CN114114674B - A beam stabilization device based on inertia-free feedback correction - Google Patents
A beam stabilization device based on inertia-free feedback correction Download PDFInfo
- Publication number
- CN114114674B CN114114674B CN202210093399.7A CN202210093399A CN114114674B CN 114114674 B CN114114674 B CN 114114674B CN 202210093399 A CN202210093399 A CN 202210093399A CN 114114674 B CN114114674 B CN 114114674B
- Authority
- CN
- China
- Prior art keywords
- lens
- deflectors
- incident
- photoelectric sensor
- deflector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012937 correction Methods 0.000 title claims abstract description 30
- 230000006641 stabilisation Effects 0.000 title description 17
- 238000011105 stabilization Methods 0.000 title description 17
- 230000000087 stabilizing effect Effects 0.000 claims abstract 5
- 238000012544 monitoring process Methods 0.000 claims description 33
- 230000003287 optical effect Effects 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 17
- 239000003381 stabilizer Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 230000007613 environmental effect Effects 0.000 abstract description 4
- 230000004044 response Effects 0.000 abstract description 2
- 238000003384 imaging method Methods 0.000 abstract 1
- 238000001259 photo etching Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
Description
技术领域technical field
本发明属于超精密光学成像与刻写领域,尤其涉及一种基于无惯性反馈校正的光束稳定装置。The invention belongs to the field of ultra-precision optical imaging and writing, and in particular relates to a beam stabilization device based on inertialess feedback correction.
背景技术Background technique
随着激光设备应用领域不断拓展及要求的不断提高,其对光源系统的性能指标也在不断加强,然而激光器由于其本身原理、结构和外部环境等因素影响,本身很难避免光束漂移问题。除光源本身产生光束时存在的漂移外,后续光路中的器件也会因自身结构特性和环境变化对光束传导的稳定性产生影响,如机械结构件受温度和外力产生应变、系统空腔内气流密度变化、电磁干扰等都会使光束偏离理想传导路径,最终获得的光斑将受到上述各种因素的叠加影响,在位置上产生平移,在角度上产生偏转。通常精密光学系统都会放置于封闭受控的恒温恒湿环境中,使用隔振平台被动减震,并配备空气滤清系统,一定程度上可以避免环境对系统内光路稳定性的影响。然而,随着精密光学系统的精度要求不断提高,高规格的环境控制系统成本也难以控制,通过环境控制等被动手段控制之后残余的光束漂移量已经无法忽视,光学系统的光束漂移需要引入更加有效的手段加以控制。With the continuous expansion of the application field of laser equipment and the continuous improvement of requirements, the performance indicators of the light source system are also continuously strengthened. However, due to factors such as its own principle, structure and external environment, the laser itself is difficult to avoid the problem of beam drift. In addition to the drift when the light source itself generates the beam, the devices in the subsequent optical path will also affect the stability of the beam transmission due to its own structural characteristics and environmental changes, such as the mechanical structural parts are strained by temperature and external force, the airflow in the system cavity Density changes, electromagnetic interference, etc. will cause the beam to deviate from the ideal conduction path, and the final light spot will be affected by the superposition of the above factors, resulting in translation in position and deflection in angle. Usually, the precision optical system is placed in a closed and controlled constant temperature and humidity environment. The vibration isolation platform is used for passive shock absorption and is equipped with an air filter system, which can avoid the influence of the environment on the stability of the optical path in the system to a certain extent. However, as the precision requirements of precision optical systems continue to increase, the cost of high-standard environmental control systems is also difficult to control. The residual beam drift after control by passive means such as environmental control cannot be ignored. The beam drift of the optical system needs to be introduced more effectively. means to be controlled.
通常,光束的漂移量最终可以等效为位置与角度的偏移,在位置上光束存在平行于理想轴线的平移,在角度上与理想轴线形成夹角。光学系统中光束漂移现象可视为一个随机实时的过程,使用光束稳定装置,可利用监测反馈的主动控制手段,实时校正光束指向,将无法通过被动手段控制的光束漂移量最大程度消除,使光学系统达到预定的精度要求。Usually, the drift of the beam can be equivalent to the offset of the position and the angle. The beam has a translation parallel to the ideal axis in position, and forms an angle with the ideal axis in angle. The beam drift phenomenon in the optical system can be regarded as a random real-time process. Using the beam stabilization device, the active control method of monitoring feedback can be used to correct the beam pointing in real time, and the beam drift that cannot be controlled by passive means can be eliminated to the greatest extent. The system meets the predetermined accuracy requirements.
目前光束稳定装置已广泛运用于激光通信、光测量、激光加工等多个领域,其基本组成部分包括执行器件、控制器、及光束监测部分,现有的光束稳定装置通过各种光路构型及控制算法优化已经取得了较好的稳定控制性能。然而,随着精密光学系统性能指标的不断提高,目前的光束稳定装置仍然存在一定短板,主要表现在执行器件本身性能造成的光束稳定性能限制,目前的光束稳定装置中执行器件主要为机械装置驱动的快速反射镜,驱动装置通常为音圈电机驱动器或压电陶瓷驱动器,两者结构上以及反射镜本身都具有一定惯性,导致执行时响应时间过长,控制频率受到限制。At present, beam stabilization devices have been widely used in many fields such as laser communication, optical measurement, laser processing, etc. Its basic components include actuators, controllers, and beam monitoring parts. The control algorithm optimization has achieved good stable control performance. However, with the continuous improvement of the performance indicators of precision optical systems, the current beam stabilization devices still have certain shortcomings, which are mainly reflected in the beam stabilization performance limitation caused by the performance of the actuator itself. The actuators in the current beam stabilization devices are mainly mechanical devices. For the driven fast mirror, the driving device is usually a voice coil motor driver or a piezoelectric ceramic driver, both of which have a certain inertia in structure and the mirror itself, which leads to a long response time during execution and a limited control frequency.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有技术的不足,提供一种基于无惯性反馈校正的光束稳定装置。The purpose of the present invention is to provide a beam stabilization device based on inertia-free feedback correction in view of the deficiencies of the prior art.
本发明通过以下技术方案来实现:The present invention realizes through the following technical solutions:
一种基于无惯性反馈校正的光束稳定装置,包括两对光束偏转器、第一分光棱镜、第二分光棱镜、第一透镜、第二透镜、第一光电感应器、第二光电感应器和控制器;其中,每对光束偏转器包括垂直放置的X轴光束偏转器与Y轴光束偏转器,分别用于沿入射光束X与Y方向对光束进行角度偏转,经两对光束偏转器偏转后的入射光束经过所述第一分光棱镜分光为出射光束与第一反射光束,第一反射光束经过所述第二分光棱镜分束后分为第一监控光束与第二监控光束;第一监控光束经过所述第一透镜后到达所述第一光电感应器,第二监控光束经过所述第二透镜到达第二光电感应器;入射光束到达第二对光束偏转器的入射位置与所述第一光电感应器的探测面关于所述第一透镜为物像关系;第二光电感应器探测面放置于第二透镜的焦面处。第一光电感应器和第二光电感应器分别对光束位置、角度进行独立监测并发送至控制器,控制器根据监测信息控制两对光束偏转器偏转校正入射光束的光路。A beam stabilization device based on inertialess feedback correction, comprising two pairs of beam deflectors, a first beam splitting prism, a second beam splitting prism, a first lens, a second lens, a first photoelectric sensor, a second photoelectric sensor and a control wherein, each pair of beam deflectors includes a vertically placed X-axis beam deflector and a Y-axis beam deflector, which are used to angularly deflect the beam along the X and Y directions of the incident beam, respectively. The incident beam is split by the first beam splitting prism into an outgoing beam and a first reflected beam, and the first reflected beam is split into a first monitoring beam and a second monitoring beam after being split by the second beam splitting prism; the first monitoring beam passes through The first lens reaches the first photoelectric sensor, and the second monitoring beam passes through the second lens to reach the second photoelectric sensor; the incident beam reaches the incident position of the second pair of beam deflectors and the first photoelectric sensor. The detection surface of the sensor is in an object-image relationship with respect to the first lens; the detection surface of the second photoelectric sensor is placed at the focal surface of the second lens. The first photoelectric sensor and the second photoelectric sensor monitor the position and angle of the beam independently and send them to the controller. The controller controls the two pairs of beam deflectors to deflect and correct the optical path of the incident beam according to the monitoring information.
进一步地,两对光束偏转器中,两个X轴光束偏转器平行反向放置,两个Y轴光束偏转器平行反向放置。Further, in the two pairs of beam deflectors, the two X-axis beam deflectors are placed in parallel and opposite to each other, and the two Y-axis beam deflectors are placed in parallel and opposite directions.
进一步地,所述光束偏转器为声光偏转器或电光偏转器。Further, the beam deflector is an acousto-optic deflector or an electro-optic deflector.
进一步地,所述控制器根据监测信息控制两对光束偏转器偏转校正入射光束的光路时,保持入射光束通过第一对光束偏转器后,到达第二对光束偏转器的入射位置不变。Further, when the controller controls the two pairs of beam deflectors to deflect and correct the optical path of the incident beam according to the monitoring information, the incident position of the incident beam reaching the second pair of beam deflectors remains unchanged after passing through the first pair of beam deflectors.
进一步地,所述第一光电感应器与所述第二光电感应器为位置探测器或四象限探测器。Further, the first photoelectric sensor and the second photoelectric sensor are position detectors or four-quadrant detectors.
进一步地,还包括第二反射镜,用于将第一监控光束或第二监控光束方向调整为与入射光束光路平行。Further, it also includes a second reflection mirror for adjusting the direction of the first monitoring beam or the second monitoring beam to be parallel to the optical path of the incident beam.
进一步地,还包括第三透镜;所述第三透镜与第二透镜组成透镜组。Further, it also includes a third lens; the third lens and the second lens form a lens group.
进一步地,所述第一分光棱镜较高的透射反射比,将主光束大部分能量透射后从该光束稳定装置后端出射,剩余小部分能量反射进入监测光路。所述第二分光棱镜透射反射比相等,将第一反射光束等分为第一监控光束与第二监控光束。Further, the first beam splitting prism has a high transmittance and reflectance ratio, transmits most of the energy of the main beam and exits the rear end of the beam stabilization device, and reflects a small part of the remaining energy into the monitoring optical path. The second dichroic prism has the same transmittance and reflection ratio, and divides the first reflected light beam into a first monitoring light beam and a second monitoring light beam.
本发明的有益效果是:本发明提供了一种基于角度无惯性反馈校正的光束稳定装置,利用无惯性反馈的光束偏转器同时实现对光束角度和位置的修正,相对于传统的光束稳定装置去除了所有机械式执行器件,提高了系统的光束漂移修正精度,并且能够凭借光束偏转器的高控制频率,大幅减小修正周期,实现光束角度和位置的快速修正。The beneficial effects of the present invention are as follows: the present invention provides a beam stabilization device based on angle-free inertial feedback correction, which utilizes a beam deflector without inertial feedback to simultaneously correct the beam angle and position. Compared with the traditional beam stabilization device, the All mechanical actuators are used, the beam drift correction accuracy of the system is improved, and the correction period can be greatly reduced by virtue of the high control frequency of the beam deflector to achieve rapid correction of the beam angle and position.
附图说明Description of drawings
图1是本发明基于角度无惯性反馈校正的光束稳定装置示意图;1 is a schematic diagram of a beam stabilization device based on angle-free inertial feedback correction of the present invention;
图2是本发明位置漂移的检测与实时修正光路设计图;Fig. 2 is the detection of position drift of the present invention and the real-time correction optical path design diagram;
图3是本发明角度漂移的检测与实时修正光路设计图;Fig. 3 is the detection and real-time correction optical path design diagram of the angle drift of the present invention;
图4是本发明中利用光束偏转器修正光路位置原理图;Fig. 4 is the principle diagram of utilizing beam deflector to correct optical path position in the present invention;
图5是本发明中利用光束偏转器修正光路角度原理图。FIG. 5 is a schematic diagram of the optical path angle correction using a beam deflector in the present invention.
图中,1-X轴第一光束偏转器、2- Y轴第一光束偏转器、3- X轴第二光束偏转器、4-Y轴第二光束偏转器、5-第一分光棱镜、6-第二分光棱镜、7-第一透镜、8-第二透镜、9-第二反射镜、10-第三透镜、11-第一光电感应器、12-第二光电感应器、13-控制器。In the figure, 1-X-axis first beam deflector, 2-Y-axis first beam deflector, 3-X-axis second beam deflector, 4-Y-axis second beam deflector, 5-first beam splitter prism, 6-Second beam splitting prism, 7-First lens, 8-Second lens, 9-Second mirror, 10-Third lens, 11-First photoelectric sensor, 12-Second photoelectric sensor, 13- controller.
具体实施方式Detailed ways
下面通过实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。The present invention will be further described below through examples and accompanying drawings, but the protection scope of the present invention should not be limited by this.
本发明提供一种基于无惯性反馈校正的光束稳定装置,包括两对光束偏转器、第一分光棱镜5、第二分光棱镜6、第一透镜7、第二透镜8、第一光电感应器11、第二光电感应器12和控制器13等;其中,每对光束偏转器包括垂直放置的X轴光束偏转器与Y轴光束偏转器,分别用于沿入射光束X与Y方向对光束进行角度偏转,经两对光束偏转器偏转后的入射光束经过所述第一分光棱镜5将分光为出射光束与第一反射光束,第一反射光束经过所述第二分光棱镜6分束后分为第一监控光束与第二监控光束;第一监控光束经过所述第一透镜7后到达所述第一光电感应器11,第二监控光束经过所述第二透镜8到达第二光电感应器12;入射光束到达第二对光束偏转器的入射位置与所述第一光电感应器11的探测面关于所述第一透镜7为物像关系;第二光电感应器12探测面放置于第二透镜8的焦面处。第一光电感应器11和第二光电感应器12分别对光束位置、角度进行独立监测并发送至控制器13,控制器13根据监测信息控制两对光束偏转器偏转校正入射光束的光路。The present invention provides a beam stabilization device based on inertialess feedback correction, comprising two pairs of beam deflectors, a first
作为一优选方案,如图1所示,两对光束偏转器包括组成第一对光束偏转器的X轴第一光束偏转器1、Y轴第一光束偏转器2和组成第二对光束偏转器的X轴第二光束偏转器3、Y轴第二光束偏转器4,其中,X轴第一光束偏转器1与X轴第二光束偏转器3平行反向放置、Y轴第一光束偏转器2与Y轴第二光束偏转器4平行反向放置分别用于沿入射光束X与Y方向对光束进行两次角度偏转,实现X轴和Y轴位置和角度控制。As a preferred solution, as shown in FIG. 1, the two pairs of beam deflectors include an X-axis
进一步地,还包括第二反射镜9,用于将第一监控光束或第二监控光束方向调整为与入射光束光路平行,以减小装置的体积。Further, a
进一步地,还包括第三透镜10;所述第三透镜10与第二透镜8组成一个可等效为一长焦透镜的透镜组,便于缩短光程及调试时寻找焦点。图1所示为一优选方案的具体装置结构图,下面结合图1所示装置进一步说明本发明对入射光束进行实时稳定的方法,具体如下:Further, a
一束波长为532nm的入射光束,进入光束稳定装置后,透射经过两对垂直放置的光束偏转器(X轴第一光束偏转器1、Y轴第一光束偏转器2、X轴第二光束偏转器3、Y轴第二光束偏转器4),可选用英国Gooch&Housego公司型号为4090-7的声光偏转器,其扫描角度约为44mrad,布拉格角度为1.76°,每个光束偏转器能够对光束在光束偏转器布拉格角度附近一定范围内实现任意偏转,角度偏转根据光束偏转器摆放方向在一个固定平面上进行。在本发明中,可对光束实现两次X、Y方向的偏转。An incident beam with a wavelength of 532nm, after entering the beam stabilization device, is transmitted through two pairs of vertically placed beam deflectors (X-axis
从两对光束偏转器出射后的光束经过第一分光棱镜5以后出射,该分光棱镜具有9:1的透射反射比,因此主光束90%能量透射后从该光束稳定装置后端出射,剩余10%能量反射进入监测光路。反射光束经过透射反射比1:1的第二分光棱镜6分束后,等分为第一监控光束与第二监控光束,第一监控光束经过第一透镜7后投射到第一光电感应器11的探测面上,光电感应器处理信号后将位置信息发送至控制器13,系统通过检测焦点实时的位移获得光束位置角度偏转情况。图2为位置漂移的检测与实时修正光路设计图,其中d0=30mm为第二对光束偏转器入射点到第一分光棱镜5中心距离,d1=40mm为第一分光棱镜5中心到第二分光棱镜6中心距离,d2=30mm为第二分光棱镜6中心到第一透镜7中心的距离,d3=100mm为第一透镜7中心到第一光电感应器11的探测面的距离,第一透镜7的焦距为f1=50mm,以上各距离数值满足下关系式(1):The beams emitted from the two pairs of beam deflectors are emitted after passing through the first
(1) (1)
根据以上关系式,入射光束到达第二对光束偏转器的入射位置与所述第一光电感应器11的探测面关于所述第一透镜7为物像关系,当两对光束偏转器前后配合小范围调整入射光束角度时,通过控制器计算选取各自的偏转角度,使光束在改变角度后仍然经过第一分光棱镜5中心,由于上述物象关系,物点处光斑位置不变,在第一光电感应器11上的光斑位置也不变;两对光束偏转器进行位置修正时,由于物象关系存在,第一光电感应器11上的光斑位置将会相应改变。因此第一光电感应器11可以实现对光束位置的独立监测,同时不会被角度修正所干扰。According to the above relationship, the incident position of the incident beam reaching the second pair of beam deflectors and the detection surface of the first
第二监控光束经过第二透镜8、第一反射镜9与第三透镜10后入射到第二光电感应器12的探测面上,系统通过检测焦点实时的位移计算获得角度偏转情况。图3为角度漂移的检测与实时修正光路设计图,其中d4=60mm为第二透镜8到第一反射镜9中心的距离,d5=28mm为第一反射镜9中心到第三透镜10的距离,d6为第三透镜10到第二光电感应器12探测面的距离,第二透镜8选取索雷博型号为LBF254-100-A的透镜,焦距f2=100mm,第三透镜10选取索雷博型号为LD2060的透镜,焦距f3=-15mm,组合后透镜组的等效焦距F可根据关系式(2)计算获得:The second monitoring beam passes through the
(2) (2)
第三透镜10到第二光电感应器12探测面的距离d6可根据关系式(3)计算获得:The distance d 6 from the
(3) (3)
根据以上换算结果,将第二光电感应器12探测面放置于由第二透镜8与第三透镜10组成透镜组的焦面处,此时当光束只存在位置变化时,焦面处的光斑位置不变,当光束角度存在变化时,焦面处的光斑将相应会移动,通过计算可获得光束角度的变化量。因此第二光电感应器12可以实现对光束角度的独立监测,同时不会被位置修正所干扰。According to the above conversion results, the detection surface of the second
通过两个光电感应器独立监测光束位置及角度,将信息传递至控制器13,由控制器计算角度位置信息,并计算修正量,将驱动信号反馈至光束偏转器,实现对光束位置及角度的实时修正。具体地,控制器13通过控制4个光束偏转器频率,分别精确控制光束在X方向与Y方向的偏转角度。其中同平面放置即调整同一轴的前后两个光束偏转器(X轴第一光束偏转器1、X轴第二光束偏转器3为同一平面放置,Y轴第一光束偏转器2、Y轴第二光束偏转器4)为同一平面放置)通过各自角度设定上的配合,可实现光束在该平面上的位置及角度控制。如图4为前后两个放置于同一平面上的光束偏转器配合实现对光束的位置控制示意图,其中光束偏转器放置的方向相反(即偏转方向相反),在前为光束偏转器A,在后为光束偏转器B;当入射光束从L1位置偏移到L2位置时,需要将光束出射角度和位置修正至L1光路的出射角度和位置。在此过程中光束偏转器A入射角不变,增大光束偏转器A输入频率增大其出射角,将光束在光束偏转器B的入射点恢复到L1光路与光束偏转器B的入射交点上,此时光束偏转器B入射角增大,即需要减小光束偏转器B输入频率,减小其出射角使其恢复至调整前大小,此时光束从L2位置入射时,出射仍然保持L1光路的出射角度和位置。如图5为前后两个放置于同一平面上的光束偏转器配合实现对光束的角度控制示意图,其中光束偏转器放置的方向相反(即偏转方向相反),当入射光束从L1角度偏转到L2角度时,需要将光束出射角度和位置修正至L1光路的出射角度和位置。在此过程中光束偏转器A入射角变大,由于光束偏转器A、B的间距通常小于光束偏转起始点与光束偏转器A的距离,因此需要增大光束偏转器A的输入频率增大其出射角,将光束在光束偏转器B的入射点恢复到L1光路与光束偏转器B的入射交点上,此时光束偏转器B入射角增大,调整光束偏转器B输入频率,减小其出射角将出射光出射光角度修正回到L1光路的出射角度,此时光束从L2角度入射时,出射仍然保持L1光路的出射角度和位置。以上角度和位置修正方向反之亦然。本发明中,X轴第一光束偏转器1与X轴第二光束偏转器3 配合实现光束X方向上的位置和角度修正,Y轴第一光束偏转器2 与Y轴第二光束偏转器4配合实现光束Y方向上的位置和角度修正。The position and angle of the beam are independently monitored by two photoelectric sensors, and the information is transmitted to the
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法把所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围。Obviously, the above-mentioned embodiments are only examples for clear description, and are not intended to limit the implementation manner. For those of ordinary skill in the art, changes or modifications in other different forms can also be made on the basis of the above description. All implementations need not and cannot be exhaustive here. However, the obvious changes or changes derived from this are still within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210093399.7A CN114114674B (en) | 2022-01-26 | 2022-01-26 | A beam stabilization device based on inertia-free feedback correction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210093399.7A CN114114674B (en) | 2022-01-26 | 2022-01-26 | A beam stabilization device based on inertia-free feedback correction |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114114674A CN114114674A (en) | 2022-03-01 |
CN114114674B true CN114114674B (en) | 2022-04-26 |
Family
ID=80361532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210093399.7A Active CN114114674B (en) | 2022-01-26 | 2022-01-26 | A beam stabilization device based on inertia-free feedback correction |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114114674B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118192091A (en) * | 2024-05-17 | 2024-06-14 | 之江实验室 | A beam stabilization device and method based on refraction pointing correction |
CN119247617A (en) * | 2024-12-03 | 2025-01-03 | 武汉恩达通科技有限公司 | A prism device, optical path offset compensation method and optical module |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1534329A (en) * | 2004-04-12 | 2004-10-06 | 哈尔滨工业大学 | Fast feedback control type high-precision laser alignment method and device for beam drift |
CN111142254A (en) * | 2020-02-13 | 2020-05-12 | 之江实验室 | Laser beam pointing stabilization device for separate adjustment of angle drift and position drift |
CN111609817A (en) * | 2020-04-22 | 2020-09-01 | 之江实验室 | A miniaturized high-precision laser beam pointing stabilization device |
CN112505915A (en) * | 2020-11-18 | 2021-03-16 | 之江实验室 | Laser beam drift real-time detection and rapid correction device and method |
CN113917761A (en) * | 2021-09-23 | 2022-01-11 | 之江实验室 | A beam stabilization device based on angle-free inertial feedback correction |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102354051B (en) * | 2011-09-28 | 2013-01-02 | 哈尔滨工业大学 | Light beam deflection control device with superhigh frequency response and high sensitivity based on reflecting mirror translation |
-
2022
- 2022-01-26 CN CN202210093399.7A patent/CN114114674B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1534329A (en) * | 2004-04-12 | 2004-10-06 | 哈尔滨工业大学 | Fast feedback control type high-precision laser alignment method and device for beam drift |
CN111142254A (en) * | 2020-02-13 | 2020-05-12 | 之江实验室 | Laser beam pointing stabilization device for separate adjustment of angle drift and position drift |
CN111609817A (en) * | 2020-04-22 | 2020-09-01 | 之江实验室 | A miniaturized high-precision laser beam pointing stabilization device |
CN112505915A (en) * | 2020-11-18 | 2021-03-16 | 之江实验室 | Laser beam drift real-time detection and rapid correction device and method |
CN113917761A (en) * | 2021-09-23 | 2022-01-11 | 之江实验室 | A beam stabilization device based on angle-free inertial feedback correction |
Non-Patent Citations (2)
Title |
---|
The Accomplishments and Next-Step Plan of EAST in Support of Fusion;Yun Tao Song, Jian Gang Li, Yuan Xi Wan,et.al.;《IEEE TRANSACTIONS ON PLASMA SCIENCE》;20140331;全文 * |
高精度激光光束准直系统设计;朱凡,李颖先,谭久彬;《光学 精密工程》;20200430;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114114674A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114114674B (en) | A beam stabilization device based on inertia-free feedback correction | |
CN112762863B (en) | Four-degree-of-freedom laser pointing control system and control method thereof | |
CN108205193B (en) | Two-dimensional control mirror, control method thereof, and laser scanner including the same | |
CN101738721B (en) | Self-adaptive optical imaging system for eliminating errors of Hartmann wavefront sensor system | |
CN110632714B (en) | Optical fiber coupling system and coupling method | |
CN110142503A (en) | A laser cutting defocus compensation system and its compensation method | |
CN106352815A (en) | Laser beam measurement and direction control experiment system | |
CN104849858B (en) | Pivot is in the fast steering mirror controlling organization and method of reflecting surface | |
CN112505915B (en) | Laser beam drift real-time detection and rapid correction device and method | |
CN111609817B (en) | Miniaturized high-precision laser beam pointing stabilizing device | |
CN107479187B (en) | A Two-Dimensional Fast Swing Mirror and Its Working Method | |
CN111596456A (en) | Laser pointing stability control system | |
CN102354051A (en) | Light beam deflection control device with superhigh frequency response and high sensitivity based on reflecting mirror translation | |
CN115805365B (en) | Composite deflection laser filling scanning system, method, device and equipment | |
Ding et al. | A compact and high-precision method for active beam stabilization system | |
CN102707732A (en) | Fine tracking control system for optical communication | |
CN113741026A (en) | Laser beam stabilizing system | |
CN113917761B (en) | Beam stabilizing device based on angle inertia-free feedback correction | |
CN103760666A (en) | Self-adaptive optical wavefront correction loop based on light wave reversible transmission | |
CN105974579B (en) | Angle altering arrangement based on off axis paraboloidal mirror heavy caliber collimated light beam | |
CN210005211U (en) | A high-speed wind tunnel schlieren focal spot monitoring and shock absorption system | |
TWI630975B (en) | Active error compensation platform | |
JP7478984B2 (en) | Laser processing device and laser processing method | |
CN111240029B (en) | Bessel beam generating device and method | |
CN103234629A (en) | Device for simultaneously measuring positions and angles of two optical beams on same incident plane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |