain extent, and can release active lithium to the lithium-ion battery in stages and batches as needed, so that the lithium-ion battery is active. Lithium can be replenished in time after loss, which greatly improves the cycle performance of lithium-ion batteries and extends the service life of lithium-ion batteries.
可选地,所述极片1为负极极片,所述极片1包括从所述集流体层101上延伸出的补锂极耳,所述负极片3包括负极耳,所述补锂极耳与所述负极耳连接。Optionally, the pole piece 1 is a negative pole piece, and the pole piece 1 includes a lithium-supplementing tab extending from the current collector layer 101. The negative electrode piece 3 includes a negative tab, and the lithium-supplementing tab The ear is connected to the negative ear.
具体地,所述极片1的数量可以为一个、两个、三个或者更多,所述负极片3的数量也可以为一个、两个、三个或者更多,多个所述极片1的补锂极耳与多个所述负极片3的负极耳连接,在所述半导体层102导通的情况下,所述极片1和所述负极片3之间便形成通路,所述极片1便可以对所述负极片3进行补锂;所述负极片3在不需要补锂时,可以通过断开所述半导体层102来实现补锂通路的断开。Specifically, the number of the pole pieces 1 may be one, two, three or more, the number of the negative pole pieces 3 may also be one, two, three or more, and multiple pole pieces The lithium-supplementing tab of 1 is connected to the negative tabs of a plurality of negative electrode sheets 3. When the semiconductor layer 102 is conductive, a path is formed between the pole sheet 1 and the negative electrode sheet 3. The pole piece 1 can replenish lithium to the negative pole piece 3; when the negative pole piece 3 does not need to replenish lithium, the lithium replenishment path can be disconnected by disconnecting the semiconductor layer 102.
在一种具体的实施方式中,参见图2,在一个锂离子电池中,所述极片1的数量为两个,所述正极片2和负极片3的数量为多个,多个所述正极片2和负极片3交替设置并通过所述隔膜4隔开,锂离子电池的上下两侧均设置有靠近所述负极片3的极片1,所述负极片3和所述极片1之间通过所述隔膜4隔开,两个所述极片1的补锂极耳与多个所述负极片3的负极耳连接,所述极片1便可以对所述负极片3进行补锂。In a specific implementation, referring to Figure 2, in a lithium-ion battery, the number of the electrode pieces 1 is two, the number of the positive electrode pieces 2 and the negative electrode pieces 3 is multiple, and a plurality of the Positive electrode sheets 2 and negative electrode sheets 3 are alternately arranged and separated by the separator 4. The upper and lower sides of the lithium ion battery are provided with electrode sheets 1 close to the negative electrode sheets 3. The negative electrode sheets 3 and the electrode sheets 1 are separated by the diaphragm 4, and the lithium replenishing tabs of two pole pieces 1 are connected to the negative pole tabs of a plurality of negative pole pieces 3, so that the pole pieces 1 can replenish the negative pole pieces 3. lithium.
可选地,所述极片1为正极极片,所述极片1包括补锂极耳,所述正极片2包括正极耳,所述补锂极耳与所述正极耳连接。Optionally, the pole piece 1 is a positive pole piece, and the pole piece 1 includes a lithium-supplementing tab, and the positive electrode piece 2 includes a positive tab, and the lithium-supplementing tab is connected to the positive tab.
具体地,所述极片1的数量可以为一个、两个、三个或者更多,所述正极片2的数量也可以为一个、两个、三个或者更多,多个所述极片1的补锂极耳与多个所述正极片2的正极耳连接,在所述半导体层102导通的情况下,所述极片1和所述正极片2之间便形成通路,所述极片1便可以对所述正极片2进行补锂;所述正极片2在不需要补锂时,可以通过断开所述半导体层102来实现补锂通路的断开。Specifically, the number of the pole pieces 1 can be one, two, three or more, the number of the positive pole pieces 2 can also be one, two, three or more, and multiple pole pieces The lithium-supplementing tabs of 1 are connected to the positive tabs of multiple positive electrode sheets 2. When the semiconductor layer 102 is conductive, a path is formed between the pole sheet 1 and the positive electrode sheet 2. The pole piece 1 can replenish lithium to the positive pole piece 2; when the positive pole piece 2 does not need to replenish lithium, the lithium replenishment path can be disconnected by disconnecting the semiconductor layer 102.
本申请通过以下具体实施例对极片及包含其的锂离子电池进行说明:This application describes the pole piece and the lithium-ion battery containing it through the following specific examples:
极片实施例1Pole piece embodiment 1
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为100nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.3:0.3:0.3:0.1,该半导体层在25℃条件下的面电阻为2.3*104mΩ·m2,该半导体层在60℃条件下的面电阻为2.6*10-3mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为50μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 100nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.3 :0.3:0.3:0.1, the area resistance of the semiconductor layer at 25℃ is 2.3*10 4 mΩ·m 2 , and the area resistance of the semiconductor layer at 60℃ is 2.6*10 -3 mΩ·m 2 ; An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 50 μm.
极片实施例2Pole piece embodiment 2
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为500nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.4:0.4:0.1:0.1,该半导体层在25℃条件下的面电阻为9*104mΩ·m2,该半导体层在60℃条件下的面电阻为1.6*10-2mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为300μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 500nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.4 :0.4:0.1:0.1, the area resistance of the semiconductor layer at 25℃ is 9*10 4 mΩ·m 2 , and the area resistance of the semiconductor layer at 60℃ is 1.6*10 -2 mΩ·m 2 ; An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 300 μm.
极片实施例3Pole piece embodiment 3
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为180nm,配方(质量比)为ZnO:NiO:Al2O3=0.4:0.4:0.2,该半导体层在25℃条件下的面电阻为6.3*104mΩ·m2,该半导体层在60℃条件下的面电阻为1.0*10-3mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为125μm。For the copper foil current collector, a dense semiconductor layer is provided on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 180nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 =0.4:0.4:0.2. The surface resistance of the semiconductor layer at 25℃ is 6.3*10 4 mΩ·m 2 , and the surface resistance of the semiconductor layer at 60℃ is 1.0*10 -3 mΩ·m 2 ; keep the semiconductor layer away from the copper foil An alkali metal supplementary layer is provided on one side, and the thickness of the alkali metal supplementary layer is 125 μm.
极片实施例4Pole piece embodiment 4
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为350nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.25:0.25:0.25:0.25,该半导体层在25℃条件下的面电阻为7.8*104mΩ·m2,该半导体层在60℃条件下的面电阻为2.6*10-3mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为200μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 350nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.25 ; _ _ _ An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 200 μm.
极片实施例5Pole piece embodiment 5
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为250nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.2:0.3:0.2:0.3,该半导体层在25℃条件下的面电阻为8.5*104mΩ·m2,该半导体层在60℃条件下的面电阻为1.7*10-3mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为200μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 250nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.2 :0.3:0.2:0.3, the area resistance of the semiconductor layer at 25℃ is 8.5*10 4 mΩ·m 2 , and the area resistance of the semiconductor layer at 60℃ is 1.7*10 -3 mΩ·m 2 ; An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 200 μm.
极片实施例6Pole piece embodiment 6
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为50nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.2:0.3:0.2:0.3,该半导体层在25℃条件下的面电阻为4.5*103mΩ·m2,该半导体层在60℃条件下的面电阻为3.9*10-4mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为50μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 50nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.2 :0.3:0.2:0.3, the area resistance of the semiconductor layer at 25℃ is 4.5*10 3 mΩ·m 2 , and the area resistance of the semiconductor layer at 60℃ is 3.9*10 -4 mΩ·m 2 ; An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 50 μm.
极片实施例7Pole piece embodiment 7
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为100nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.2:0.3:0.2:0.3,该半导体层在25℃条件下的面电阻为3.2*104mΩ·m2,该半导体层在60℃条件下的面电阻为6.8*10-3mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为30μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 100nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.2 :0.3:0.2:0.3, the area resistance of the semiconductor layer at 25℃ is 3.2*10 4 mΩ·m 2 , and the area resistance of the semiconductor layer at 60℃ is 6.8*10 -3 mΩ·m 2 ; An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 30 μm.
极片实施例8Pole piece embodiment 8
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为600nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.2:0.3:0.2:0.3,该半导体层在25℃条件下的面电阻为9.2*104mΩ·m2,该半导体层在60℃条件下的面电阻为8.8*10-3mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为50μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 600nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.2 :0.3:0.2:0.3, the area resistance of the semiconductor layer at 25℃ is 9.2*10 4 mΩ·m 2 , and the area resistance of the semiconductor layer at 60℃ is 8.8*10 -3 mΩ·m 2 ; An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 50 μm.
极片实施例9Pole piece embodiment 9
该极片包括:The pole piece includes:
铜箔集流体,在铜箔表面设置一层致密半导体层,该半导体层为热敏型材料,厚度为100nm,配方(质量比)为ZnO:NiO:Al2O3:Fe2O3=0.2:0.3:0.2:0.3,该半导体层在25℃条件下的面电阻为2.4*104mΩ·m2,该半导体层在60℃条件下的面电阻为1.2*10-3mΩ·m2;在该半导体层远离铜箔的一侧设置碱金属补充层,碱金属补充层的厚度为400μm。Copper foil current collector, a dense semiconductor layer is set on the surface of the copper foil. The semiconductor layer is a heat-sensitive material with a thickness of 100nm. The formula (mass ratio) is ZnO:NiO:Al 2 O 3 :Fe 2 O 3 =0.2 :0.3:0.2:0.3, the area resistance of the semiconductor layer at 25℃ is 2.4*10 4 mΩ·m 2 , and the area resistance of the semiconductor layer at 60℃ is 1.2*10 -3 mΩ·m 2 ; An alkali metal supplementary layer is provided on the side of the semiconductor layer away from the copper foil. The thickness of the alkali metal supplementary layer is 400 μm.
极片对比例1Pole piece comparison example 1
传统锂带,该锂带的厚度为50μm。Traditional lithium tape, the thickness of the lithium tape is 50μm.
本申请将上述实施例1至实施例9的极片作为独立电极添加到锂离子电池已叠片的电芯上,其中,叠片电芯的正极为磷酸铁锂,正极面密度为400g/m2,压实密度为2.60g/m3,负极为天然石墨,负极面密度为205g/m2,负极压实密度为1.55g/m3,叠片层数(正负极片的对数)为30层。得到锂离子电池实施例1至实施例9,将对比例1中的传统锂带直接辊压到锂离子电池已叠片的电芯负极上作为锂离子电池对比例1,并将没有添加极片的上述锂离子电池作为对比例2,对上述锂离子电池进行激活和测试过程,具体说明如下:In this application, the pole pieces of the above-mentioned embodiments 1 to 9 are added as independent electrodes to the laminated cells of the lithium-ion battery. The positive electrode of the laminated cell is lithium iron phosphate, and the positive electrode surface density is 400g/m. 2 , the compacted density is 2.60g/m 3 , the negative electrode is natural graphite, the negative electrode surface density is 205g/m 2 , the negative electrode compacted density is 1.55g/m 3 , the number of laminated layers (the number of pairs of positive and negative electrode sheets) for 30 floors. Lithium ion battery Examples 1 to 9 were obtained. The traditional lithium belt in Example 1 was directly rolled onto the laminated cell negative electrode of the lithium ion battery as the lithium ion battery Comparative Example 1, and no pole piece was added. The above-mentioned lithium-ion battery is used as Comparative Example 2. The activation and testing process of the above-mentioned lithium-ion battery is carried out. The specific instructions are as follows:
激活过程:将锂离子电池在常温下进行化成分容,然后将锂离子电池的SOC状态调节到0%,此时锂离子电池开路电压在2.45-2.55V范围内,随后将锂离子电池加热到45℃后高温浸润12h,此时极片的半导体层导电,碱金属补充层和集流体层之间形成通路,此时碱金属补充层的活性锂将会从极片脱出后嵌入到锂离子电池的石墨负极中。通过实施监控锂离子电池的电压来控制和调节极片的补锂量,当锂离子电池的开路电压上升0.2V时即可将锂离子电池降温至25℃,完成激活过程,激活过程一般在8-12h左右,(对比例1和对比例2不用经过激活过程)。Activation process: Divide the lithium-ion battery into its content at room temperature, then adjust the SOC state of the lithium-ion battery to 0%. At this time, the open circuit voltage of the lithium-ion battery is in the range of 2.45-2.55V, and then heat the lithium-ion battery to After high temperature infiltration at 45°C for 12 hours, the semiconductor layer of the pole piece conducts electricity, and a path is formed between the alkali metal supplementary layer and the current collector layer. At this time, the active lithium in the alkali metal supplementary layer will be detached from the pole piece and embedded into the lithium ion battery. in the graphite negative electrode. By monitoring the voltage of the lithium-ion battery, the lithium supplement amount of the pole piece is controlled and adjusted. When the open circuit voltage of the lithium-ion battery rises by 0.2V, the lithium-ion battery can be cooled to 25°C to complete the activation process. The activation process is usually within 8 -12h or so, (Comparative Example 1 and Comparative Example 2 do not need to go through the activation process).
容量测试:常温下,将激活后的锂离子电池在0.1C恒流恒压条件下充电到3.8V,静置30min,然后在0.1C条件下恒流放电至2.0V,静置30min,以上过程重复3次,得到稳定的放电容量。Capacity test: At room temperature, charge the activated lithium-ion battery to 3.8V under 0.1C constant current and constant voltage conditions, let it stand for 30 minutes, then discharge it to 2.0V at 0.1C constant current condition, let it stand for 30 minutes, and the above process Repeat three times to obtain a stable discharge capacity.
循环测试:常温下,将激活后的锂离子电池在0.33C恒流恒压充电到3.8V,静置30min,然后在0.33C条件下恒流放电至2.0V,静置30min,以上过程重复2000次。其中,每循环100次进行一次容量测试。Cycle test: At room temperature, charge the activated lithium-ion battery to 3.8V at a constant current and voltage of 0.33C, let it stand for 30 minutes, then discharge it at a constant current of 0.33C to 2.0V, let it stand for 30 minutes, and repeat the above process for 2000 Second-rate. Among them, a capacity test is performed every 100 cycles.
存储测试:将激活后的锂离子电池充电至100%SOC进行常温存储,每隔一周进行一次容量测试。Storage test: Charge the activated lithium-ion battery to 100% SOC for storage at room temperature, and conduct a capacity test every other week.
表1给出了实施例1至实施例9和对比例1和对比例2的锂离子电池测试结果,从表1中可以看出,本申请实施例1至实施例5提供的锂离子电池首次充放电容量均可以达到150mAh/g以上,2000次充放电循环后容量保持率仍可以达到88.3%以上,存储26周后容量保持率仍可以达到98.4以上。而且实施例4得到的锂离子电池充放电2000次循环后容量保持率甚至可以达到90%以上,存储26周后容量保持率可以在100%左右,说明长期存储后锂离子电池的容量基本没有衰减。Table 1 shows the lithium-ion battery test results of Examples 1 to 9 and Comparative Examples 1 and 2. It can be seen from Table 1 that the lithium-ion batteries provided in Examples 1 to 5 of this application are the first to The charge and discharge capacity can reach more than 150mAh/g, the capacity retention rate can still reach more than 88.3% after 2000 charge and discharge cycles, and the capacity retention rate can still reach more than 98.4 after 26 weeks of storage. Moreover, the capacity retention rate of the lithium-ion battery obtained in Example 4 can even reach more than 90% after 2000 cycles of charge and discharge, and the capacity retention rate can be around 100% after 26 weeks of storage, indicating that the capacity of the lithium-ion battery has basically not decayed after long-term storage. .
实施例6至实施例9中的半导体层厚度或碱金属补充层厚度在低于本申请优选实施例范围,或者高于本申请优选实施例范围的情况下,锂离子电池首次充放电容量只能达到150.6mAh/g以下,但仍然可以保持在143.2mAh/g以上,2000次充放电循环后容量保持率在80%-85%,存储26周后容量保持率在93%-96%的范围,虽然均低于本申请实施例1至实施例5提供的锂离子电池,但仍然可以保持较高的容量和保持率。When the thickness of the semiconductor layer or the thickness of the alkali metal supplementary layer in Examples 6 to 9 is lower than the range of the preferred embodiments of the present application, or higher than the range of the preferred embodiments of the present application, the first charge and discharge capacity of the lithium ion battery can only be reaches below 150.6mAh/g, but can still remain above 143.2mAh/g. The capacity retention rate is 80%-85% after 2000 charge and discharge cycles, and the capacity retention rate is in the range of 93%-96% after 26 weeks of storage. Although they are lower than the lithium-ion batteries provided in Examples 1 to 5 of the present application, they can still maintain relatively high capacity and retention rate.
而对比例1和对比例2中采用传统锂带补锂和未补锂得到的锂离子电池首次充放电容量分别在143.2mAh/g和135.5mAh/g,2000次充放电循环后容量保持率在80%左右,存储26周后容量保持率均低于93.5%,均明显低于本申请实施例提供的锂离子电池。而且未补锂得到的锂离子电池首次充放电容量明显低于补锂后的锂离子电池首次充放电容量。In Comparative Examples 1 and 2, the first charge and discharge capacities of the lithium-ion batteries obtained by using traditional lithium belts with and without lithium supplementation were 143.2mAh/g and 135.5mAh/g respectively, and the capacity retention rate after 2000 charge and discharge cycles was About 80%, the capacity retention rates after 26 weeks of storage are both lower than 93.5%, which are significantly lower than the lithium-ion batteries provided in the embodiments of the present application. Moreover, the first charge and discharge capacity of the lithium-ion battery obtained without lithium supplementation is significantly lower than the first charge and discharge capacity of the lithium-ion battery obtained after lithium supplementation.
表1锂离子电池测试结果Table 1 Lithium-ion battery test results
图3和图4给出了上述实施例1补锂后锂离子电池和对比例2未进行补锂锂离子电池的容量测试曲线和循环测试曲线的对比图,从图3和图4以及表1中的数据可以看出,实施例1补锂后锂离子电池5的容量相比于对比例2未进行补锂锂离子电池提升12%,补锂后锂离子电池5的循环性能相比于补锂前锂离子电池提升10%@2000cycles。补锂后锂离子电池5在常温存储26周容量仅下降9.4%。Figures 3 and 4 show a comparison of the capacity test curves and cycle test curves of the lithium-ion battery in Example 1 after lithium replenishment and Comparative Example 2 without lithium replenishment. From Figures 3 and 4 and Table 1 It can be seen from the data in that the capacity of the lithium-ion battery 5 after lithium supplementation in Example 1 is improved by 12% compared to the lithium-ion battery without lithium supplementation in Comparative Example 2, and the cycle performance of the lithium-ion battery 5 after lithium supplementation is compared with that of the lithium-ion battery 5 after supplementation. Lithium-ion batteries improve by 10% @2000cycles. After lithium replenishment, the capacity of lithium-ion battery 5 only dropped by 9.4% after 26 weeks of storage at room temperature.
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。The embodiments of the present application have been described above in conjunction with the accompanying drawings. However, the present application is not limited to the above-mentioned specific implementations. The above-mentioned specific implementations are only illustrative and not restrictive. Those of ordinary skill in the art will Inspired by this application, many forms can be made without departing from the purpose of this application and the scope protected by the claims, all of which fall within the protection of this application.
Claims (11)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010879566.1A CN114122409B (en) | 2020-08-27 | 2020-08-27 | Pole pieces and lithium-ion batteries |
EP21860499.9A EP4207391A4 (en) | 2020-08-27 | 2021-08-27 | ELECTRODE PLATE AND LITHIUM-ION BATTERY |
CA3191034A CA3191034A1 (en) | 2020-08-27 | 2021-08-27 | Electrode plate and lithium-ion battery |
JP2023513572A JP7498361B2 (en) | 2020-08-27 | 2021-08-27 | Plates and lithium-ion batteries |
KR1020237007680A KR20230048524A (en) | 2020-08-27 | 2021-08-27 | Electrode Plates and Li-ion Batteries |
PCT/CN2021/114867 WO2022042665A1 (en) | 2020-08-27 | 2021-08-27 | Electrode plate and lithium ion battery |
US18/174,795 US20230223547A1 (en) | 2020-08-27 | 2023-02-27 | Electrode plate and lithium-ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010879566.1A CN114122409B (en) | 2020-08-27 | 2020-08-27 | Pole pieces and lithium-ion batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114122409A CN114122409A (en) | 2022-03-01 |
CN114122409B true CN114122409B (en) | 2024-01-30 |
Family
ID=80352687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010879566.1A Active CN114122409B (en) | 2020-08-27 | 2020-08-27 | Pole pieces and lithium-ion batteries |
Country Status (7)
Country | Link |
---|---|
US (1) | US20230223547A1 (en) |
EP (1) | EP4207391A4 (en) |
JP (1) | JP7498361B2 (en) |
KR (1) | KR20230048524A (en) |
CN (1) | CN114122409B (en) |
CA (1) | CA3191034A1 (en) |
WO (1) | WO2022042665A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114597345B (en) * | 2022-03-15 | 2024-01-02 | 湖北亿纬动力有限公司 | Positive electrode with lithium supplementing function, preparation method thereof and lithium ion battery |
CN114700604A (en) * | 2022-03-18 | 2022-07-05 | 江阴纳力新材料科技有限公司 | Ultrasonic welding method for tabs |
CN114709391B (en) * | 2022-04-01 | 2023-08-01 | 湖北亿纬动力有限公司 | A kind of cathode lithium supplement material and its preparation method and lithium ion battery |
CN115020637B (en) * | 2022-07-05 | 2023-07-18 | 湖州超钠新能源科技有限公司 | Sodium supplementing pole piece, sodium ion battery and preparation method of sodium supplementing pole piece |
WO2024020764A1 (en) * | 2022-07-26 | 2024-02-01 | 宁德时代新能源科技股份有限公司 | Battery cell, battery, and electric device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9281526B1 (en) * | 2009-12-02 | 2016-03-08 | Hrl Laboratories, Llc | Batteries with replenishable storage capacities |
CN107658496A (en) * | 2017-09-29 | 2018-02-02 | 北京卫蓝新能源科技有限公司 | A kind of secondary cell and preparation method thereof |
CN108539124A (en) * | 2017-03-01 | 2018-09-14 | 北京卫蓝新能源科技有限公司 | With the secondary cell and preparation method thereof for mending lithium electrode |
CN108878775A (en) * | 2018-06-29 | 2018-11-23 | 桑顿新能源科技有限公司 | It is a kind of to mend lithium composite negative pole pole piece and preparation method thereof safely |
CN110048079A (en) * | 2019-03-30 | 2019-07-23 | 苏州宇量电池有限公司 | A kind of manufacturing method and coated semiconductor pole piece of heat-sensitive semiconductive coating pole piece |
CN111525095A (en) * | 2020-03-30 | 2020-08-11 | 维达力实业(深圳)有限公司 | Lithium supplementing method for silicon-containing negative electrode material, negative electrode plate and battery |
CN111560595A (en) * | 2020-03-30 | 2020-08-21 | 维达力实业(深圳)有限公司 | Returning type lithium supplementing method for silicon-containing negative electrode material, negative electrode piece and battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012002136A1 (en) | 2010-06-30 | 2012-01-05 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of power storage device |
TWI550655B (en) * | 2012-12-24 | 2016-09-21 | 財團法人工業技術研究院 | Lithium ion battery and electrode structure thereof |
JP7336680B2 (en) | 2018-10-30 | 2023-09-01 | パナソニックIpマネジメント株式会社 | secondary battery |
-
2020
- 2020-08-27 CN CN202010879566.1A patent/CN114122409B/en active Active
-
2021
- 2021-08-27 KR KR1020237007680A patent/KR20230048524A/en unknown
- 2021-08-27 EP EP21860499.9A patent/EP4207391A4/en active Pending
- 2021-08-27 WO PCT/CN2021/114867 patent/WO2022042665A1/en active Application Filing
- 2021-08-27 CA CA3191034A patent/CA3191034A1/en active Pending
- 2021-08-27 JP JP2023513572A patent/JP7498361B2/en active Active
-
2023
- 2023-02-27 US US18/174,795 patent/US20230223547A1/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9281526B1 (en) * | 2009-12-02 | 2016-03-08 | Hrl Laboratories, Llc | Batteries with replenishable storage capacities |
CN108539124A (en) * | 2017-03-01 | 2018-09-14 | 北京卫蓝新能源科技有限公司 | With the secondary cell and preparation method thereof for mending lithium electrode |
CN107658496A (en) * | 2017-09-29 | 2018-02-02 | 北京卫蓝新能源科技有限公司 | A kind of secondary cell and preparation method thereof |
CN108878775A (en) * | 2018-06-29 | 2018-11-23 | 桑顿新能源科技有限公司 | It is a kind of to mend lithium composite negative pole pole piece and preparation method thereof safely |
CN110048079A (en) * | 2019-03-30 | 2019-07-23 | 苏州宇量电池有限公司 | A kind of manufacturing method and coated semiconductor pole piece of heat-sensitive semiconductive coating pole piece |
CN111525095A (en) * | 2020-03-30 | 2020-08-11 | 维达力实业(深圳)有限公司 | Lithium supplementing method for silicon-containing negative electrode material, negative electrode plate and battery |
CN111560595A (en) * | 2020-03-30 | 2020-08-21 | 维达力实业(深圳)有限公司 | Returning type lithium supplementing method for silicon-containing negative electrode material, negative electrode piece and battery |
Also Published As
Publication number | Publication date |
---|---|
KR20230048524A (en) | 2023-04-11 |
JP7498361B2 (en) | 2024-06-11 |
WO2022042665A1 (en) | 2022-03-03 |
EP4207391A4 (en) | 2025-02-19 |
CA3191034A1 (en) | 2022-03-03 |
CN114122409A (en) | 2022-03-01 |
JP2023539492A (en) | 2023-09-14 |
US20230223547A1 (en) | 2023-07-13 |
EP4207391A1 (en) | 2023-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114122409B (en) | Pole pieces and lithium-ion batteries | |
US11437643B2 (en) | All-solid-state secondary battery | |
WO2022117080A1 (en) | Lithium ion battery and power vehicle | |
CN108598371A (en) | A kind of flexible solid lithium ion battery composite negative plate and preparation method thereof and the application in solid lithium ion battery | |
CN111430681A (en) | Negative electrode material, negative electrode sheet, preparation method of negative electrode sheet and all-solid-state lithium ion battery | |
CN112271279A (en) | Composite cathode material, preparation method and application thereof, and lithium ion battery | |
CN113921801B (en) | Lithium-supplementing materials, cathode materials and lithium-ion secondary batteries | |
JP7516552B2 (en) | All-solid-state secondary battery | |
WO2024221947A1 (en) | Positive electrode lithium-supplementing pole piece, battery cell and lithium-ion battery | |
CN114447299A (en) | Method for relieving negative pole lithium separation during charging of all-solid-state lithium ion battery | |
WO2024222223A1 (en) | Metal-loaded film, negative electrode sheet and manufacturing method therefor, cell and secondary battery | |
JPH10302776A (en) | Totally solid lithium secondary battery | |
CN115939536A (en) | Lithium ion battery anode lithium supplementing method and application | |
CN114784401A (en) | Long-cycle-life lithium ion battery and method for prolonging cycle life of lithium ion battery | |
CN110707303B (en) | Ionic liquid/germanium quantum dot composite material and preparation method and application thereof | |
CN111952588B (en) | Lithium battery with buffer layer and preparation method thereof | |
CN114927701A (en) | Lithium-supplementing current collector and preparation method and application thereof | |
CN114122318A (en) | A kind of negative pole piece and its preparation method and application | |
CN114122392A (en) | High-capacity quick-charging graphite composite material and preparation method thereof | |
CN221407353U (en) | Positive pole piece structure and electrode assembly, battery cell, electrochemical device and electric equipment | |
CN118099545B (en) | Secondary battery and preparation method thereof, positive electrode sheet, negative electrode sheet and power-using device | |
CN113594452B (en) | Negative electrode sheet and preparation method thereof, and lithium ion battery | |
CN110661033A (en) | Ion exchange material, preparation method thereof, electrolyte film and secondary battery | |
CN118553869A (en) | Composite positive electrode material and preparation method and application thereof | |
CN115360409A (en) | Lithium ion battery with excellent low-temperature charge and discharge capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |