CN103972335A - Light-emitting diode (LED) epitaxial layer structure and LED chip with same - Google Patents
Light-emitting diode (LED) epitaxial layer structure and LED chip with same Download PDFInfo
- Publication number
- CN103972335A CN103972335A CN201410225155.5A CN201410225155A CN103972335A CN 103972335 A CN103972335 A CN 103972335A CN 201410225155 A CN201410225155 A CN 201410225155A CN 103972335 A CN103972335 A CN 103972335A
- Authority
- CN
- China
- Prior art keywords
- layer
- gan
- superlattice
- type
- mqw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 130
- 238000002347 injection Methods 0.000 claims abstract description 57
- 239000007924 injection Substances 0.000 claims abstract description 57
- 230000000903 blocking effect Effects 0.000 claims abstract description 45
- 229910052738 indium Inorganic materials 0.000 claims description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 229910052733 gallium Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 239000010410 layer Substances 0.000 abstract description 439
- 239000011241 protective layer Substances 0.000 abstract description 30
- 239000012159 carrier gas Substances 0.000 abstract description 4
- 229910002601 GaN Inorganic materials 0.000 description 226
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 34
- 239000011777 magnesium Substances 0.000 description 20
- 239000000758 substrate Substances 0.000 description 20
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 14
- 235000012431 wafers Nutrition 0.000 description 14
- 229910052594 sapphire Inorganic materials 0.000 description 13
- 239000010980 sapphire Substances 0.000 description 13
- 239000002356 single layer Substances 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 11
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0133—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials with a substrate not being Group III-V materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
Landscapes
- Led Devices (AREA)
Abstract
本发明提供了一种LED外延层结构及具有该结构的LED芯片,该外延层结构包括依序生长的MQW层、电子阻挡层和P型GaN空穴注入层,P型GaN空穴注入层包括空穴注入层,P型GaN空穴注入层还包括生长于电子阻挡层与空穴注入层之间的P型AlGaN/GaN超晶格层。本发明提供的LED外延层结构通过在电子阻挡层和MQW层之间设置MQW保护层,再在电子阻挡层上设置P型AlGaN/GaN超晶格层,使得P型AlGaN/GaN超晶格层形成的二维载流子气利于空穴均匀扩展,提高电子与空穴的结合效率。
The present invention provides an LED epitaxial layer structure and an LED chip having the structure, the epitaxial layer structure includes a sequentially grown MQW layer, an electron blocking layer and a P-type GaN hole injection layer, and the P-type GaN hole injection layer includes The hole injection layer, the P-type GaN hole injection layer also includes a P-type AlGaN/GaN superlattice layer grown between the electron blocking layer and the hole injection layer. In the LED epitaxial layer structure provided by the present invention, an MQW protective layer is arranged between the electron blocking layer and the MQW layer, and a P-type AlGaN/GaN superlattice layer is arranged on the electron blocking layer, so that the P-type AlGaN/GaN superlattice layer The formed two-dimensional carrier gas is conducive to the uniform expansion of holes and improves the combination efficiency of electrons and holes.
Description
技术领域technical field
本发明涉及LED(发光二极光)领域,特别地,涉及一种LED外延层结构及具有该结构的LED芯片。The invention relates to the field of LED (Light Emitting Diode), in particular to an LED epitaxial layer structure and an LED chip with the structure.
背景技术Background technique
宽带隙的GaN半导体材料具有良好的化学稳定性、热稳定性和较高的击穿电压,是继第一代硅材料和第二代砷化镓材料之后的第三代新型半导体材料。其三元合金铟镓氮(InXGa1-XN)的带隙从0.7eV到3.4eV连续可调,发光波长覆盖了可见光和近紫外光的区域。被认为是制造高亮度蓝、绿发光二极管和白光发光二极管的理想材料,现已广泛应用于照明、显示屏、背光源、信号灯等领域。The GaN semiconductor material with wide bandgap has good chemical stability, thermal stability and high breakdown voltage. It is the third-generation new semiconductor material after the first-generation silicon material and the second-generation gallium arsenide material. The bandgap of its ternary alloy Indium Gallium Nitride (InXGa1-XN) is continuously adjustable from 0.7eV to 3.4eV, and the emission wavelength covers the visible and near-ultraviolet regions. It is considered to be an ideal material for manufacturing high-brightness blue and green light-emitting diodes and white light-emitting diodes, and has been widely used in lighting, display screens, backlight sources, signal lights and other fields.
如图1所示,传统的GaN基LED外延层结构设置于蓝宝石衬底1’上,包括依次叠置于衬底1’上的低温GaN缓冲层2′、u-GaN层3′、第二u-GaN层4′、N型GaN层5′、电子储存层6′、MQW(多量子阱)层7′、电子阻挡层8′、P型空穴注入层9′和P型接触层10′。在大电流密度工作条件下,这种外延层结构不能有效的阻挡部分电子进入P型空穴注入层9′形成非辐射复合,从而降低了LED器件的发光效率。同时P型空穴注入层9′需在900~1050℃下生长,该生长温度较高,会对已经生长完成的MQW层7′造成结构内损伤。从而降低了LED器件的发光效率。As shown in Figure 1, the conventional GaN-based LED epitaxial layer structure is set on a sapphire substrate 1', including a low-temperature GaN buffer layer 2', a u-GaN layer 3', a second u-GaN layer 4', N-type GaN layer 5', electron storage layer 6', MQW (multiple quantum well) layer 7', electron blocking layer 8', P-type hole injection layer 9' and P-type contact layer 10 '. Under the working condition of high current density, this epitaxial layer structure cannot effectively block some electrons from entering the P-type hole injection layer 9' to form non-radiative recombination, thereby reducing the luminous efficiency of the LED device. At the same time, the P-type hole injection layer 9' needs to be grown at 900-1050° C., which is a relatively high growth temperature, which will cause internal damage to the grown MQW layer 7'. Therefore, the luminous efficiency of the LED device is reduced.
发明内容Contents of the invention
本发明目的在于提供一种LED外延层结构及具有该结构的LED芯片,以解决现有技术中P型GaN层不能有效的阻挡部分电子进入空穴注入层形成非辐射复合及高温P型GaN层生长条件对MQW层造成损伤的技术问题。The purpose of the present invention is to provide an LED epitaxial layer structure and an LED chip with the structure, so as to solve the problem that the P-type GaN layer in the prior art cannot effectively block some electrons from entering the hole injection layer to form a non-radiative recombination and high-temperature P-type GaN layer. A technical issue of growth conditions causing damage to the MQW layer.
为实现上述目的,根据本发明的一个方面,提供了一种LED外延层结构,包括依序生长的MQW层、电子阻挡层和P型GaN空穴注入层,P型GaN空穴注入层包括空穴注入层,P型GaN空穴注入层还包括生长于电子阻挡层与空穴注入层之间的P型AlGaN/GaN超晶格层。In order to achieve the above object, according to one aspect of the present invention, a LED epitaxial layer structure is provided, including an MQW layer, an electron blocking layer and a P-type GaN hole injection layer grown in sequence, and the P-type GaN hole injection layer includes holes The hole injection layer, the P-type GaN hole injection layer also includes a P-type AlGaN/GaN superlattice layer grown between the electron blocking layer and the hole injection layer.
进一步地,P型AlGaN/GaN超晶格层包括多个依次叠置的结构单元,每个结构单元包括依次叠置的超晶格P型AlGaN层和超晶格P型GaN层。Further, the P-type AlGaN/GaN superlattice layer includes a plurality of sequentially stacked structural units, and each structural unit includes a sequentially stacked superlattice P-type AlGaN layer and a superlattice P-type GaN layer.
进一步地,P型AlGaN/GaN中超晶格P型AlGaN层和超晶格P型GaN层的厚度比为1∶1∶2~2∶1。Further, the thickness ratio of the superlattice P-type AlGaN layer to the superlattice P-type GaN layer in the P-type AlGaN/GaN is 1:1:2˜2:1.
进一步地,P型AlGaN/GaN超晶格层的厚度为20~100nm。Further, the thickness of the P-type AlGaN/GaN superlattice layer is 20-100 nm.
进一步地,超晶格P型GaN层中Mg掺杂浓度为1.0E18~1E20atom/cm3,超晶格P型AlGaN层中Al组分的掺杂浓度为1E19~1E20atom/cm3。Further, the doping concentration of Mg in the superlattice P-type GaN layer is 1.0E18-1E20atom/cm 3 , and the doping concentration of Al component in the superlattice P-type AlGaN layer is 1E19-1E20atom/cm 3 .
进一步地,还包括MQW保护层,MQW保护层生长于MQW层和电子阻挡层之间,MQW保护层为AlInGaN材料层。Further, an MQW protection layer is also included, the MQW protection layer is grown between the MQW layer and the electron blocking layer, and the MQW protection layer is an AlInGaN material layer.
进一步地,MQW保护层的厚度为10~50nm。Further, the thickness of the MQW protection layer is 10-50 nm.
进一步地,MQW保护层中In组分的掺杂浓度为1E19~1E20atom/cm3,Al组分的掺杂浓度为1E19~1E20atom/cm3。Further, the doping concentration of the In component in the MQW protection layer is 1E19˜1E20 atom/cm 3 , and the doping concentration of the Al component is 1E19˜1E20 atom/cm 3 .
根据本发明的另一方面还提供了一种如权利要求1至8中任一项LED外延层结构的生长方法,包括依序生长的MQW层、电子阻挡层和P型GaN空穴注入层的步骤,P型GaN空穴注入层的生长步骤包括依序生长P型AlGaN/GaN超晶格层和空穴注入层,P型AlGaN/GaN超晶格层的生长步骤:在电子阻挡层上生长P型AlGaN/GaN超晶格层;生长P型AlGaN/GaN超晶格层的步骤包括:依序生长多个结构单元,生长每个结构单元的步骤包括依序生长的超晶格P型AlGaN层和超晶格P型GaN层;生长超晶格P型AlGaN层步骤中生长温度为780~900℃,生长压力为300~900mbar,通入铝源,镓源和NH3;生长超晶格P型GaN层步骤中生长温度为780~900℃,生长压力为500~900mbar,通入镓源和NH3。According to another aspect of the present invention, there is also provided a method for growing an LED epitaxial layer structure as claimed in any one of claims 1 to 8, comprising a sequentially grown MQW layer, an electron blocking layer, and a P-type GaN hole injection layer. Step, the growth step of the P-type GaN hole injection layer includes sequentially growing the P-type AlGaN/GaN superlattice layer and the hole injection layer, and the growth step of the P-type AlGaN/GaN superlattice layer: growing on the electron blocking layer P-type AlGaN/GaN superlattice layer; the step of growing the P-type AlGaN/GaN superlattice layer includes: sequentially growing multiple structural units, and the step of growing each structural unit includes sequentially growing superlattice P-type AlGaN layer and superlattice P-type GaN layer; in the step of growing the superlattice P-type AlGaN layer, the growth temperature is 780-900°C, the growth pressure is 300-900mbar, and the aluminum source, gallium source and NH 3 are introduced; the superlattice is grown In the step of the P-type GaN layer, the growth temperature is 780-900° C., the growth pressure is 500-900 mbar, and the gallium source and NH 3 are fed.
进一步地,还包括生长于MQW层与电子阻挡层之间的MQW保护层的步骤,生长MQW保护层的步骤中:生长温度为750~850℃,生长压力为300~600mbar,通入铝源、铟源、镓源和NH3。Further, it also includes the step of growing the MQW protective layer between the MQW layer and the electron blocking layer. In the step of growing the MQW protective layer: the growth temperature is 750-850° C., the growth pressure is 300-600 mbar, and the aluminum source, Indium source, gallium source and NH 3 .
根据本发明的另一方面还提供了一种LED芯片,包括外延层,外延层结构为权利要求1至10中任一项的外延层。According to another aspect of the present invention, there is also provided an LED chip, comprising an epitaxial layer, and the structure of the epitaxial layer is the epitaxial layer according to any one of claims 1-10.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本发明提供的LED外延层结构通过在电子阻挡层和MQW层之间设置MQW保护层,再在电子阻挡层上设置P型AlGaN/GaN超晶格层,使得P型AlGaN/GaN超晶格层形成的二维载流子气利于空穴均匀扩展,提高电子与空穴的结合效率。同时P型AlGaN/GaN超晶格层还能有效限制部分穿过电子阻挡层的电子与空穴不在MQW层外发生的非辐射复合,且有效提高了空穴的迁移率,增加了空穴与电子的复合效率,提高了器件的发光效率。In the LED epitaxial layer structure provided by the present invention, an MQW protective layer is arranged between the electron blocking layer and the MQW layer, and a P-type AlGaN/GaN superlattice layer is arranged on the electron blocking layer, so that the P-type AlGaN/GaN superlattice layer The formed two-dimensional carrier gas is conducive to the uniform expansion of holes and improves the combination efficiency of electrons and holes. At the same time, the P-type AlGaN/GaN superlattice layer can also effectively limit the non-radiative recombination of electrons and holes that pass through the electron blocking layer without occurring outside the MQW layer, and effectively improve the mobility of holes, increasing the number of holes and holes. The recombination efficiency of electrons improves the luminous efficiency of the device.
采用本发明提供的外延层结构的LED标准芯片的蓝光芯片,在350mA驱动电流工作下,28mil*28mil芯片COW亮度由205mW提升至220mW,提高了7.3%。Using the blue light chip of the LED standard chip with the epitaxial layer structure provided by the present invention, under the driving current of 350mA, the COW brightness of the 28mil*28mil chip is increased from 205mW to 220mW, which is increased by 7.3%.
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。In addition to the objects, features and advantages described above, the present invention has other objects, features and advantages. Hereinafter, the present invention will be described in further detail with reference to the drawings.
附图说明Description of drawings
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of this application are used to provide further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1是现有技术中的LED外延层的结构示意图;FIG. 1 is a schematic structural view of an LED epitaxial layer in the prior art;
图2是本发明优选实施例的LED外延层的结构示意图;以及Fig. 2 is a schematic structural view of an LED epitaxial layer in a preferred embodiment of the present invention; and
图3是本发明优选实施例的LED外延层的结构示意图。Fig. 3 is a schematic structural diagram of an LED epitaxial layer in a preferred embodiment of the present invention.
图例说明:illustration:
1、衬底;2、低温GaN缓冲层;3、第一u-GaN层;4、第二u-GaN层;5、N型GaN层;6、电子储存层;7、MQW层;8、MQW保护层;9、电子阻挡层;10、P型AlGaN/GaN超晶格层;101、超晶格P型AlGaN层;102、超晶格P型GaN层;11、P型GaN空穴注入层;110、空穴注入层;12、P型接触层。1. Substrate; 2. Low-temperature GaN buffer layer; 3. First u-GaN layer; 4. Second u-GaN layer; 5. N-type GaN layer; 6. Electronic storage layer; 7. MQW layer; 8. MQW protection layer; 9. Electron blocking layer; 10. P-type AlGaN/GaN superlattice layer; 101. Superlattice P-type AlGaN layer; 102. Superlattice P-type GaN layer; 11. P-type GaN hole injection layer; 110, hole injection layer; 12, P-type contact layer.
具体实施方式Detailed ways
以下结合附图对本发明的实施例进行详细说明,但是本发明可以由权利要求限定和覆盖的多种不同方式实施。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings, but the present invention can be implemented in many different ways defined and covered by the claims.
本发明提供了一种LED外延层结构,包括依序生长的MQW(多量子阱)层7、电子阻挡层9和P型GaN空穴注入层11。P型GaN空穴注入层11包括依序彼此叠置的P型AlGaN/GaN超晶格层10和空穴注入层110。P型AlGaN/GaN超晶格层10生长于电子阻挡层9与空穴注入层110之间。The present invention provides an LED epitaxial layer structure, including an MQW (Multiple Quantum Well) layer 7 , an electron blocking layer 9 and a P-type GaN hole injection layer 11 grown in sequence. The P-type GaN hole injection layer 11 includes a P-type AlGaN/GaN superlattice layer 10 and a hole injection layer 110 stacked on each other in sequence. The P-type AlGaN/GaN superlattice layer 10 is grown between the electron blocking layer 9 and the hole injection layer 110 .
P型AlGaN/GaN超晶格层10是指具有超晶格结构的AlGaN层和GaN层依次叠置组成。依次叠置的超晶格P型AlGaN层101和超晶格P型GaN层102可以为一组也可以为多组。优选P型AlGaN/GaN超晶格层10包括多个依次叠置的结构单元,每个结构单元包括依次叠置的超晶格P型AlGaN层101和超晶格P型GaN层102。空穴注入层110是指高温P型GaN层,该层主要起到提供空穴的作用。由于其生长温度多为900~1050℃因而称为高温P型GaN层。The P-type AlGaN/GaN superlattice layer 10 refers to an AlGaN layer having a superlattice structure and a GaN layer stacked in sequence. The successively stacked superlattice P-type AlGaN layer 101 and superlattice P-type GaN layer 102 may be one set or multiple sets. Preferably, the P-type AlGaN/GaN superlattice layer 10 includes a plurality of sequentially stacked structural units, and each structural unit includes a sequentially stacked superlattice P-type AlGaN layer 101 and a superlattice P-type GaN layer 102 . The hole injection layer 110 refers to a high-temperature P-type GaN layer, which mainly serves to provide holes. Because its growth temperature is mostly 900-1050°C, it is called a high-temperature P-type GaN layer.
在电子阻挡层9与空穴注入层110中间设置的P型AlGaN/GaN超晶格层10中由于超晶格P型AlGaN层101中掺杂了Al元素使得超晶格P型AlGaN层101相对超晶格P型GaN层102能带增宽了,P型AlGaN/GaN超晶格层10的能带类似城墙垛口型。从而对穿越电子阻挡层9的电子发挥二次阻挡作用,防止电子跃迁至P型GaN空穴注入层11与空穴发生非辐射复合降低可复合空穴的浓度。In the P-type AlGaN/GaN superlattice layer 10 disposed between the electron blocking layer 9 and the hole injection layer 110, since the superlattice P-type AlGaN layer 101 is doped with Al elements, the superlattice P-type AlGaN layer 101 is relatively The energy band of the superlattice P-type GaN layer 102 is widened, and the energy band of the P-type AlGaN/GaN superlattice layer 10 is similar to that of a city wall crenellation. In this way, the electrons passing through the electron blocking layer 9 play a secondary blocking effect, preventing the electrons from jumping to the P-type GaN hole injection layer 11 to undergo non-radiative recombination with holes and reducing the concentration of recombinable holes.
P型AlGaN/GaN超晶格层10设置于空穴注入层110下方,所得P型AlGaN/GaN超晶格层10所形成的二维载流子气可以有利于空穴注入层110中的空穴均匀扩展。P型AlGaN/GaN超晶格层10与空穴注入层110协同发挥作用,从而有效提高了空穴的迁移率,从而提高LED外延层中电子与空穴的复合效率。从而提高了所得LED发光器件的发光效率。The P-type AlGaN/GaN superlattice layer 10 is arranged below the hole injection layer 110, and the two-dimensional carrier gas formed by the obtained P-type AlGaN/GaN superlattice layer 10 can be beneficial to the holes in the hole injection layer 110. Holes expand evenly. The P-type AlGaN/GaN superlattice layer 10 and the hole injection layer 110 work together to effectively increase the mobility of holes, thereby improving the recombination efficiency of electrons and holes in the LED epitaxial layer. Therefore, the luminous efficiency of the obtained LED light-emitting device is improved.
参见图2,本发明提供的LED外延层结构包括依次叠置的衬底1、低温GaN缓冲层2、第一u-GaN层3、第二u-GaN层4、N型GaN层5、电子储存层6、MQW层7、电子阻挡层9、MQW保护层8、P型AlGaN/GaN超晶格层10、P型GaN空穴注入层11和P型接触层12。Referring to Fig. 2, the LED epitaxial layer structure provided by the present invention includes a substrate 1, a low-temperature GaN buffer layer 2, a first u-GaN layer 3, a second u-GaN layer 4, an N-type GaN layer 5, an electronic Storage layer 6 , MQW layer 7 , electron blocking layer 9 , MQW protection layer 8 , P-type AlGaN/GaN superlattice layer 10 , P-type GaN hole injection layer 11 and P-type contact layer 12 .
其中P型AlGaN/GaN超晶格层10包括多个结构单元,每个结构单元包括依次叠置的超晶格P型AlGaN层101和超晶格P型GaN层102。在电子阻挡层9的顶面上生长超晶格P型AlGaN层101。在超晶格P型AlGaN层101顶面上生长超晶格P型GaN层102。再在超晶格P型GaN层102顶面上生长第二结构单元中的超晶格P型AlGaN层101。循环多次得到具有多个结构单元的P型AlGaN/GaN超晶格层10。P型AlGaN/GaN超晶格层10的顶面上生长空穴注入层110。P型AlGaN/GaN超晶格层10与空穴注入层110叠置组成P型GaN空穴注入层11。P型GaN空穴注入层11的顶面上生长P型接触层12。The P-type AlGaN/GaN superlattice layer 10 includes a plurality of structural units, and each structural unit includes a superlattice P-type AlGaN layer 101 and a superlattice P-type GaN layer 102 stacked in sequence. A superlattice P-type AlGaN layer 101 is grown on the top surface of the electron blocking layer 9 . A superlattice P-type GaN layer 102 is grown on the top surface of the superlattice P-type AlGaN layer 101 . Then grow the superlattice P-type AlGaN layer 101 in the second structural unit on the top surface of the superlattice P-type GaN layer 102 . The P-type AlGaN/GaN superlattice layer 10 with multiple structural units is obtained through multiple cycles. A hole injection layer 110 is grown on the top surface of the P-type AlGaN/GaN superlattice layer 10 . The P-type AlGaN/GaN superlattice layer 10 and the hole injection layer 110 are stacked to form the P-type GaN hole injection layer 11 . A P-type contact layer 12 is grown on the top surface of the P-type GaN hole injection layer 11 .
超晶格P型AlGaN层101和超晶格P型GaN层102的厚度可以为常规LED外延层结构中的层厚比。优选超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比为1∶2~2∶1。此时所得P型AlGaN/GaN超晶格层10的对空穴的扩散作用较优。更优选地厚度比为1∶0.8~1.2,最优选的厚度比为1∶1,此时所得P型AlGaN/GaN超晶格层10的对空穴的扩散作用最优。The thickness of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 can be the layer thickness ratio in the conventional LED epitaxial layer structure. Preferably, the thickness ratio of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 1:2˜2:1. At this time, the obtained P-type AlGaN/GaN superlattice layer 10 has a better effect on hole diffusion. More preferably, the thickness ratio is 1:0.8-1.2, and the most preferable thickness ratio is 1:1. At this time, the obtained P-type AlGaN/GaN superlattice layer 10 has the best effect on hole diffusion.
优选超晶格P型AlGaN层101的厚度为2~8nm,超晶格P型GaN层102的厚度为2~8nm,结构单元的周期数为5~10个,P型AlGaN/GaN超晶格层10的厚度为20~100nm。此时P型AlGaN/GaN超晶格层10对。优选P型AlGaN/GaN超晶格层10的厚度为20~50nm。此时P型AlGaN/GaN超晶格层10对空穴的扩展作用和对电子的阻挡作用协同达到最优。以防止P型AlGaN/GaN超晶格层10过厚反而阻挡了光的出射。也避免了由于P型AlGaN/GaN超晶格层10过薄而无法产生足够的二维载流子气增强空穴的扩展作用的问题。Preferably, the thickness of the superlattice P-type AlGaN layer 101 is 2-8 nm, the thickness of the superlattice P-type GaN layer 102 is 2-8 nm, and the number of periods of the structural unit is 5-10. The P-type AlGaN/GaN superlattice The thickness of layer 10 is 20-100 nm. At this time, there are 10 pairs of P-type AlGaN/GaN superlattice layers. Preferably, the thickness of the P-type AlGaN/GaN superlattice layer 10 is 20-50 nm. At this time, the expansion effect of the P-type AlGaN/GaN superlattice layer 10 on holes and the blocking effect on electrons are synergistically optimized. In order to prevent the P-type AlGaN/GaN superlattice layer 10 from being too thick and blocking light from exiting. It also avoids the problem that the P-type AlGaN/GaN superlattice layer 10 cannot generate sufficient two-dimensional carrier gas to enhance the expansion of holes because the P-type AlGaN/GaN superlattice layer 10 is too thin.
优选超晶格P型GaN层102中Mg掺杂浓度为1.0E18~1E20atom/cm3。超晶格P型AlGaN层101中Al组分的掺杂浓度为1E19-1E20atom/cm3。按此浓度进行掺杂既能保证超晶格结构的产生又能防止由于掺杂过多Mg元素导致超晶格P型GaN层102中空穴迁移率降低而影响发光效率。超晶格P型AlGaN层101中Al的掺杂虽然能扩宽能带,阻挡电子的迁移,但如果Al的掺杂浓度过高又会增高LED芯片的电阻影响LED芯片的性能的发挥。超晶格P型GaN层102掺杂Mg可以形成P型GaN。Preferably, the Mg doping concentration in the superlattice P-type GaN layer 102 is 1.0E18˜1E20 atom/cm3. The doping concentration of the Al component in the superlattice P-type AlGaN layer 101 is 1E19-1E20 atom/cm3. Doping at this concentration can not only ensure the generation of the superlattice structure, but also prevent the reduction of hole mobility in the superlattice P-type GaN layer 102 due to doping too much Mg element and affect the luminous efficiency. Although Al doping in the superlattice P-type AlGaN layer 101 can broaden the energy band and block electron migration, if the Al doping concentration is too high, it will increase the resistance of the LED chip and affect the performance of the LED chip. The superlattice P-type GaN layer 102 can be doped with Mg to form P-type GaN.
优选的本发明提供的LED外延层结构中还包括生长于MQW层7和电子阻挡层9之间MQW保护层8。MQW保护层8为AlInGaN材料层。Preferably, the LED epitaxial layer structure provided by the present invention further includes an MQW protective layer 8 grown between the MQW layer 7 and the electron blocking layer 9 . The MQW protection layer 8 is an AlInGaN material layer.
具有MQW保护层8的LED外延层结构如图3所示,由图3可见LED外延层结构包括依次叠置的衬底1、低温GaN缓冲层2、第一u-GaN层3、第二u-GaN层4、N型GaN层5、电子储存层6、MQW层7、MQW保护层8、电子阻挡层9、P型AlGaN/GaN超晶格层10、P型GaN空穴注入层11和P型接触层12。其中P型AlGaN/GaN超晶格层10结构与上述结构相同。在MQW层7上生长了MQW保护层8。MQW保护层8的顶面上生长电子阻挡层9。The LED epitaxial layer structure with the MQW protective layer 8 is shown in Figure 3. It can be seen from Figure 3 that the LED epitaxial layer structure includes a substrate 1, a low-temperature GaN buffer layer 2, a first u-GaN layer 3, and a second u-GaN layer stacked in sequence. -GaN layer 4, N-type GaN layer 5, electron storage layer 6, MQW layer 7, MQW protection layer 8, electron blocking layer 9, P-type AlGaN/GaN superlattice layer 10, P-type GaN hole injection layer 11 and P-type contact layer 12 . The structure of the P-type AlGaN/GaN superlattice layer 10 is the same as the above structure. An MQW protection layer 8 is grown on the MQW layer 7 . An electron blocking layer 9 is grown on the top surface of the MQW protection layer 8 .
以AlInGaN为材料的MQW保护层8由于掺杂了Al和In,因而能较大范围的调节GaN能带宽度,因而具有较好的阻挡电子作用。通常仅掺杂Al或In作为MQW保护层8,仅掺杂一种元素对MQW保护层8的能带扩宽作用有限。而同时掺杂两种元素能使得MQW保护层8能带更加的宽泛。更好的防止MQW层7中的电子跃迁离开MQW层7。减少电子发生非辐射复合的发生。MQW保护层8的厚度可以为常用的层厚。The MQW protective layer 8 made of AlInGaN is doped with Al and In, so it can adjust the energy band width of GaN in a large range, and thus has a better effect of blocking electrons. Usually, only Al or In is doped as the MQW protective layer 8 , and doping only one element has a limited effect on the energy band broadening of the MQW protective layer 8 . Simultaneous doping of two elements can make the energy band of the MQW protective layer 8 wider. Electron transitions in the MQW layer 7 are better prevented from leaving the MQW layer 7 . Reduce the occurrence of non-radiative recombination of electrons. The thickness of the MQW protection layer 8 can be a commonly used layer thickness.
优选MQW保护层8的厚度为10~50nm。此时MQW保护层8既能发挥阻挡电子的作用,又能避免由于MQW保护层8导致阻挡光的出射。更优选的,MQW保护层8的厚度为10~30nm。此时MQW保护层8的阻挡电子作用和导致阻挡光出射的作用最优。The thickness of the MQW protective layer 8 is preferably 10 to 50 nm. At this time, the MQW protective layer 8 can not only play the role of blocking electrons, but also avoid blocking the emission of light due to the MQW protective layer 8 . More preferably, the thickness of the MQW protection layer 8 is 10-30 nm. At this time, the function of the MQW protective layer 8 to block electrons and lead to light emission is optimal.
优选MQW保护层8中In组分的掺杂浓度为1E19~1E20atom/cm3。按此掺杂浓度能防止过高的In掺杂浓度导致所得MQW保护层8中缺陷过多影响LED芯片的性能,同时保证电子阻挡作用的发挥。Al组分的掺杂浓度为1E19~1E20atom/cm3,在保证电子阻挡作用的同时,防止过度增高LED芯片的电阻。Preferably, the doping concentration of the In component in the MQW protective layer 8 is 1E19˜1E20 atom/cm3. According to this doping concentration, it can prevent excessive In doping concentration from causing too many defects in the resulting MQW protective layer 8 to affect the performance of the LED chip, and at the same time ensure that the electronic blocking effect is exerted. The doping concentration of the Al component is 1E19-1E20 atom/cm3, which prevents excessively increasing the resistance of the LED chip while ensuring the electron blocking effect.
本发明的另一方面还提供了一种LED外延层结构的生长方法,包括依序生长的MQW层7、电子阻挡层9和P型GaN空穴注入层11的步骤,P型GaN空穴注入层11的生长步骤包括依序生长P型AlGaN/GaN超晶格层10和所述空穴注入层110,Another aspect of the present invention also provides a method for growing an LED epitaxial layer structure, including the steps of sequentially growing an MQW layer 7, an electron blocking layer 9, and a P-type GaN hole injection layer 11, and the P-type GaN hole injection layer The step of growing the layer 11 includes sequentially growing the P-type AlGaN/GaN superlattice layer 10 and the hole injection layer 110,
P型AlGaN/GaN超晶格层10的生长步骤:在电子阻挡层9上生长P型AlGaN/GaN超晶格层10;The growth step of the P-type AlGaN/GaN superlattice layer 10: growing the P-type AlGaN/GaN superlattice layer 10 on the electron blocking layer 9;
生长P型AlGaN/GaN超晶格层10的步骤包括:依序生长多个结构单元,生长每个结构单元的步骤包括依序;The step of growing the P-type AlGaN/GaN superlattice layer 10 includes: sequentially growing a plurality of structural units, and the step of growing each structural unit includes sequentially;
生长超晶格P型AlGaN层101步骤中生长温度为780~900℃,生长压力为300~900mbar,通入铝源、镓源和NH3;In step 101 of growing the superlattice P-type AlGaN layer, the growth temperature is 780-900° C., the growth pressure is 300-900 mbar, and aluminum source, gallium source and NH3 are introduced;
生长超晶格P型GaN层102步骤中生长温度为780~900℃,生长压力为300~900mbar,通入镓源和NH3。更优选生长压力为500~900mbar.按此压力生长所得超晶格结构增强LED芯片亮度效果更优。In the step 102 of growing the superlattice P-type GaN layer, the growth temperature is 780-900° C., the growth pressure is 300-900 mbar, and gallium source and NH3 are fed. More preferably, the growth pressure is 500-900 mbar. The superlattice structure obtained by growing under this pressure has a better effect of enhancing the brightness of the LED chip.
P型AlGaN/GaN超晶格层10的生长温度低于空穴注入层110的900~1050℃生长温度。空穴注入层110的生长温度能防止温度过高导致生长过程中MQW层7中掺杂的In受热析出,而降低MQW层7的性能。同时该生长压力使得所得P型AlGaN/GaN超晶格层10质量较好,又能防止压力过高导致In和Al元素无法掺杂进入。The growth temperature of the P-type AlGaN/GaN superlattice layer 10 is lower than the 900-1050° C. growth temperature of the hole injection layer 110 . The growth temperature of the hole injection layer 110 can prevent the thermal precipitation of In doped in the MQW layer 7 during the growth process due to excessive temperature, thereby reducing the performance of the MQW layer 7 . At the same time, the growth pressure makes the quality of the obtained P-type AlGaN/GaN superlattice layer 10 better, and prevents In and Al elements from being unable to be doped into due to excessive pressure.
所用镓源三甲基镓(TMGa)或三乙基镓(TEGa)。铟源可以为三甲基铟(TMIn)。铝源为三甲基铝(TMAl)。镁源为二茂镁(Cp2Mg)。The gallium source used was trimethylgallium (TMGa) or triethylgallium (TEGa). The indium source may be trimethylindium (TMIn). The aluminum source was trimethylaluminum (TMAl). The magnesium source is magnesium dicene (Cp2Mg).
优选的,当LED外延片需要生长MQW保护层8的时候,还包括生长于MQW层7与电子阻挡层9之间的MQW保护层8的步骤,生长MQW保护层8的步骤中:生长温度为750~850℃,生长压力为300~600mbar,通入铝源、铟源、镓源和NH3。Preferably, when the LED epitaxial wafer needs to grow the MQW protective layer 8, it also includes the step of growing the MQW protective layer 8 between the MQW layer 7 and the electron blocking layer 9. In the step of growing the MQW protective layer 8: the growth temperature is 750-850°C, growth pressure of 300-600mbar, feed aluminum source, indium source, gallium source and NH3.
MQW保护层8是的生长位置在MQW层7上,因而MQW保护层8生长时的温度对MQW层7的影响更大。由于MQW保护层8的生长温度较低,仅为750~850℃,因而能防止生长空穴注入层110时所用高温对MQW层7中In的不良影响。从而从生长过程对MQW层7起到保护的作用。The growth position of the MQW protective layer 8 is on the MQW layer 7 , so the temperature during the growth of the MQW protective layer 8 has a greater influence on the MQW layer 7 . Since the growth temperature of the MQW protective layer 8 is relatively low, only 750-850° C., it can prevent the adverse effect of the high temperature used for growing the hole injection layer 110 on the In in the MQW layer 7 . Therefore, the MQW layer 7 is protected from the growth process.
本发明提供的LED外延层制备方法,包括以下步骤:The LED epitaxial layer preparation method provided by the present invention comprises the following steps:
以下生长过程都是采用MOCVD方法在MOCVD设备中进行的。The following growth processes are carried out in MOCVD equipment by MOCVD method.
1、将蓝宝石衬底1放置于MOCVD反应室里,在温度1000~1100℃下,用H2、NH3等气体处理4~10分钟蓝宝石衬底1;1. Place the sapphire substrate 1 in the MOCVD reaction chamber, and treat the sapphire substrate 1 with H 2 , NH 3 and other gases for 4 to 10 minutes at a temperature of 1000-1100° C.;
2、待处理完,反应室降温至500~650℃范围内,最佳温度为550℃,通入TMGa和NH3,压力300~900mbar,在蓝宝石衬底1上生长厚度为20~50nm厚的GaN缓冲层2(Nucleation);2. After the treatment is completed, the temperature of the reaction chamber is lowered to 500-650°C, the optimum temperature is 550°C, and TMGa and NH 3 are introduced at a pressure of 300-900mbar, and the sapphire substrate 1 is grown with a thickness of 20-50nm. GaN buffer layer 2 (Nucleation);
3、生长完GaN缓冲层2,再升温至950~1100℃,退火60~300s,在衬底1上形成GaN晶核;3. After the GaN buffer layer 2 is grown, the temperature is raised to 950-1100° C., annealed for 60-300 s, and a GaN crystal nucleus is formed on the substrate 1;
4、退火完毕,温度调至950~1050℃,通入TMGa和NH3,压力300~900mbar,在GaN缓冲层2上生长厚度为0.8~1.5um的第一u-GaN层3;4. After the annealing is completed, the temperature is adjusted to 950-1050° C., TMGa and NH 3 are introduced, the pressure is 300-900 mbar, and the first u-GaN layer 3 with a thickness of 0.8-1.5 μm is grown on the GaN buffer layer 2 ;
5、再升温度至1000~1100℃,压力300mbar~900mbar,生长厚度为2~3um的第二u-GaN层4。5. Then raise the temperature to 1000-1100°C, and the pressure to 300mbar-900mbar, and grow the second u-GaN layer 4 with a thickness of 2-3um.
6、第二u-GaN层4生长结束后,再调温至1000~1100℃,通入TMGa和NH3,SiH4,在第二u-GaN层4上生长厚度为2~3um的掺SiN型GaN作为N型GaN层5,掺杂浓度5E18~2E19atom/cm3;6. After the growth of the second u-GaN layer 4 is finished, adjust the temperature to 1000-1100°C, feed TMGa, NH 3 , SiH 4 , and grow SiN doped with a thickness of 2-3um on the second u-GaN layer 4 GaN is used as the N-type GaN layer 5, and the doping concentration is 5E18-2E19 atom/cm 3 ;
7、n~GaN生长结束后,生长2~6个InGaN/GaN电子储存层6,压力300mbar~400mbar,温度800℃~850℃条件下生长掺InxGa(1~x)N/GaN层,InxGa(1~x)N厚度0.5~10nm,GaN厚度20~50nm;7. After the growth of n-GaN is completed, grow 2-6 InGaN/GaN electron storage layers 6, grow the In x Ga (1-x) N/GaN layer doped under the conditions of pressure 300mbar-400mbar and temperature 800-850°C, In x Ga (1~x) N thickness 0.5~10nm, GaN thickness 20~50nm;
8、电子储存层生长结束后,周期性生长有缘发光层MQW层7,压力300mbar~400mbar,750℃生长2~3nmInxGa(1~x)N的阱层,800~850℃生长10~13nmGaN垒层.InxGa(1~x)N/GaN周期数为9~18;8. After the growth of the electron storage layer is completed, the MQW layer 7 of the active light-emitting layer is grown periodically, the pressure is 300mbar-400mbar, the well layer of 2-3nmIn x Ga (1-x) N is grown at 750°C, and the well layer of 10-13nmGaN is grown at 800-850°C Barrier layer. In x Ga (1~x) N/GaN period number is 9~18;
9、有缘层生长完毕后,再生长一层以AlInGaN为材料的MQW保护层8;温度调至750~850℃,通入TMGa、NH3和TMAl、TMIn,压力300~600mbar,生长厚度为10~50nm,In组分浓度:1E19~1E20atom/cm3,Al组分浓度:1E19~1E20atom/cm3;9. After the growth of the active layer is completed, grow another MQW protective layer 8 made of AlInGaN; adjust the temperature to 750-850°C, feed TMGa, NH 3 , TMAl, TMIn, pressure 300-600mbar, and grow a thickness of 10 ~50nm, In component concentration: 1E19~1E20atom/cm 3 , Al component concentration: 1E19~1E20atom/cm 3 ;
10、MQW保护层8生长完毕后,再生长一层P型AlInGaN作为电子阻挡层9;温度调至780~950℃,通入TMGa、NH3、Cp2Mg、TMAl和TMIn,压力100~500mbar,生长厚度约20~40nm,Al组分浓度:1E19~2E20atom/cm3,Mg组分浓度:1E19~1E20atom/cm3;In组分浓度:5E19~2E20atom/cm3;10. After the growth of the MQW protective layer 8 is completed, another layer of P-type AlInGaN is grown as the electron blocking layer 9; the temperature is adjusted to 780-950°C, and TMGa, NH 3 , Cp2Mg, TMAl and TMIn are introduced, and the pressure is 100-500mbar to grow Thickness is about 20-40nm, Al component concentration: 1E19-2E20atom/cm 3 , Mg component concentration: 1E19-1E20atom/cm 3 ; In component concentration: 5E19-2E20atom/cm 3 ;
11、P型AlInGaN生长完毕后,再生长一层P型AlGaN/GaN超晶格层10;温度调至780~900℃,通入TMGa、NH3、Cp2Mg和TMAl,生长压力300~900mbar,1个周期包括超晶格P型AlGaN层101和超晶格P型GaN层102作为一个结构单元。超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比是1∶1,超晶格P型AlGaN层101和超晶格P型GaN层102的单层厚度是2nm~8nm,周期为5~10,P型AlGaN/GaN超晶格层10总厚度约为20~100nm,Mg掺杂浓度1.0E18~1E20atom/cm3,Al组分浓度:1E19~1E20atom/cm3;11. After the growth of P-type AlInGaN is completed, another layer of P-type AlGaN/GaN superlattice layer 10 is grown; the temperature is adjusted to 780-900°C, TMGa, NH3, Cp2Mg and TMAl are introduced, and the growth pressure is 300-900mbar, one The period includes the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 as a structural unit. The thickness ratio of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 1:1, and the single-layer thickness of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 2 nm to 8 nm. , the period is 5-10, the total thickness of the P-type AlGaN/GaN superlattice layer 10 is about 20-100 nm, the Mg doping concentration is 1.0E18-1E20 atom/cm 3 , the Al component concentration: 1E19-1E20 atom/cm 3 ;
12、AlGaN/GaN超晶格10层生长完毕后,再生长一层P型GaN空穴注入层11,温度调至900~1050℃,通入TMGa、NH3、Cp2Mg,生长压力500~900mbar,生长30~100nm的P型GaN层,Mg掺杂浓度1E19~2E20atom/cm3;12. After the AlGaN/GaN superlattice layer 10 is grown, grow another layer of P-type GaN hole injection layer 11, adjust the temperature to 900-1050°C, inject TMGa, NH 3 , and Cp2Mg, and grow at a pressure of 500-900 mbar. Grow a P-type GaN layer of 30-100nm, with a Mg doping concentration of 1E19-2E20 atom/cm 3 ;
13、P型GaN空穴注入层11生长完毕后,再生长一层P型接触层12;温度调至650~680℃,通入TMGa、NH3、Cp2Mg和TMIn,生长压力300~500mbar,生长5~10nm的掺镁InGaN层;13. After the growth of the P-type GaN hole injection layer 11 is completed, a P-type contact layer 12 is grown again; the temperature is adjusted to 650-680° C., TMGa, NH 3 , Cp2Mg and TMIn are introduced, and the growth pressure is 300-500 mbar. 5-10nm magnesium-doped InGaN layer;
14、接触层(contact)生长完毕后,降度到700~750℃,在氮气气氛下,持续时间20~30分钟,活化P型GaN得到具有LED外延层结构的LED外延片。14. After the growth of the contact layer is completed, lower the temperature to 700-750° C., and in a nitrogen atmosphere for 20-30 minutes, activate P-type GaN to obtain an LED epitaxial wafer with an LED epitaxial layer structure.
本发明的另一方面还提供了具有LED外延层结构的LED芯片。该LED芯片可以按常规方法制备得到。仅需具有前述LED外延层结构即可。Another aspect of the present invention also provides an LED chip with an LED epitaxial layer structure. The LED chip can be prepared by conventional methods. It only needs to have the aforementioned LED epitaxial layer structure.
采用上述LED外延层结构的LED芯片的发光效率可提高7.3%。The luminous efficiency of the LED chip adopting the LED epitaxial layer structure can be increased by 7.3%.
实施例Example
以下实施例中所用物料均为市售。以下实施例和对比例中所得外延片按标准方法组装得到LED芯片。在AixtronCriusII型MOCVD(有机金属化学气相沉积法)设备上进行外延层的生长。All materials used in the following examples are commercially available. The epitaxial wafers obtained in the following examples and comparative examples were assembled according to standard methods to obtain LED chips. The growth of the epitaxial layer was carried out on AixtronCriusII type MOCVD (metal organic chemical vapor deposition) equipment.
实施例1Example 1
1、将蓝宝石衬底1放置于MOCVD反应室里,在温度1000℃下,用H2、NH3等气体处理4分钟蓝宝石衬底1;1. Place the sapphire substrate 1 in the MOCVD reaction chamber, and treat the sapphire substrate 1 with H 2 , NH 3 and other gases for 4 minutes at a temperature of 1000°C;
2、待处理完,反应室降温至500℃范围内,通入TMGa和NH3,压力300mbar,在蓝宝石衬底1上生长厚度为20nm厚的GaN缓冲层2(Nucleation);2. After the treatment is completed, the temperature of the reaction chamber is lowered to 500°C, and TMGa and NH 3 are introduced into the chamber at a pressure of 300mbar, and a GaN buffer layer 2 (Nucleation) with a thickness of 20nm is grown on the sapphire substrate 1;
3、生长完GaN缓冲层2,再升温度至950℃,退火60s,在衬底1上形成GaN晶核;3. After growing the GaN buffer layer 2, raise the temperature to 950°C and anneal for 60s to form a GaN crystal nucleus on the substrate 1;
4、退火完毕,温度调至950℃,通入TMGa和NH3,压力300mbar,在GaN缓冲层2上生长厚度为0.8um的第一u-GaN层3;4. After the annealing is completed, the temperature is adjusted to 950° C., and TMGa and NH 3 are introduced, and the pressure is 300 mbar, and the first u-GaN layer 3 with a thickness of 0.8 μm is grown on the GaN buffer layer 2 ;
5、再升温度至1000℃,压力300mbar,生长厚度为2um的第二u-GaN层4。5. Then raise the temperature to 1000° C. and the pressure to 300 mbar, and grow the second u-GaN layer 4 with a thickness of 2 μm.
6、第二u-GaN层4N生长结束后,再调温至1000℃,通入TMGa和NH3,SiH4,在第二u-GaN层4上生长厚度为2um的掺SiN型GaN作为N型GaN层5,掺杂浓度5E18atom/cm3;6. After the growth of the second u-GaN layer 4N is completed, adjust the temperature to 1000°C, feed TMGa, NH 3 , SiH 4 , and grow SiN-doped GaN with a thickness of 2um on the second u-GaN layer 4 as N Type GaN layer 5, doping concentration 5E18atom/cm 3 ;
7、n~GaN生长结束后,生长2~6个InGaN/GaN电子储存层6,压力300mbar,温度800℃条件下生长掺InxGa(1~x)N/GaN层,InxGa(1~x)N厚度0.5nm,GaN厚度20nm;7. After the growth of n-GaN is completed, grow 2-6 InGaN/GaN electron storage layers 6, grow In x Ga (1-x) N/GaN layer doped with In x Ga (1 ~x) N thickness 0.5nm, GaN thickness 20nm;
8、电子储存层生长结束后,周期性生长有缘发光层MQW层7,压力300mbar,750℃生长2nmInxGa(1~x)N的阱层,800℃生长11nmGaN垒层.InxGa(1~x)N/GaN周期数为9;8. After the growth of the electron storage layer is completed, periodically grow the MQW layer 7 of the active light-emitting layer, the pressure is 300mbar, the well layer of 2nmIn x Ga (1~x) N is grown at 750°C, and the barrier layer of 11nmGaN is grown at 800°C. In x Ga (1 ~x) The number of N/GaN cycles is 9;
9、有缘层生长完毕后,再生长一层以AlInGaN为材料的MQW保护层8;温度调至750℃,通入TMGa、NH3和TMAl、TMIn,压力300mbar,生长厚度为10nm,In组分浓度:5.0E19atom/cm3,Al组分浓度:8.0E19atom/cm3;9. After the growth of the active layer is completed, grow another layer of MQW protection layer 8 made of AlInGaN; adjust the temperature to 750°C, feed TMGa, NH 3 , TMAl, TMIn, pressure 300mbar, growth thickness 10nm, In composition Concentration: 5.0E19atom/cm 3 , Al component concentration: 8.0E19atom/cm 3 ;
10、MQW保护层8生长完毕后,再生长一层P型AlGaN作为电子阻挡层9;温度调至780℃,通入TMGa、NH3、Cp2Mg和TMAl,压力100mbar,生长厚度约20nm,Al组分浓度:1.5E20atom/cm3,Mg组分浓度:1.0E20atom/cm3;10. After the growth of the MQW protective layer 8 is completed, another layer of P-type AlGaN is grown as the electron blocking layer 9; the temperature is adjusted to 780°C, TMGa, NH 3 , Cp2Mg and TMAl are introduced, the pressure is 100mbar, the growth thickness is about 20nm, and the Al group Partial concentration: 1.5E20atom/cm 3 , Mg component concentration: 1.0E20atom/cm 3 ;
11、P型AlGaN生长完毕后,再生长一层P型AlGaN/GaN超晶格层10;温度调至780℃,通入TMGa、NH3、Cp2Mg和TMAl,生长压力500mbar,1个周期包括一个结构单元,超晶格P型AlGaN层101和超晶格P型GaN层102作为一个结构单元。超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比是1∶0.8,超晶格P型AlGaN层101的单层厚度是2nm和超晶格P型GaN层102的单层厚度是1.6nm,周期为5,P型AlGaN/GaN超晶格层10总厚度约为20nm,Al组分浓度:1.0E19atom/cm3,超晶格P型GaN层102中Mg掺杂浓度为1.0E20atom/cm3;11. After the growth of P-type AlGaN is completed, another layer of P-type AlGaN/GaN superlattice layer 10 is grown; the temperature is adjusted to 780°C, TMGa, NH 3 , Cp2Mg and TMAl are introduced, and the growth pressure is 500mbar, and one cycle includes one As structural units, the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 serve as a structural unit. The thickness ratio of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 1:0.8, and the single-layer thickness of the superlattice P-type AlGaN layer 101 is 2nm and the single-layer thickness of the superlattice P-type GaN layer 102. The layer thickness is 1.6nm, the period is 5, the total thickness of the P-type AlGaN/GaN superlattice layer 10 is about 20nm, the Al component concentration: 1.0E19atom/cm 3 , and the Mg doping concentration in the superlattice P-type GaN layer 102 1.0E20atom/cm 3 ;
12、AlGaN/GaN超晶格10层生长完毕后,再生长一层P型GaN空穴注入层11,温度调至900℃,通入TMGa、NH3、Cp2Mg,生长压力500mbar,生长30nm的P型GaN层,Mg掺杂浓度1E19atom/cm3;12. After the AlGaN/GaN superlattice layer 10 is grown, grow a P-type GaN hole injection layer 11, adjust the temperature to 900°C, inject TMGa, NH 3 , Cp2Mg, and grow 30nm P Type GaN layer, Mg doping concentration 1E19atom/cm 3 ;
13、P型GaN空穴注入层11生长完毕后,再生长一层P型接触层12;温度调至650℃,通入TMGa、NH3、Cp2Mg和TMIn,生长压力300mbar,生长5nm的掺镁InGaN层;13. After the growth of the P-type GaN hole injection layer 11 is completed, a P-type contact layer 12 is grown; the temperature is adjusted to 650°C, TMGa, NH 3 , Cp2Mg and TMIn are introduced, the growth pressure is 300mbar, and a 5nm magnesium doped layer is grown. InGaN layer;
14、接触层(contact)生长完毕后,降度到700℃,在氮气气氛下,持续时间20分钟,活化P型GaN得到具有LED外延层结构的LED外延片1。14. After the growth of the contact layer is completed, lower the temperature to 700° C., and activate the P-type GaN for 20 minutes in a nitrogen atmosphere to obtain an LED epitaxial wafer 1 with an LED epitaxial layer structure.
实施例2Example 2
1、将蓝宝石衬底1放置于MOCVD反应室里,在温度1100℃下,用H2、NH3等气体处理10分钟蓝宝石衬底1;1. Place the sapphire substrate 1 in the MOCVD reaction chamber, and treat the sapphire substrate 1 with H 2 , NH 3 and other gases for 10 minutes at a temperature of 1100°C;
2、待处理完,反应室降温至650℃范围内,通入TMGa和NH3,压力900mbar,在蓝宝石衬底1上生长厚度为50nm厚的GaN缓冲层2(Nucleation);2. After the treatment is completed, the temperature of the reaction chamber is lowered to 650°C, and TMGa and NH 3 are introduced into the chamber at a pressure of 900mbar to grow a GaN buffer layer 2 (Nucleation) with a thickness of 50nm on the sapphire substrate 1;
3、生长完GaN缓冲层2,再升温度至1100℃,退火300s,在衬底1上形成GaN晶核;3. After growing the GaN buffer layer 2, raise the temperature to 1100°C and anneal for 300s to form a GaN crystal nucleus on the substrate 1;
4、退火完毕,温度调至1050℃,通入TMGa和NH3,压力900mbar,在GaN缓冲层2上生长厚度为1.5um的第一u-GaN层3;4. After the annealing is completed, the temperature is adjusted to 1050° C., TMGa and NH 3 are introduced, the pressure is 900 mbar, and the first u-GaN layer 3 with a thickness of 1.5 μm is grown on the GaN buffer layer 2 ;
5、再升温度至1100℃,压力900mbar,生长厚度为3um的第二u-GaN层4。5. The temperature is raised to 1100° C., the pressure is 900 mbar, and the second u-GaN layer 4 with a thickness of 3 μm is grown.
6、第二u-GaN层4生长结束后,再调温至1100℃,通入TMGa和NH3,SiH4,在第二u-GaN层4上生长厚度为3um的掺SiN型GaN作为N型GaN层5,掺杂浓度2E19atom/cm3;6. After the growth of the second u-GaN layer 4 is completed, adjust the temperature to 1100°C, feed TMGa, NH 3 , SiH 4 , and grow SiN-doped GaN with a thickness of 3um on the second u-GaN layer 4 as N Type GaN layer 5, doping concentration 2E19atom/cm 3 ;
7、n~GaN生长结束后,生长6个InGaN/GaN电子储存层6,压力400mbar,温度850℃条件下生长掺InxGa(1~x)N/GaN层,InxGa(1~x)N厚度10nm,GaN厚度50nm;7. After the growth of n-GaN is completed, grow 6 InGaN/GaN electron storage layers 6, grow In x Ga (1-x) N/GaN layers doped with In x Ga (1-x) under the conditions of pressure 400mbar and temperature 850°C, and In x Ga (1-x ) N thickness 10nm, GaN thickness 50nm;
8、电子储存层生长结束后,周期性生长有缘发光层MQW层7,压力300mbar~400mbar,750℃生长3nmInxGa(1~x)N的阱层,850℃生长13nmGaN垒层.InxGa(1~x)N/GaN周期数为18;8. After the growth of the electron storage layer is completed, periodically grow the MQW layer 7 of the active light-emitting layer, the pressure is 300mbar~400mbar, the well layer of 3nmIn x Ga (1~x) N is grown at 750°C, and the barrier layer of 13nmGaN is grown at 850°C. In x Ga (1~x) The number of N/GaN periods is 18;
9、有缘层生长完毕后,再生长一层以AlInGaN为材料的MQW保护层8;温度调至850℃,通入TMGa、NH3和TMAl、TMIn,压力600mbar,生长厚度为30nm,In组分浓度:6.0E19atom/cm3,Al组分浓度:1E20atom/cm3;9. After the active layer is grown, grow another MQW protective layer 8 made of AlInGaN; the temperature is adjusted to 850°C, TMGa, NH 3 and TMAl, TMIn are introduced, the pressure is 600mbar, the growth thickness is 30nm, and the In composition Concentration: 6.0E19atom/cm 3 , Al component concentration: 1E20atom/cm 3 ;
10、MQW保护层8生长完毕后,再生长一层P型AlGaN作为电子阻挡层9;温度调至950℃,通入TMGa、NH3、Cp2Mg和TMAl,压力500mbar,生长厚度约40nm,Al组分浓度:3E20atom/cm3,Mg组分浓度:1E20atom/cm3;10. After the growth of the MQW protective layer 8 is completed, another layer of P-type AlGaN is grown as the electron blocking layer 9; the temperature is adjusted to 950°C, TMGa, NH 3 , Cp2Mg and TMAl are introduced, the pressure is 500mbar, the growth thickness is about 40nm, and the Al group Partial concentration: 3E20atom/cm 3 , Mg component concentration: 1E20atom/cm 3 ;
11、P型AlGaN生长完毕后,再生长一层P型AlGaN/GaN超晶格层10;温度调至900℃,通入TMGa、NH3、Cp2Mg和TMAl,生长压力900mbar,1个周期包括一个结构单元,超晶格P型AlGaN层101和超晶格P型GaN层102作为一个结构单元。超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比是1∶1.2,超晶格P型AlGaN层101的单层厚度是2nm和超晶格P型GaN层102的单层厚度是2.4nm,周期为10,P型AlGaN/GaN超晶格层10总厚度约为45nm,Mg掺杂浓度1E20atom/cm3,Al组分浓度:1E20atom/cm3;11. After the growth of P-type AlGaN is completed, another layer of P-type AlGaN/GaN superlattice layer 10 is grown; the temperature is adjusted to 900°C, TMGa, NH3, Cp2Mg and TMAl are introduced, the growth pressure is 900mbar, and one cycle includes one structure unit, the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 serve as a structural unit. The thickness ratio of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 1:1.2, and the single-layer thickness of the superlattice P-type AlGaN layer 101 is 2nm and that of the superlattice P-type GaN layer 102. The layer thickness is 2.4nm, the period is 10, the total thickness of the P-type AlGaN/GaN superlattice layer 10 is about 45nm, the Mg doping concentration is 1E20atom/cm 3 , and the Al component concentration is 1E20atom/cm 3 ;
12、AlGaN/GaN超晶格10层生长完毕后,再生长一层P型GaN空穴注入层11,温度调至1050℃,通入TMGa、NH3、Cp2Mg,生长压力900mbar,生长100nm的P型GaN层,Mg掺杂浓度2E20atom/cm3;12. After the AlGaN/GaN superlattice layer 10 is grown, grow a P-type GaN hole injection layer 11, adjust the temperature to 1050°C, inject TMGa, NH 3 , and Cp2Mg, and grow 100nm of P Type GaN layer, Mg doping concentration 2E20atom/cm 3 ;
13、P型GaN空穴注入层11生长完毕后,再生长一层P型接触层12;温度调至680℃,通入TMGa、NH3、Cp2Mg和TMIn,生长压力500mbar,生长10nm的掺镁InGaN层;13. After the growth of the P-type GaN hole injection layer 11 is completed, a P-type contact layer 12 is grown; the temperature is adjusted to 680°C, TMGa, NH 3 , Cp2Mg and TMIn are introduced, the growth pressure is 500mbar, and a 10nm magnesium doped layer is grown. InGaN layer;
14、接触层(contact)生长完毕后,降度到750℃,在氮气气氛下,持续时间30分钟,活化P型GaN得到具有LED外延层结构的LED外延片2。14. After the growth of the contact layer is completed, lower the temperature to 750° C. and activate the P-type GaN for 30 minutes in a nitrogen atmosphere to obtain an LED epitaxial wafer 2 with an LED epitaxial layer structure.
实施例3Example 3
1、将蓝宝石衬底1放置于MOCVD反应室里,在温度1050℃下,用H2、NH3等气体处理6分钟蓝宝石衬底1;1. Place the sapphire substrate 1 in the MOCVD reaction chamber, and treat the sapphire substrate 1 with H 2 , NH 3 and other gases for 6 minutes at a temperature of 1050°C;
2、待处理完,反应室降温至最佳温度为550℃,通入TMGa和NH3,压力800mbar,在蓝宝石衬底1上生长厚度为30nm厚的GaN缓冲层2(Nucleation);2. After the treatment is completed, the temperature of the reaction chamber is lowered to the optimum temperature of 550° C., and TMGa and NH 3 are fed in at a pressure of 800 mbar to grow a GaN buffer layer 2 (Nucleation) with a thickness of 30 nm on the sapphire substrate 1;
3、生长完GaN缓冲层2,再升温度至1000℃,退火200s,在衬底1上形成GaN晶核;3. After the GaN buffer layer 2 is grown, the temperature is raised to 1000°C and annealed for 200s to form a GaN crystal nucleus on the substrate 1;
4、退火完毕,温度调至1000℃,通入TMGa和NH3,压力700mbar,在GaN缓冲层2上生长厚度为1.0um的第一u-GaN层3;4. After the annealing is completed, the temperature is adjusted to 1000°C, TMGa and NH 3 are introduced, and the pressure is 700mbar, and the first u-GaN layer 3 with a thickness of 1.0um is grown on the GaN buffer layer 2;
5、再升温度至1050℃,压力600mbar,生长厚度为2.5um的第二u-GaN层4。5. Then raise the temperature to 1050° C. and the pressure to 600 mbar, and grow the second u-GaN layer 4 with a thickness of 2.5 μm.
6、第二u-GaN层4N生长结束后,再调温至1050℃,通入TMGa和NH3,SiH4,在第二u-GaN层4上生长厚度为2.5um的掺SiN型GaN作为N型GaN层5,掺杂浓度7E18atom/cm3;6. After the growth of the second u-GaN layer 4N is completed, adjust the temperature to 1050°C, feed TMGa, NH 3 , SiH 4 , and grow SiN-doped GaN with a thickness of 2.5um on the second u-GaN layer 4 as N-type GaN layer 5, doping concentration 7E18atom/cm 3 ;
7、n~GaN生长结束后,生长4个InGaN/GaN电子储存层6,压力500mbar,温度840℃条件下生长掺InxGa(1~x)N/GaN层,InxGa(1~x)N厚度0.7nm,GaN厚度30nm;7. After the growth of n-GaN is completed, grow 4 InGaN/GaN electron storage layers 6, grow In x Ga (1-x) N/GaN layer doped with In x Ga (1-x) under the conditions of pressure 500mbar and temperature 840°C, In x Ga (1-x ) N thickness 0.7nm, GaN thickness 30nm;
8、电子储存层生长结束后,周期性生长有缘发光层MQW层7,压力350mbar750℃生长2.5nmInxGa(1~x)N的阱层,850℃生长12nmGaN垒层.InxGa(1~x)N/GaN周期数为10;8. After the growth of the electron storage layer is completed, periodically grow the MQW layer 7 of the active light-emitting layer, grow a well layer of 2.5nmIn x Ga (1~x) N at a pressure of 350mbar at 750°C, and grow a 12nmGaN barrier layer at 850°C. In x Ga (1~ x) x) The number of N/GaN cycles is 10;
9、有缘层生长完毕后,再生长一层以AlInGaN为材料的MQW保护层8;温度调至800℃,通入TMGa、NH3和TMAl、TMIn,压力400mbar,生长厚度为20nm,In组分浓度:8E19atom/cm3,Al组分浓度:9E19atom/cm3;9. After the growth of the active layer is completed, grow another MQW protective layer 8 made of AlInGaN; adjust the temperature to 800°C, feed TMGa, NH 3 , TMAl, TMIn, the pressure is 400mbar, the growth thickness is 20nm, and the In composition Concentration: 8E19atom/cm 3 , Al component concentration: 9E19atom/cm 3 ;
10、MQW保护层8生长完毕后,再生长一层P型AlGaN作为电子阻挡层9;温度调至880℃,通入TMGa、NH3、Cp2Mg和TMAl,压力400mbar,生长厚度约30nm,Al组分浓度:2E20atom/cm3,Mg组分浓度:7E19atom/cm3;10. After the growth of the MQW protection layer 8 is completed, another layer of P-type AlGaN is grown as the electron blocking layer 9; the temperature is adjusted to 880°C, TMGa, NH 3 , Cp2Mg and TMAl are introduced, the pressure is 400mbar, the growth thickness is about 30nm, and the Al group Partial concentration: 2E20atom/cm 3 , Mg component concentration: 7E19atom/cm 3 ;
11、P型AlGaN生长完毕后,再生长一层P型AlGaN/GaN超晶格层10;温度调至790℃,通入TMGa、NH3、Cp2Mg和TMAl,生长压力300mbar,一个周期包括一个结构单元。超晶格P型AlGaN层101和超晶格P型GaN层102作为一个结构单元。超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比是1∶1,超晶格P型AlGaN层101的单层厚度是2nm和超晶格P型GaN层102的单层厚度是2nm,周期为5,P型AlGaN/GaN超晶格层10总厚度约为20nm,超晶格P型GaN层102中Mg掺杂浓度为1.0E18atom/cm3,Al组分浓度:7E19atom/cm3;11. After the growth of P-type AlGaN is completed, another layer of P-type AlGaN/GaN superlattice layer 10 is grown; the temperature is adjusted to 790°C, TMGa, NH 3 , Cp2Mg and TMAl are introduced, the growth pressure is 300mbar, and one cycle includes one structure unit. The superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 serve as a structural unit. The thickness ratio of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 1:1, and the single-layer thickness of the superlattice P-type AlGaN layer 101 is 2nm and the single-layer thickness of the superlattice P-type GaN layer 102 The layer thickness is 2nm, the period is 5, the total thickness of the P-type AlGaN/GaN superlattice layer 10 is about 20nm, the Mg doping concentration in the superlattice P-type GaN layer 102 is 1.0E18atom/cm 3 , and the Al component concentration is: 7E19 atom/cm 3 ;
12、AlGaN/GaN超晶格10层生长完毕后,再生长一层P型GaN空穴注入层11,温度调至1000℃,通入TMGa、NH3、Cp2Mg,生长压力700mbar,生长60nm的P型GaN层,Mg掺杂浓度1E20atom/cm3;12. After the AlGaN/GaN superlattice layer 10 is grown, grow a P-type GaN hole injection layer 11, adjust the temperature to 1000°C, inject TMGa, NH 3 , and Cp2Mg, and grow 60nm P Type GaN layer, Mg doping concentration 1E20atom/cm 3 ;
13、P型GaN空穴注入层11生长完毕后,再生长一层P型接触层12;温度调至660℃,通入TMGa、NH3、Cp2Mg和TMIn,生长压力400mbar,生长8nm的掺镁InGaN层;13. After the growth of the P-type GaN hole injection layer 11 is completed, another layer of P-type contact layer 12 is grown; the temperature is adjusted to 660°C, TMGa, NH 3 , Cp2Mg and TMIn are introduced, and the growth pressure is 400mbar to grow 8nm magnesium-doped InGaN layer;
14、接触层(contact)生长完毕后,降度到740℃,在氮气气氛下,持续时间25分钟,活化P型GaN得到具有LED外延层结构的LED外延片3。14. After the growth of the contact layer is completed, lower the temperature to 740° C., and activate the P-type GaN for 25 minutes in a nitrogen atmosphere to obtain an LED epitaxial wafer 3 with an LED epitaxial layer structure.
实施例4Example 4
与实施例1的区别在于:The difference with embodiment 1 is:
步骤9中In组分浓度:1.0E19atom/cm3,Al组分浓度:1.0E19atom/cm3。The In component concentration in step 9: 1.0E19atom/cm 3 , the Al component concentration: 1.0E19atom/cm 3 .
步骤11中:超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比是1∶2,超晶格P型AlGaN层101的单层厚度是5nm和超晶格P型GaN层102的单层厚度是10nm,周期为5,P型AlGaN/GaN超晶格层10总厚度约为75nm。MQW保护层8的厚度为50nm。得到LED外延片4。In step 11: the thickness ratio of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 1:2, the single layer thickness of the superlattice P-type AlGaN layer 101 is 5nm and the superlattice P-type GaN The single layer thickness of the layer 102 is 10 nm, the period is 5, and the total thickness of the P-type AlGaN/GaN superlattice layer 10 is about 75 nm. The MQW protective layer 8 has a thickness of 50 nm. An LED epitaxial wafer 4 was obtained.
实施例5Example 5
与实施例1的区别在于:The difference with embodiment 1 is:
步骤9中:In组分浓度:1E20atom/cm3。In step 9: In component concentration: 1E20 atom/cm 3 .
步骤11中:超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比是1∶1,超晶格P型AlGaN层101的单层厚度是5nm和超晶格P型GaN层102的单层厚度是5nm,周期为10,P型AlGaN/GaN超晶格层10总厚度约为100nm。得到LED外延片5。In step 11: the thickness ratio of the superlattice P-type AlGaN layer 101 and the superlattice P-type GaN layer 102 is 1:1, the single layer thickness of the superlattice P-type AlGaN layer 101 is 5nm and the superlattice P-type GaN The single layer thickness of the layer 102 is 5 nm, the period is 10, and the total thickness of the P-type AlGaN/GaN superlattice layer 10 is about 100 nm. An LED epitaxial wafer 5 was obtained.
实施例6Example 6
与实施例1的区别在于:超晶格P型AlGaN层101和超晶格P型GaN层102的厚度比是2∶1,超晶格P型AlGaN层101的单层厚度是5nm和超晶格P型GaN层102的单层厚度是2.5nm,周期为3,P型AlGaN/GaN超晶格层10总厚度约为23nm。得到LED外延片6。The difference from Example 1 is that the thickness ratio of the superlattice P-type AlGaN layer 101 to the superlattice P-type GaN layer 102 is 2:1, the single layer thickness of the superlattice P-type AlGaN layer 101 is 5nm and supercrystalline The single layer thickness of the lattice P-type GaN layer 102 is 2.5 nm, the period is 3, and the total thickness of the P-type AlGaN/GaN superlattice layer 10 is about 23 nm. The LED epitaxial wafer 6 was obtained.
对比例1Comparative example 1
与实施例1的区别在于未设置P型AlGaN/GaN超晶格层10和MQW保护层8。得到LED外延片7。The difference from Embodiment 1 is that no P-type AlGaN/GaN superlattice layer 10 and MQW protection layer 8 are provided. The LED epitaxial wafer 7 was obtained.
对比例2Comparative example 2
与实施例1的区别在于未设置P型AlGaN/GaN超晶格层10。得到LED外延片8。The difference from Embodiment 1 is that no P-type AlGaN/GaN superlattice layer 10 is provided. An LED epitaxial wafer 8 was obtained.
对比例3Comparative example 3
与实施例1的区别在于P型AlGaN/GaN中超晶格P型AlGaN层和P型GaN层的厚度比为1∶3。得到LED外延片9。The difference from Example 1 is that the thickness ratio of the superlattice P-type AlGaN layer to the P-type GaN layer in the P-type AlGaN/GaN is 1:3. The LED epitaxial wafer 9 was obtained.
对比例4Comparative example 4
与实施例1的区别在于P型AlGaN/GaN中超晶格P型AlGaN层和P型GaN层的厚度比为3∶1。得到LED外延片10。The difference from Example 1 is that the thickness ratio of the superlattice P-type AlGaN layer to the P-type GaN layer in the P-type AlGaN/GaN is 3:1. The LED epitaxial wafer 10 was obtained.
所得LED外延片1~10按正装LED芯片制程制成28mil*28mil芯片,主波长为450nm的蓝光LED芯片1~10。在350mA驱动电流下,COW数据点测机(型号:惠特FWP6000)仪器测定各LED芯片COW亮度的发光效率。所得各LED芯片的平均发光效率利于表1中。The obtained LED epitaxial wafers 1-10 are made into 28mil*28mil chips according to the formal LED chip manufacturing process, and blue LED chips 1-10 with a dominant wavelength of 450nm. Under the driving current of 350mA, the luminous efficiency of the COW brightness of each LED chip was measured by a COW data point measuring machine (model: Huite FWP6000). The average luminous efficiency of each LED chip obtained is listed in Table 1.
表1 LED芯片1~10发光效率Table 1 Luminous efficiency of LED chips 1 to 10
由表1可知设置P型AlGaN/GaN超晶格层10的LED芯片发光效率相对未设置P型AlGaN/GaN超晶格层10的LED芯片6提高,说明通过设置P型AlGaN/GaN超晶格层10所得LED芯片的发光效率得到提高,LED芯片中的空穴和电子的有效符合效率的提高,电子非辐射复合率降低。It can be seen from Table 1 that the luminous efficiency of the LED chip with the P-type AlGaN/GaN superlattice layer 10 is improved relative to the LED chip 6 without the P-type AlGaN/GaN superlattice layer 10, which shows that by setting the P-type AlGaN/GaN superlattice The luminous efficiency of the LED chip obtained in layer 10 is improved, the effective coincidence efficiency of holes and electrons in the LED chip is improved, and the non-radiative recombination rate of electrons is reduced.
LED芯片4的发光效率均高于LED芯片6,说明通过设置MQW保护层8可以进一步增强LED芯片的发光效率,阻挡非辐射复合电子的迁移,从而提高发光效率。The luminous efficiency of the LED chip 4 is higher than that of the LED chip 6, indicating that the luminous efficiency of the LED chip can be further enhanced by setting the MQW protective layer 8, and the migration of non-radiative recombination electrons can be blocked, thereby improving the luminous efficiency.
LED芯片8和9的发光效率仅为210或209mW,说明当所设置P型AlGaN/GaN中超晶格P型AlGaN层和P型GaN层的厚度比的范围不在1∶2~2∶1时取得提供发光效率的效果不明显。The luminous efficiencies of LED chips 8 and 9 are only 210 or 209mW, indicating that the thickness ratio of the superlattice P-type AlGaN layer and P-type GaN layer in the set P-type AlGaN/GaN is not in the range of 1:2~2:1. The effect of luminous efficiency is not obvious.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410225155.5A CN103972335A (en) | 2014-05-26 | 2014-05-26 | Light-emitting diode (LED) epitaxial layer structure and LED chip with same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410225155.5A CN103972335A (en) | 2014-05-26 | 2014-05-26 | Light-emitting diode (LED) epitaxial layer structure and LED chip with same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103972335A true CN103972335A (en) | 2014-08-06 |
Family
ID=51241619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410225155.5A Pending CN103972335A (en) | 2014-05-26 | 2014-05-26 | Light-emitting diode (LED) epitaxial layer structure and LED chip with same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103972335A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104409586A (en) * | 2014-11-13 | 2015-03-11 | 湘能华磊光电股份有限公司 | GaN-based III-V compound semiconductor LED (light emitting diode) epitaxial wafer and production method thereof |
CN104900776A (en) * | 2015-06-29 | 2015-09-09 | 聚灿光电科技股份有限公司 | Light emitting diode (LED) epitaxial structure and preparation method therefor |
CN105350074A (en) * | 2015-11-03 | 2016-02-24 | 湘能华磊光电股份有限公司 | Epitaxial growth method for improving LED epitaxial crystal quality |
CN105390575A (en) * | 2014-08-20 | 2016-03-09 | Lg伊诺特有限公司 | light emitting device and lighting system |
CN105870270A (en) * | 2016-06-01 | 2016-08-17 | 湘能华磊光电股份有限公司 | Epitaxial superlattice growing method of LED |
CN106129198A (en) * | 2016-09-20 | 2016-11-16 | 湘能华磊光电股份有限公司 | Led epitaxial growth method |
CN108550668A (en) * | 2018-02-28 | 2018-09-18 | 华灿光电(苏州)有限公司 | A kind of LED epitaxial slice and preparation method thereof |
CN110335927A (en) * | 2019-07-11 | 2019-10-15 | 马鞍山杰生半导体有限公司 | Ultraviolet LED and its preparation method |
CN111769187A (en) * | 2020-07-31 | 2020-10-13 | 佛山紫熙慧众科技有限公司 | A UV LED chip structure |
CN113451449A (en) * | 2020-05-19 | 2021-09-28 | 重庆康佳光电技术研究院有限公司 | RGB epitaxial structure and manufacturing method and application thereof |
CN114171652A (en) * | 2020-09-11 | 2022-03-11 | 北京大学 | Structure for improving AlGaN-based DUV-LED light extraction efficiency and application thereof |
CN114551653A (en) * | 2022-01-20 | 2022-05-27 | 北京大学 | Method and device for improving Micro-LED communication performance by using graphical diamond material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101572288A (en) * | 2009-05-27 | 2009-11-04 | 厦门大学 | GaN-based multi-quantum well super light-emitting diode (SLED) and preparation method thereof |
JP2010021576A (en) * | 2009-10-19 | 2010-01-28 | Ricoh Co Ltd | Method of manufacturing semiconductor device |
CN102064471A (en) * | 2010-11-26 | 2011-05-18 | 北京化工大学 | GaN-based semiconductor laser and manufacturing method thereof |
CN103050592A (en) * | 2013-01-06 | 2013-04-17 | 湘能华磊光电股份有限公司 | LED (Light Emitting Diode) epitaxial structure with P (Positive) type superlattice and preparation method thereof |
-
2014
- 2014-05-26 CN CN201410225155.5A patent/CN103972335A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101572288A (en) * | 2009-05-27 | 2009-11-04 | 厦门大学 | GaN-based multi-quantum well super light-emitting diode (SLED) and preparation method thereof |
JP2010021576A (en) * | 2009-10-19 | 2010-01-28 | Ricoh Co Ltd | Method of manufacturing semiconductor device |
CN102064471A (en) * | 2010-11-26 | 2011-05-18 | 北京化工大学 | GaN-based semiconductor laser and manufacturing method thereof |
CN103050592A (en) * | 2013-01-06 | 2013-04-17 | 湘能华磊光电股份有限公司 | LED (Light Emitting Diode) epitaxial structure with P (Positive) type superlattice and preparation method thereof |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105390575A (en) * | 2014-08-20 | 2016-03-09 | Lg伊诺特有限公司 | light emitting device and lighting system |
CN105390575B (en) * | 2014-08-20 | 2019-11-26 | Lg伊诺特有限公司 | Luminescent device and lighting system |
CN104409586A (en) * | 2014-11-13 | 2015-03-11 | 湘能华磊光电股份有限公司 | GaN-based III-V compound semiconductor LED (light emitting diode) epitaxial wafer and production method thereof |
CN104409586B (en) * | 2014-11-13 | 2017-02-15 | 湘能华磊光电股份有限公司 | GaN-based III-V compound semiconductor LED (light emitting diode) epitaxial wafer and production method thereof |
CN104900776A (en) * | 2015-06-29 | 2015-09-09 | 聚灿光电科技股份有限公司 | Light emitting diode (LED) epitaxial structure and preparation method therefor |
CN105350074A (en) * | 2015-11-03 | 2016-02-24 | 湘能华磊光电股份有限公司 | Epitaxial growth method for improving LED epitaxial crystal quality |
CN105870270A (en) * | 2016-06-01 | 2016-08-17 | 湘能华磊光电股份有限公司 | Epitaxial superlattice growing method of LED |
CN106129198B (en) * | 2016-09-20 | 2018-10-02 | 湘能华磊光电股份有限公司 | LED epitaxial growth methods |
CN106129198A (en) * | 2016-09-20 | 2016-11-16 | 湘能华磊光电股份有限公司 | Led epitaxial growth method |
CN108550668A (en) * | 2018-02-28 | 2018-09-18 | 华灿光电(苏州)有限公司 | A kind of LED epitaxial slice and preparation method thereof |
CN108550668B (en) * | 2018-02-28 | 2020-05-19 | 华灿光电(苏州)有限公司 | A light-emitting diode epitaxial wafer and its manufacturing method |
CN110335927A (en) * | 2019-07-11 | 2019-10-15 | 马鞍山杰生半导体有限公司 | Ultraviolet LED and its preparation method |
CN110335927B (en) * | 2019-07-11 | 2020-10-30 | 马鞍山杰生半导体有限公司 | Ultraviolet LED and preparation method thereof |
CN113451449A (en) * | 2020-05-19 | 2021-09-28 | 重庆康佳光电技术研究院有限公司 | RGB epitaxial structure and manufacturing method and application thereof |
CN111769187A (en) * | 2020-07-31 | 2020-10-13 | 佛山紫熙慧众科技有限公司 | A UV LED chip structure |
CN114171652A (en) * | 2020-09-11 | 2022-03-11 | 北京大学 | Structure for improving AlGaN-based DUV-LED light extraction efficiency and application thereof |
CN114171652B (en) * | 2020-09-11 | 2024-04-19 | 北京大学 | A structure for improving light extraction efficiency of AlGaN-based DUV-LED and its application |
CN114551653A (en) * | 2022-01-20 | 2022-05-27 | 北京大学 | Method and device for improving Micro-LED communication performance by using graphical diamond material |
CN114551653B (en) * | 2022-01-20 | 2023-08-22 | 北京大学 | Method and device for improving Micro-LED communication performance by using patterned diamond material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103972335A (en) | Light-emitting diode (LED) epitaxial layer structure and LED chip with same | |
CN104409586B (en) | GaN-based III-V compound semiconductor LED (light emitting diode) epitaxial wafer and production method thereof | |
CN105374912B (en) | Light emitting diode and preparation method thereof | |
CN102792470B (en) | Nitrogen compound semiconductor luminous element and manufacture method thereof | |
CN103972334B (en) | LED epitaxial layer structure, growing method and LED chip with structure | |
CN104009136B (en) | Improve LED outer layer growth method and the LED epitaxial layer of luminous efficiency | |
CN103996769B (en) | LED epitaxial layer structures, growing method and the LED chip with the structure | |
CN108461592B (en) | A light-emitting diode epitaxial wafer and its manufacturing method | |
CN105633235B (en) | The GaN base LED epitaxial structure and growing method of a kind of n-type GaN structures | |
CN103515495B (en) | A method for growing GaN-based light-emitting diode chips | |
CN104716236B (en) | A kind of GaN base LED epitaxial structure and growing method for improving luminous efficiency | |
CN110718612A (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN102664145A (en) | Method for growing asymmetric electron storing layer high-luminance luminous diode by metal organic compound gas phase epitaxy technology | |
CN106935690B (en) | Epitaxial structure for improving light output power of ultraviolet LED | |
CN108091740A (en) | Light emitting diode epitaxial wafer and manufacturing method thereof | |
CN104241464B (en) | A kind of epitaxial growth method for improving p-type gallium nitride doping concentration | |
CN110629197B (en) | A kind of LED epitaxial structure growth method | |
CN114284406A (en) | Preparation method of nitride light-emitting diode | |
CN108281519B (en) | A light-emitting diode epitaxial wafer and its manufacturing method | |
CN108666398A (en) | A kind of LED epitaxy structure and growth method thereof | |
CN109904289B (en) | LED based on superlattice barrier quantum well structure and preparation method thereof | |
CN108574026A (en) | A method for growing LED epitaxial electron blocking layer | |
CN104752568B (en) | A kind of preparation method for the GaN base LED epitaxial structure improving crystal quality | |
CN108365060B (en) | Epitaxial structure of GaN-based LED and its growth method | |
CN114141917B (en) | Low-stress GaN-based light-emitting diode epitaxial wafer and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140806 |