CN103992114A - Preparation method of boron carbide ceramic powder dispersion - Google Patents
Preparation method of boron carbide ceramic powder dispersion Download PDFInfo
- Publication number
- CN103992114A CN103992114A CN201410218514.4A CN201410218514A CN103992114A CN 103992114 A CN103992114 A CN 103992114A CN 201410218514 A CN201410218514 A CN 201410218514A CN 103992114 A CN103992114 A CN 103992114A
- Authority
- CN
- China
- Prior art keywords
- boron carbide
- ceramic powder
- carbide ceramic
- dispersion
- mass percentage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 109
- 239000006185 dispersion Substances 0.000 title claims abstract description 81
- 239000000919 ceramic Substances 0.000 title claims abstract description 79
- 229910052580 B4C Inorganic materials 0.000 title claims abstract description 76
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 238000002360 preparation method Methods 0.000 title claims description 20
- 239000002245 particle Substances 0.000 claims abstract description 43
- 229920002873 Polyethylenimine Polymers 0.000 claims abstract description 36
- 239000000725 suspension Substances 0.000 claims abstract description 33
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 30
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000000498 ball milling Methods 0.000 claims description 17
- 238000005266 casting Methods 0.000 abstract description 2
- 238000001746 injection moulding Methods 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000007569 slipcasting Methods 0.000 abstract description 2
- 239000002002 slurry Substances 0.000 abstract description 2
- 238000012512 characterization method Methods 0.000 description 18
- 239000002270 dispersing agent Substances 0.000 description 18
- 239000008367 deionised water Substances 0.000 description 14
- 229910021641 deionized water Inorganic materials 0.000 description 14
- 239000002609 medium Substances 0.000 description 14
- 239000007788 liquid Substances 0.000 description 12
- 238000003756 stirring Methods 0.000 description 9
- 239000002612 dispersion medium Substances 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000005054 agglomeration Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000005518 polymer electrolyte Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000012736 aqueous medium Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920000881 Modified starch Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010437 gem Substances 0.000 description 1
- 229910001751 gemstone Inorganic materials 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 235000019830 sodium polyphosphate Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
本发明公开了一种碳化硼陶瓷粉末分散体的制备方法,包括以下步骤:按质量百分比计,将0.01~10%聚乙烯亚胺和0.01~10%聚乙二醇加入到水中,混合均匀,再加入10~50%碳化硼陶瓷粉末,混合均匀;之后加入到球磨机中球磨3h以上得到悬浮液;将悬浮液静置15~60min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。通过本发明,可以获得简单廉价并且对环境友好地的碳化硼陶瓷粉末分散体,提供用于注浆成形、凝胶浇注成形、注射成形等湿法成形法制备陶瓷体系的浆料。
The invention discloses a method for preparing a boron carbide ceramic powder dispersion, which comprises the following steps: adding 0.01-10% polyethyleneimine and 0.01-10% polyethylene glycol into water, mixing uniformly, according to mass percentage, Then add 10-50% boron carbide ceramic powder and mix evenly; then add it to a ball mill and mill it for more than 3 hours to obtain a suspension; let the suspension stand for 15-60 minutes to remove the coagulated boron carbide ceramic powder particles to obtain boron carbide ceramic powder dispersion body. Through the present invention, a simple, cheap and environmentally friendly boron carbide ceramic powder dispersion can be obtained, and slurry for preparing ceramic systems by slip casting, gel casting, injection molding and other wet forming methods can be provided.
Description
技术领域technical field
本发明涉及粉末分散技术领域,特别是一种碳化硼陶瓷粉末分散体的制备方法。The invention relates to the technical field of powder dispersion, in particular to a preparation method of boron carbide ceramic powder dispersion.
背景技术Background technique
碳化硼陶瓷是一种重要的工程材料。其硬度仅次于金刚石和立方氮化硼,高温下其恒定的高温硬度(>30GPa)要远远的优于金刚石和立方氮化硼。其理论密度为2.52g/cm3,熔点为2450℃,显微硬度为4950kgf/mm2。碳化硼陶瓷具有质量轻、半导体物性、吸收种子、研磨效率高、与强酸强碱均不起反应等特点。由于具有上述优异的性能,碳化硼陶瓷被广泛地应用于冶金、化工、机械、航空航天等领域。例如:碳化硼可作为磨料加工宝石、陶瓷、轴承和刀具;可在冶金领域用作耐火材料;致密化的碳化硼还可以制作成喷嘴、机械密封件或是防弹材料等;碳化硼还因具有较大的热中子俘获界面可吸收大量的种子被用于核反应堆的防护。Boron carbide ceramics are an important engineering material. Its hardness is second only to diamond and cubic boron nitride, and its constant high-temperature hardness (>30GPa) at high temperature is far superior to diamond and cubic boron nitride. Its theoretical density is 2.52g/cm 3 , its melting point is 2450°C, and its microhardness is 4950kgf/mm 2 . Boron carbide ceramics have the characteristics of light weight, semiconductor properties, seed absorption, high grinding efficiency, and no reaction with strong acids and alkalis. Due to the above-mentioned excellent properties, boron carbide ceramics are widely used in metallurgy, chemical industry, machinery, aerospace and other fields. For example: boron carbide can be used as an abrasive to process gemstones, ceramics, bearings and knives; it can be used as a refractory material in the metallurgical field; densified boron carbide can also be made into nozzles, mechanical seals or bulletproof materials; Larger thermal neutron capture interfaces can absorb large quantities of seeds and are used for nuclear reactor shielding.
超细粉末由于颗粒细小而且有很大的表面能,在液体中分散极易自发团聚形成二次粉末颗粒以减小体系的总表面能。在粉末悬浮液浸渗的条件下,如果粉末中存在团聚体则容易造成材料局部区域出现成分偏析,对材料的结构和性能有着许多不良的影响。因此,粉末的团聚现象以及如何采取行之有效的方法减少甚至消除团聚,以达到粉末在悬浮液中分散良好这一目的是在粉末的制备和使用中应该关注的问题。Due to the small size and high surface energy of ultrafine powder, it is easy to spontaneously agglomerate to form secondary powder particles when dispersed in liquid to reduce the total surface energy of the system. Under the condition of powder suspension impregnation, if there are agglomerates in the powder, it is easy to cause component segregation in the local area of the material, which has many adverse effects on the structure and performance of the material. Therefore, the powder agglomeration phenomenon and how to take effective methods to reduce or even eliminate the agglomeration so as to achieve the purpose of powder dispersion in the suspension should be paid attention to in the preparation and use of powder.
粉末在液相介质中的分散状态,主要受粉末颗粒之间的相互作用的影响。目前,使粉末颗粒均匀地稳定分散于液相介质中,通常有以下三种稳定机理:The dispersion state of powder in liquid medium is mainly affected by the interaction between powder particles. At present, there are usually the following three stabilization mechanisms to uniformly and stably disperse the powder particles in the liquid medium:
(1)静电稳定机理(双电层稳定机理):在液相介质中,通过调节pH值或加入适当的电解质,使得粉末颗粒表面吸引电性相反的离子形成双电层,双电层间的库仑斥力大大降低了粉末颗粒团聚的引力,从而使得粉末颗粒分散。粉末颗粒的表面电位和溶液浓度是粉末颗粒在液相介质中静电稳定的两个最主要的因素。(1) Electrostatic stabilization mechanism (electric double layer stabilization mechanism): in the liquid medium, by adjusting the pH value or adding an appropriate electrolyte, the surface of the powder particles attracts ions with opposite electrical properties to form an electric double layer. Coulomb repulsion greatly reduces the attraction of powder particle agglomeration, thus making the powder particles dispersed. The surface potential of the powder particles and the concentration of the solution are the two most important factors for the electrostatic stability of the powder particles in the liquid medium.
(2)空间位阻稳定机理:在液相介质中加入电中性的高分子聚合物,粉末颗粒表面吸附高分子聚合物,形成了一个被包覆的粉末颗粒微团。高分子聚合物之间相互的空间位阻作用产生排斥力,使悬浮液稳定。粉末颗粒在低介电常数(即弱极性或非极性)的有机溶剂中分散,常常被认为是按空间位阻机理进行的。如在液相反应中加入聚乙二醇,聚乙二醇分子产生空间位阻作用,从而阻碍粉末颗粒进一步团聚长大。(2) Stabilization mechanism of steric hindrance: adding an electrically neutral polymer to the liquid medium, the polymer is adsorbed on the surface of the powder particles, forming a coated powder particle cluster. The mutual steric hindrance between polymers produces repulsive force, which stabilizes the suspension. The dispersion of powder particles in organic solvents with low dielectric constant (that is, weak polarity or nonpolarity) is often considered to be based on the mechanism of steric hindrance. If polyethylene glycol is added in the liquid phase reaction, the polyethylene glycol molecules will produce steric hindrance, thereby hindering the further agglomeration and growth of powder particles.
(3)电空间位阻机理:选用一个既提供空间位阻作用同时又具有静电排斥作用的聚合物电解质为分散剂,调节悬浮液的pH,使颗粒表面吸附的聚合物电解质达到饱和吸附量和最大电离度,从而增加双电层斥力,使粉末颗粒均匀稳定的分散。常用的分散剂为高分子聚合物电解质,阴离子型高分子电解质,以聚丙烯酸和聚甲基丙烯酸的铵盐或钠盐为代表。(3) Electric steric hindrance mechanism: select a polymer electrolyte that not only provides steric hindrance but also has electrostatic repulsion as a dispersant, adjust the pH of the suspension, and make the polymer electrolyte adsorbed on the surface of the particles reach the saturated adsorption capacity and The maximum degree of ionization, thereby increasing the repulsion of the electric double layer, makes the powder particles uniformly and stably dispersed. Commonly used dispersants are polymer electrolytes and anionic polymer electrolytes, represented by ammonium or sodium salts of polyacrylic acid and polymethacrylic acid.
粉末颗粒在液体中的分散手段,大体上可以分为三大类:The dispersion methods of powder particles in liquid can be roughly divided into three categories:
(1)选择相应介质:通过选择适当的分散介质可以获得分散较为充分的悬浮液,这是由粉末自身的性质来决定的。用于分散的液体介质分为极性介质和非极性介质两类。选择分散介质的原则是:极性粉末颗粒易于在极性介质中分散,非极性粉末颗粒易于在非极性介质中分散。(1) Select the appropriate medium: By selecting an appropriate dispersion medium, a well-dispersed suspension can be obtained, which is determined by the properties of the powder itself. The liquid medium used for dispersion is divided into two types: polar medium and non-polar medium. The principle of choosing the dispersion medium is: the polar powder particles are easy to disperse in the polar medium, and the non-polar powder particles are easy to disperse in the non-polar medium.
(2)加入分散剂:通过加入分散剂可以提供极性粉末颗粒在极性介质中的良好分散所需要的物理化学条件。分散剂的添加可以增大粉末颗粒间的互相排斥作用。常用的分散剂主要有两种:无机电解质,如聚磷酸钠,硅酸钠,氢氧化钠等,有机高分子聚合物,如聚丙烯酞胺系列、单宁等表面活性剂。表面活性剂的分散作用主要表现在它对颗粒表面润湿性调整,因其有着良好的分散作用而在工业中得到广泛的应用。(2) Adding a dispersant: By adding a dispersant, the physical and chemical conditions required for good dispersion of polar powder particles in polar media can be provided. The addition of dispersant can increase the mutual repulsion between powder particles. There are two main types of dispersants commonly used: inorganic electrolytes, such as sodium polyphosphate, sodium silicate, sodium hydroxide, etc., organic polymers, such as polyacrylamide series, tannin and other surfactants. The dispersing effect of surfactants is mainly manifested in the adjustment of the surface wettability of the particles, and is widely used in industry because of its good dispersing effect.
(3)机械力分散:机械力作用下的分散通常被认为是简单的物理分散,主要是借助外界剪切力或撞击力等机械能使纳米粒子在介质中充分分散的一种形式。通过对分散体系施加机械力会引起体系内物质的物理、化学性质变化并伴随一系列化学反应达到分散目的。粉末颗粒团聚的破坏主要是靠机械碎解和功率超声碎解。团聚体的机械碎解主要靠冲击,剪切及拉伸等机械力实现,是一种简便易行的手段具体形式有:研磨分散、胶体磨分散、球磨分散、砂磨分散、高速搅拌等。超声分散是把需要处理的悬浮液直接置于超声场中,控制适当的超声频率及作用时间,以使颗粒充分分散。一方面,超声波在颗粒体系中以驻波的形式传播,使颗粒受到周期性的拉伸和压缩;另一方面,超声波在液体中可以产生“空化”作用,使颗粒分散。(3) Mechanical force dispersion: Dispersion under the action of mechanical force is usually considered as a simple physical dispersion, which is mainly a form of fully dispersing nanoparticles in the medium by means of mechanical energy such as external shear force or impact force. By applying mechanical force to the dispersion system, the physical and chemical properties of the substances in the system will change, accompanied by a series of chemical reactions to achieve the purpose of dispersion. The destruction of powder particle agglomeration is mainly by mechanical disintegration and power ultrasonic disintegration. The mechanical disintegration of agglomerates is mainly realized by mechanical forces such as impact, shearing and stretching. It is a simple and easy method. The specific forms include: grinding dispersion, colloid mill dispersion, ball mill dispersion, sand mill dispersion, high-speed stirring, etc. Ultrasonic dispersion is to place the suspension to be treated directly in the ultrasonic field, and control the appropriate ultrasonic frequency and action time to fully disperse the particles. On the one hand, ultrasonic waves propagate in the form of standing waves in the particle system, causing the particles to be periodically stretched and compressed; on the other hand, ultrasonic waves can produce "cavitation" in the liquid to disperse the particles.
EP1153652中记载了一种将碳化钨和钴的混合粉末(硬质金属粉末混合物)在部分添加了其他硬质材料如TiC、TaC、TiN的条件之下,分散于添加了阳离子聚电解质聚乙烯亚胺的含水或乙醇的介质的方法。这里,通过添加质量分数0.1至10%、优选质量分数为0.1-1%的,摩尔质量为5000-50000、优选10000至30000g/mol的聚乙烯亚胺(PEI)而实现硬质金属粉末混合物在水中的良好分散性。In EP1153652, it is described that a mixed powder (hard metal powder mixture) of tungsten carbide and cobalt is dispersed in a polyethylene submerged with cationic polyelectrolyte under the condition of partially adding other hard materials such as TiC, TaC and TiN. Aqueous or ethanolic media methods of amines. Here, by adding a mass fraction of 0.1 to 10%, preferably a mass fraction of 0.1-1%, polyethyleneimine (PEI) with a molar mass of 5000-50000, preferably 10000 to 30000 g/mol, the hard metal powder mixture is achieved Good dispersibility in water.
在WO93/21127中制备了表面改性的纳米陶瓷粉末如Si3N4、SiC、Al2O3等,途径是利用低分子的有机化合物(摩尔质量最高达到500g.mol)将各个未改性的粉末分散于水或者有机溶剂如醇类中。In WO93/21127, surface-modified nano-ceramic powders such as Si 3 N 4 , SiC, Al 2 O 3 , etc. were prepared by using low-molecular organic compounds (molar mass up to 500g.mol) The powder is dispersed in water or organic solvents such as alcohols.
DE19751355中记载了一种将细颗粒无机粉末分散到优选是水或者是含水介质的方法,其中用作分散的物质是生物来源的物质,如糖的衍生物、淀粉衍生物、或壳多糖衍生物。这里特别是指在含水介质中产生长时间的稳定分散液。DE19751355 describes a method for dispersing fine-grained inorganic powders into preferably water or an aqueous medium, wherein the substance used for dispersion is a substance of biological origin, such as a sugar derivative, a starch derivative, or a chitin derivative . Here in particular the production of stable dispersions in aqueous media over a long period of time is meant.
根据现有技术所实现的方法的缺点是:其将粉末分散在有机溶剂介质或者是有机溶剂-水介质而不是纯水的介质中,成本高并对环境不友好。其分散的粉末包括了硬质合金粉末、部分的陶瓷粉末如TiC、TaC、TiN、以及部分的纳米粉末如纳米Si3N4、SiC、Al2O3等。但目前对于特定的碳化硼陶瓷粉末分散体制备却无相对应的研究发明。The disadvantage of the method realized according to the prior art is that it disperses the powder in an organic solvent medium or an organic solvent-water medium instead of pure water, which is costly and environmentally unfriendly. The dispersed powder includes cemented carbide powder, part of ceramic powder such as TiC, TaC, TiN, and part of nano powder such as nano Si 3 N 4 , SiC, Al 2 O 3 and so on. However, there is no corresponding research invention for the preparation of specific boron carbide ceramic powder dispersions.
发明内容Contents of the invention
本发明的目的是提供一种碳化硼陶瓷粉末分散体的制备方法,解决现有技术中没有碳化硼陶瓷粉末分散体相应制备方法的问题。The purpose of the present invention is to provide a method for preparing boron carbide ceramic powder dispersion, which solves the problem that there is no corresponding preparation method for boron carbide ceramic powder dispersion in the prior art.
为解决上述问题,本发明采用以下技术方案:In order to solve the above problems, the present invention adopts the following technical solutions:
一种碳化硼陶瓷粉末分散体的制备方法,包括以下步骤:A preparation method of boron carbide ceramic powder dispersion, comprising the following steps:
按质量百分比计,将0.01~10%聚乙烯亚胺和0.01~10%聚乙二醇加入到水中,混合均匀,再加入10~50%碳化硼陶瓷粉末,混合均匀;之后加入到球磨机中球磨3h以上得到悬浮液;将悬浮液静置15~60min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。In terms of mass percentage, add 0.01-10% polyethyleneimine and 0.01-10% polyethylene glycol into water, mix well, then add 10-50% boron carbide ceramic powder, mix well; then add to ball mill for ball milling The suspension is obtained after more than 3 hours; the suspension is left to stand for 15-60 minutes to remove the coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
所述碳化硼陶瓷粉末质量百分比为30~40%,所述聚乙烯亚胺质量百分比为1~3%,所述聚乙二醇质量百分比为3~5%。The mass percentage of the boron carbide ceramic powder is 30-40%, the mass percentage of the polyethyleneimine is 1-3%, and the polyethylene glycol is 3-5%.
所述聚乙烯亚胺质量百分比为2.5%。The mass percentage of polyethyleneimine is 2.5%.
所述碳化硼陶瓷粉末直径为1~40um。The diameter of the boron carbide ceramic powder is 1-40um.
所述聚乙二醇的分子量为5000~20000。The molecular weight of the polyethylene glycol is 5000-20000.
所述球磨时间为3~4h。The ball milling time is 3-4 hours.
本发明的有益效果:通过本发明,可以获得简单廉价并且对环境友好地的碳化硼陶瓷粉末分散体,提供用于注浆成形、凝胶浇注成形、注射成形等湿法成形法制备陶瓷体系的浆料。Beneficial effects of the present invention: through the present invention, a simple, cheap and environmentally friendly boron carbide ceramic powder dispersion can be obtained, and it can be used to prepare ceramic systems by wet forming methods such as slip casting, gel casting, and injection molding. slurry.
附图说明Description of drawings
图1是实施例采用的碳化硼陶瓷粉末的SEM图。Fig. 1 is the SEM picture of the boron carbide ceramic powder that embodiment adopts.
图2是实施例1不同球磨时间对应分散体的分散性能表征。Fig. 2 is the characterization of dispersion properties of the dispersions corresponding to different ball milling times in Example 1.
图3是实施例2不同分散介质对应分散体的分散性能表征。Fig. 3 is the dispersion performance characterization of the corresponding dispersions of different dispersion media in Example 2.
图4是实施例3不同种类分散剂对应分散体的分散性能表征。Fig. 4 is the dispersion performance characterization of the corresponding dispersions of different types of dispersants in Example 3.
图5是实施例4不同质量分数聚乙烯亚胺对应分散体的分散性能表征。Fig. 5 is a characterization of the dispersion properties of the dispersions corresponding to different mass fractions of polyethyleneimine in Example 4.
具体实施方式Detailed ways
下面结合实施例对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。Below in conjunction with embodiment the present invention is further explained. The following examples are only used to illustrate the present invention, but are not intended to limit the scope of the present invention.
一种碳化硼陶瓷粉末分散体的制备方法,以水为分散介质、水溶性的聚乙烯亚胺(PEI)和聚乙二醇(PEG)为分散剂,包括以下步骤:按质量百分比计,将0.01~10%聚乙烯亚胺和0.01~10%聚乙二醇加入到水中,混合均匀,再加入10~50%碳化硼陶瓷粉末,混合均匀;之后加入到球磨机中球磨3h以上优选3~4h得到悬浮液;将悬浮液静置15~60min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。A preparation method of a boron carbide ceramic powder dispersion, using water as a dispersion medium, water-soluble polyethyleneimine (PEI) and polyethylene glycol (PEG) as a dispersant, comprising the following steps: by mass percentage, Add 0.01-10% polyethyleneimine and 0.01-10% polyethylene glycol into water, mix well, then add 10-50% boron carbide ceramic powder, mix well; then add to ball mill and mill for 3 hours or more, preferably 3-4 hours obtaining a suspension; standing the suspension for 15 to 60 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
实施例采用的碳化硼陶瓷粉末密度约为2.6g/cm3,任意取少量碳化硼陶瓷粉末,均匀放置到扫描电子显微镜实验台上,观察其颗粒分布,如图1所示,碳化硼陶瓷粉末的粒径在1~40um。碳化硼陶瓷粉末在悬浮液中所占的质量百分比为10~50%,优选30~40%。The density of the boron carbide ceramic powder used in the embodiment is about 2.6g/cm 3 , a small amount of boron carbide ceramic powder is taken arbitrarily, placed evenly on the scanning electron microscope test bench, and the particle distribution is observed, as shown in Figure 1, the boron carbide ceramic powder The particle size ranges from 1 to 40um. The mass percentage of the boron carbide ceramic powder in the suspension is 10-50%, preferably 30-40%.
聚乙烯亚胺通常为水溶性的无色或淡黄色黏稠状液体,市售品通常为10%~50%浓度的水溶液,如Sigma-Aldrich公司编号为482595的平均分子量1300的50%水溶液产品和编号为03880的分子量在600000~1000000范围的50%水溶液产品等都能用于本发明。聚乙烯亚胺在悬浮液中所占的质量百分比为0.01%~10%,优选为1~3%,更优选为2.5%。Polyethylenimine is usually a water-soluble colorless or pale yellow viscous liquid, and commercially available products are usually 10% to 50% aqueous solution, such as the 50% aqueous solution product of Sigma-Aldrich Company No. 482595 with an average molecular weight of 1300 and The 50% aqueous solution product numbered 03880 with a molecular weight in the range of 600,000 to 1,000,000 can be used in the present invention. The mass percentage of polyethyleneimine in the suspension is 0.01%-10%, preferably 1-3%, more preferably 2.5%.
聚乙二醇为白色坚硬蜡状薄片固体,分子量为5000~20000。聚乙二醇在悬浮液中所占的质量百分比为0.01~10%,优选为3~5%。Polyethylene glycol is a white hard waxy flake solid with a molecular weight of 5,000-20,000. The mass percentage of polyethylene glycol in the suspension is 0.01-10%, preferably 3-5%.
用于表征碳化硼陶瓷粉末颗粒在悬浮液中的稳定性和可分散性的方法为:观察悬浮液澄清/悬浊界面随时间变化的变化情况。具体表征方式为,将悬浮液倒入试管中并标定液面初始高度h0,每间隔相同一段时间测量悬浮液澄清/悬浊界面的高度hi(i=1,2,3,4…),例如每个半小时测量一次界面高度,若干个小时后根据界面高度高低判断悬浮液的稳定性并绘制界面高度随时间变化的曲线。悬浮液澄清部分的液面高度降低得越快,陶瓷颗粒的悬浮稳定性和可分散性越差。The method used to characterize the stability and dispersibility of boron carbide ceramic powder particles in the suspension is to observe the change of the clear/suspended interface of the suspension over time. The specific characterization method is as follows: pour the suspension into a test tube and calibrate the initial height h 0 of the liquid surface, and measure the height h i of the clear/suspended interface of the suspension at the same interval (i=1,2,3,4...) , For example, the interface height is measured every half hour, after several hours, the stability of the suspension is judged according to the interface height and the curve of the interface height changes with time is drawn. The faster the liquid level in the clarified part of the suspension decreases, the worse the suspension stability and dispersibility of the ceramic particles.
实施例1Example 1
本实施例在其它制备条件保持不变的前提下,改变球磨时间,观察不同的球磨时间对于分散体稳定性的影响。In this example, under the premise of keeping other preparation conditions unchanged, the ball milling time was changed, and the influence of different ball milling times on the dispersion stability was observed.
将1.75g聚乙烯亚胺(质量百分比为2.2%)、2.5g聚乙二醇(质量百分比为3.15%)溶于50ml去离子水中,混合均匀,并接着搅拌加入25g碳化硼陶瓷粉末(质量百分比为31.5%);之后分别在行星式球磨机中球磨一定时间(分别为0h、1h、3h、5h);静置30min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。1.75g polyethyleneimine (mass percentage is 2.2%), 2.5g polyethylene glycol (mass percentage is 3.15%) are dissolved in 50ml deionized water, mix well, and then stir and add 25g boron carbide ceramic powder (mass percentage 31.5%); then ball milling in a planetary ball mill for a certain period of time (0h, 1h, 3h, 5h respectively); standing for 30min to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
不同球磨时间对应分散体的分散性表征结果如图2所示。分散性能表征结果显示,球磨分散方法能够显著地提高悬浮液的分散性。随着球磨时间的增加,悬浮液的分散性能逐渐改善提升,当球磨时间超过3h以上就能够获得分散性较好的悬浮液。虽然单纯对于球磨混粉而言,球磨时间越长,得到悬浮液分散性能也就越好。但是对于复合材料整个的制备过程而言,出于时间成本和制备需要的考虑,当球磨时间为3~4h之间即可制得在一段时间内较为稳定的悬浮液供后续制备过程使用,而过长的球磨时间虽然利于提高悬浮液的分散性,但其对整个制备过程并无大利。The dispersibility characterization results of the dispersions corresponding to different ball milling times are shown in Figure 2. The characterization results of dispersion properties show that the ball milling dispersion method can significantly improve the dispersion of the suspension. With the increase of ball milling time, the dispersibility of the suspension is gradually improved, and when the ball milling time exceeds 3 hours, a suspension with better dispersibility can be obtained. Although purely for ball milling powder mixing, the longer the ball milling time, the better the dispersion performance of the suspension obtained. However, for the entire preparation process of composite materials, due to the consideration of time cost and preparation needs, when the ball milling time is between 3 and 4 hours, a relatively stable suspension can be obtained for a period of time for the subsequent preparation process, while Although too long ball milling time is beneficial to improve the dispersibility of the suspension, it is not beneficial to the whole preparation process.
实施例2Example 2
本实施例在其它制备条件保持不变的前提下,选择去离子水和无水乙醇分别作为分散介质,观察不同分散介质对于分散体稳定性的影响。In this example, under the premise of keeping other preparation conditions unchanged, deionized water and absolute ethanol were respectively selected as the dispersion medium, and the influence of different dispersion mediums on the dispersion stability was observed.
将1.75g聚乙烯亚胺(质量百分比为2.2%)、2.5g聚乙二醇(质量百分比为3.15%)溶于50ml分散介质(分别为去离子水、无水乙醇)中,混合均匀,并接着搅拌加入25g碳化硼陶瓷粉末(质量百分比为31.5%);之后在行星式球磨机中球磨3h;静置30min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。1.75g polyethyleneimine (mass percentage is 2.2%), 2.5g polyethylene glycol (mass percentage is 3.15%) is dissolved in 50ml dispersion medium (respectively deionized water, dehydrated alcohol), mix homogeneously, and Then add 25g of boron carbide ceramic powder (31.5% by mass) with stirring; then ball mill for 3h in a planetary ball mill; stand still for 30min to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
不同介质对应分散体的分散性表征结果如图3所示。分散性能表征结果显示,去离子水和无水乙醇作为分散介质对碳化硼陶瓷粉末均起到一定的分散作用。在其它条件一定的情况下,无水乙醇作为分散剂时碳化硼陶瓷粉末的分散性较差,在2.5小时左右即基本沉淀完全。而当去离子水作为分散剂时,碳化硼粉末具有较好的分散性,在3小时之后仍能够保持一定的界面高度。因此,去离子水是较为合适的分散剂。The dispersion characterization results of the corresponding dispersions in different media are shown in Figure 3. The characterization results of dispersion properties show that deionized water and absolute ethanol are used as dispersion media to disperse boron carbide ceramic powder to a certain extent. Under certain other conditions, when absolute ethanol is used as a dispersant, the dispersibility of boron carbide ceramic powder is poor, and the precipitation is basically complete in about 2.5 hours. When deionized water is used as a dispersant, the boron carbide powder has better dispersibility, and can still maintain a certain interface height after 3 hours. Therefore, deionized water is a more suitable dispersant.
实施例3Example 3
本实施例在其它制备条件保持不变的前提下,选择聚乙烯亚胺、聚乙二醇、聚乙烯亚胺+聚乙二醇分别作为分散剂,观察不同分散剂对于分散体稳定性的影响。In this example, under the premise of keeping other preparation conditions unchanged, polyethyleneimine, polyethylene glycol, polyethyleneimine+polyethylene glycol were selected as dispersants respectively, and the influence of different dispersants on the dispersion stability was observed .
将分散剂(分别为质量百分比3%聚乙烯亚胺、质量百分比3%聚乙二醇、质量百分比1.2%聚乙烯亚胺+质量百分比1.8%聚乙二醇)溶于50ml去离子水中,混合均匀,并接着搅拌加入25g碳化硼陶瓷粉末;之后在行星式球磨机中球磨3h;静置30min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。Dispersant (being respectively mass percentage 3% polyethyleneimine, mass percentage 3% polyethylene glycol, mass percentage 1.2% polyethyleneimine+mass percentage 1.8% polyethylene glycol) is dissolved in 50ml deionized water, mix uniform, and then add 25g of boron carbide ceramic powder with stirring; then ball mill in a planetary ball mill for 3h; stand still for 30min to remove the coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
不同种类分散剂对应分散体的分散性表征结果如图4所示。分散性能表征结果显示,单独使用聚乙二醇作为分散剂使用效果较为不理想,在短时间内即发生聚沉现象,无法满足实际制备过程中的需求;将聚乙二醇+聚乙烯亚胺复合使用作为分散剂具有更为良好的分散性能,悬浮液在静置3h之内仍然能够保持一定的分散性,尽管其在约3.5h过后亦出现分散性降低的趋势,但是其已能够满足实际制备过程对悬浮液稳定性的要求;而单独使用聚乙烯亚胺效果居于二者之间。由上述结果可知选用聚乙二醇+聚乙烯亚胺作为复合分散剂。The dispersibility characterization results of the corresponding dispersions of different types of dispersants are shown in Figure 4. The characterization results of dispersion properties show that the effect of using polyethylene glycol alone as a dispersant is not ideal, and coagulation occurs in a short period of time, which cannot meet the needs of the actual preparation process; the combination of polyethylene glycol + polyethyleneimine Composite use as a dispersant has better dispersibility, and the suspension can still maintain a certain degree of dispersibility within 3 hours of standing. Although it also tends to reduce its dispersibility after about 3.5 hours, it can meet the actual requirements. The preparation process requires the stability of the suspension; the effect of using polyethyleneimine alone is between the two. From the above results, it can be seen that polyethylene glycol + polyethyleneimine is selected as the composite dispersant.
实施例4Example 4
本实施例在其它制备条件保持不变的前提下,选择质量分数不同的聚乙烯亚胺,观察不同质量分数的聚乙烯亚胺对于分散体稳定性的影响。In this example, under the premise of keeping other preparation conditions unchanged, polyethyleneimines with different mass fractions were selected, and the influence of different mass fractions of polyethyleneimines on the dispersion stability was observed.
将一定质量百分比的聚乙烯亚胺(质量百分比分别为1%、2.5%、3.5%)、质量百分比为3.1%聚乙二醇溶于50ml去离子水中,混合均匀,并接着搅拌加入25g碳化硼陶瓷粉末;之后在行星式球磨机中球磨3h;静置30min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。不同质量分数的聚乙烯亚胺对应分散体的分散性表征结果如图5所示。编号1、2、3分别代表聚乙烯亚胺质量分数1%、2.5%、3.5%。由结果可知,聚乙烯亚胺质量分数为2.5%时悬浮液具有最佳的分散性能,大于或小于此配比时分散性能不同程度减弱。A certain mass percentage of polyethyleneimine (mass percentage is 1%, 2.5%, 3.5%), mass percentage is 3.1% polyethylene glycol is dissolved in 50ml deionized water, mix well, and then add 25g boron carbide with stirring Ceramic powder; then ball milling in a planetary ball mill for 3 hours; standing for 30 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion. The dispersion characterization results of the corresponding dispersions of polyethyleneimine with different mass fractions are shown in Figure 5. Numbers 1, 2, and 3 represent 1%, 2.5%, and 3.5% polyethyleneimine mass fractions, respectively. It can be seen from the results that the suspension has the best dispersion performance when the mass fraction of polyethyleneimine is 2.5%, and the dispersion performance is weakened in different degrees when the ratio is greater or less than this ratio.
实施例5Example 5
按质量百分比计,将0.01%的聚乙烯亚胺、0.01%的聚乙二醇溶于去离子水中,混合均匀,并接着搅拌加入10%的碳化硼陶瓷粉末;之后在行星式球磨机球磨3h;静置15min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。In terms of mass percentage, dissolve 0.01% polyethyleneimine and 0.01% polyethylene glycol in deionized water, mix well, and then add 10% boron carbide ceramic powder with stirring; then ball mill in a planetary ball mill for 3 hours; Stand still for 15 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
本实施例制备的分散体稳定性的表征结果如表1所示:The characterization results of the dispersion stability prepared in this embodiment are shown in Table 1:
表1Table 1
实施例6Example 6
按质量百分比计,将10%的聚乙烯亚胺、10%的聚乙二醇溶于去离子水中,混合均匀,并接着搅拌加入50%的碳化硼陶瓷粉末;之后在行星式球磨机球磨4h;静置60min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。In terms of mass percentage, 10% polyethyleneimine and 10% polyethylene glycol were dissolved in deionized water, mixed evenly, and then stirred and added with 50% boron carbide ceramic powder; then ball milled in a planetary ball mill for 4 hours; Stand still for 60 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
本实施例制备的分散体稳定性的表征结果如表2所示:The characterization results of the dispersion stability prepared in this embodiment are shown in Table 2:
表2Table 2
实施例7Example 7
按质量百分比计,将0.01%的聚乙烯亚胺、10%的聚乙二醇溶于去离子水中,混合均匀,并接着搅拌加入10%的碳化硼陶瓷粉末;之后在行星式球磨机球磨3h;静置15min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。In terms of mass percentage, dissolve 0.01% polyethyleneimine and 10% polyethylene glycol in deionized water, mix well, and then add 10% boron carbide ceramic powder with stirring; then ball mill in a planetary ball mill for 3 hours; Stand still for 15 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
本实施例制备的分散体稳定性的表征结果如表3所示:The characterization results of the dispersion stability prepared in this embodiment are shown in table 3:
表3table 3
实施例8Example 8
按质量百分比计,将10%的聚乙烯亚胺、0.01%的聚乙二醇溶于去离子水中,混合均匀,并接着搅拌加入50%的碳化硼陶瓷粉末;之后在行星式球磨机球磨4h;静置60min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。In terms of mass percentage, dissolve 10% polyethyleneimine and 0.01% polyethylene glycol in deionized water, mix well, and then add 50% boron carbide ceramic powder with stirring; then ball mill in a planetary ball mill for 4 hours; Stand still for 60 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
本实施例制备的分散体稳定性的表征结果如表4所示:The characterization results of the dispersion stability prepared in this embodiment are shown in Table 4:
表4Table 4
实施例9Example 9
按质量百分比计,将1%的聚乙烯亚胺、3%的聚乙二醇溶于去离子水中,混合均匀,并接着搅拌加入30%的碳化硼陶瓷粉末;之后在行星式球磨机球磨3h;静置30min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。In terms of mass percentage, dissolve 1% polyethyleneimine and 3% polyethylene glycol in deionized water, mix well, and then add 30% boron carbide ceramic powder with stirring; then ball mill in a planetary ball mill for 3 hours; Stand still for 30 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
本实施例制备的分散体稳定性的表征结果如表5所示:The characterization results of the dispersion stability prepared in this embodiment are shown in Table 5:
表5table 5
实施例10Example 10
按质量百分比计,将3%的聚乙烯亚胺、5%的聚乙二醇溶于去离子水中,混合均匀,并接着搅拌加入40%的碳化硼陶瓷粉末;之后在行星式球磨机球磨4h;静置30min去除聚沉的碳化硼陶瓷粉末颗粒,得到碳化硼陶瓷粉末分散体。In terms of mass percentage, dissolve 3% polyethyleneimine and 5% polyethylene glycol in deionized water, mix well, and then add 40% boron carbide ceramic powder with stirring; then ball mill in a planetary ball mill for 4 hours; Stand still for 30 minutes to remove coagulated boron carbide ceramic powder particles to obtain a boron carbide ceramic powder dispersion.
本实施例制备的分散体稳定性的表征结果如表6所示:The characterization results of the dispersion stability prepared in this embodiment are shown in Table 6:
表6Table 6
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410218514.4A CN103992114A (en) | 2014-05-22 | 2014-05-22 | Preparation method of boron carbide ceramic powder dispersion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410218514.4A CN103992114A (en) | 2014-05-22 | 2014-05-22 | Preparation method of boron carbide ceramic powder dispersion |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103992114A true CN103992114A (en) | 2014-08-20 |
Family
ID=51306489
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410218514.4A Pending CN103992114A (en) | 2014-05-22 | 2014-05-22 | Preparation method of boron carbide ceramic powder dispersion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103992114A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105198479A (en) * | 2015-10-12 | 2015-12-30 | 北京东泰富博新材料科技股份有限公司 | Method for preparing starch-containing ceramic slurry from diatomite |
CN105967690B (en) * | 2016-04-22 | 2018-08-03 | 合肥工业大学 | A kind of method of superfine powder and large-size particles batch mixing |
CN109678528A (en) * | 2019-01-23 | 2019-04-26 | 佛山市山有海科技有限公司 | A kind of ceramics degumming agent and its preparation method and application |
CN109721382A (en) * | 2018-12-29 | 2019-05-07 | 中国科学院长春光学精密机械与物理研究所 | A kind of ceramic particle suspended nitride and its preparation method and application |
CN112174210A (en) * | 2020-09-23 | 2021-01-05 | 烟台佳隆纳米产业有限公司 | Preparation method of aqueous dispersion-free nano cesium tungsten oxide coating |
CN112608717A (en) * | 2020-12-17 | 2021-04-06 | 长沙蓝思新材料有限公司 | Coarse grinding fluid and preparation method thereof |
CN114656277A (en) * | 2022-03-17 | 2022-06-24 | 南通三责精密陶瓷有限公司 | Method for manufacturing environment-friendly pressureless sintering boron carbide ceramic material |
-
2014
- 2014-05-22 CN CN201410218514.4A patent/CN103992114A/en active Pending
Non-Patent Citations (1)
Title |
---|
刘维良 等: ""B4C/TiB2层状复合陶瓷的制备与性能研究"", 《中国陶瓷》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105198479A (en) * | 2015-10-12 | 2015-12-30 | 北京东泰富博新材料科技股份有限公司 | Method for preparing starch-containing ceramic slurry from diatomite |
CN105198479B (en) * | 2015-10-12 | 2016-05-11 | 北京东泰富博新材料科技股份有限公司 | A kind of method of utilizing diatomite to prepare starch-containing ceramic size |
CN105967690B (en) * | 2016-04-22 | 2018-08-03 | 合肥工业大学 | A kind of method of superfine powder and large-size particles batch mixing |
CN109721382A (en) * | 2018-12-29 | 2019-05-07 | 中国科学院长春光学精密机械与物理研究所 | A kind of ceramic particle suspended nitride and its preparation method and application |
CN109678528A (en) * | 2019-01-23 | 2019-04-26 | 佛山市山有海科技有限公司 | A kind of ceramics degumming agent and its preparation method and application |
CN112174210A (en) * | 2020-09-23 | 2021-01-05 | 烟台佳隆纳米产业有限公司 | Preparation method of aqueous dispersion-free nano cesium tungsten oxide coating |
CN112608717A (en) * | 2020-12-17 | 2021-04-06 | 长沙蓝思新材料有限公司 | Coarse grinding fluid and preparation method thereof |
CN114656277A (en) * | 2022-03-17 | 2022-06-24 | 南通三责精密陶瓷有限公司 | Method for manufacturing environment-friendly pressureless sintering boron carbide ceramic material |
CN114656277B (en) * | 2022-03-17 | 2022-12-27 | 南通三责精密陶瓷有限公司 | Method for manufacturing environment-friendly pressureless sintering boron carbide ceramic material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103992114A (en) | Preparation method of boron carbide ceramic powder dispersion | |
Rouxel et al. | Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions | |
KR101365456B1 (en) | Manufacturing method for highly concentrated and dispersed carbon nano tube dispersion solution | |
CN109879303B (en) | A kind of preparation method of nano calcium carbonate stably suspended and dispersed in aqueous solution | |
Barick et al. | Effect of concentration and molecular weight of polyethylenimine on zeta potential, isoelectric point of nanocrystalline silicon carbide in aqueous and ethanol medium | |
CN104393246B (en) | Preparation method of nanometer lithium iron phosphate water-based slurry | |
US3984339A (en) | Hydraulic oil composition | |
Sun et al. | Phase behavior of polyelectrolyte complexes and rheological behavior of alumina suspensions for direct ink writing | |
CN113421695B (en) | Aqueous carbon nanotube dispersion liquid, conductive slurry and preparation method thereof | |
CN114302860A (en) | Dispersion product | |
CN102491354A (en) | Preparation method of nano-scale tourmaline powder | |
US20160122251A1 (en) | Method for producing liquid dispersion of ceramic microparticles | |
CN105251381A (en) | A kind of aqueous graphite dispersion suspension and preparation method thereof | |
CN105118996B (en) | A kind of process for dispersing of nano-silicon | |
Chen et al. | Dispersion and rheology of surfactant-mediated silver nanoparticle suspensions | |
CN110407212B (en) | High-dispersity nano carbonate gel as well as preparation method and application thereof | |
JP2013091589A (en) | Porous secondary aggregated silica sol, and method for producing the same | |
CN105887181B (en) | A kind of preparation method of large area crack-free optical crystal | |
Zhang et al. | Effect of pH on rheology of aqueous Al 2 O 3/SiC colloidal system | |
CN110436447B (en) | Colloidal graphene aqueous slurry and preparation method thereof | |
JP2005053752A (en) | Modified graphite particle and paint with which the modified graphite particle is compounded | |
Jiang et al. | Synthesis and characterization of polyaniline/partially phosphorylated poly (vinyl alcohol) nanoparticles | |
CN114269460A (en) | Dispersion product | |
CN110857221A (en) | Nano zinc oxide emulsion and preparation method thereof | |
Wei et al. | Hydrogel formed by the co-assembly of sodium laurate and silica nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140820 |