[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103970138A - ALV transverse control method based on active disturbance rejection and differential smoothing - Google Patents

ALV transverse control method based on active disturbance rejection and differential smoothing Download PDF

Info

Publication number
CN103970138A
CN103970138A CN201410194055.0A CN201410194055A CN103970138A CN 103970138 A CN103970138 A CN 103970138A CN 201410194055 A CN201410194055 A CN 201410194055A CN 103970138 A CN103970138 A CN 103970138A
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mtr
delta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410194055.0A
Other languages
Chinese (zh)
Other versions
CN103970138B (en
Inventor
夏元清
孙中奇
阮广凯
高源�
李春明
付梦印
邓志红
蒲钒
娜茜泰
叶镭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201410194055.0A priority Critical patent/CN103970138B/en
Publication of CN103970138A publication Critical patent/CN103970138A/en
Application granted granted Critical
Publication of CN103970138B publication Critical patent/CN103970138B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

The invention provides an ALV transverse control method based on active disturbance rejection and differential smoothing. The control effect and robustness of the method that differential smoothing and active disturbance rejection are combined on an underactuation system are proved through simulation under different conditions. The ALV transverse control method comprises the steps that firstly, an ALV transverse kinetic model is established; then, the differential smoothing output is designed according to the kinetic model; at last, according to the differential smoothing output, the control law and an active disturbance rejection controller, a composite controller of the ALV transverse control system is designed. The active disturbance rejection controller comprises a tracking differentiator, an expansion state observer and a nonlinear feedback control law.

Description

ALV (active disturbance rejection) transverse control method based on active disturbance rejection and differential smoothing
Technical Field
The invention belongs to the field of transverse control of a ground autonomous driving vehicle system, and relates to an ALV transverse control method based on active disturbance rejection and differential smoothing.
Background
The ground Autonomous driving Vehicle (ALV) is a key component of a Future Combat System (FCS) and an Intelligent Transportation System (ITS), and is one of the most active research directions in the fields of current intelligent robots, artificial intelligence and the like. An ALV should not only have the conventional moving functions of acceleration, deceleration, forward, backward, turning, etc., but also have autonomous capabilities of task analysis, environment perception, path planning, path tracking, automatic obstacle avoidance, etc. The research relates to the scientific and technical fields of machinery, kinematics and dynamics, electronics, computers, information processing, control, artificial intelligence and the like.
The theory of differential smoothing was first proposed by Fliess M, Levine J, Martin P and Rouchon P. For under-actuated ground mobile platform control, after an initial position and a target position are given, the problem of relocation can be solved by utilizing a differential smoothing theory. The concept of differential smoothing characterizes an original system as equivalent to another system after suitable dynamic expansion. The smoothed output has an important role for the problem of trajectory generation, and if the smoothed output is known, the corresponding state variables and control variables can be obtained. However, this method has the disadvantage that it is only effective for differential smoothing systems and the smooth output is not easily found. The introduction of differential smoothing systems has led to the widespread use of differential smoothing theory in control problems. Differential smoothing has been applied in the research of under-actuated spacecraft as a feasible trajectory generation method.
The active disturbance rejection control technology is a novel practical technology which absorbs modern control theory achievement, develops PID thought essence (eliminates errors based on errors) and develops and applies special nonlinear effect to develop. The active disturbance rejection control technology is completely independent of a mathematical model of a controlled object, and has the most prominent characteristic that the action of all uncertain factors acting on the controlled object is reduced to unknown disturbance, and the input and output data of the object are used for estimating and compensating the unknown disturbance in real time. The significance of the active disturbance rejection lies in that here, the external disturbance action does not need to be directly measured, and the action rule of the disturbance does not need to be known. The advantages of the active disturbance rejection control technology can be further shown in the occasions where high-speed and high-precision control is required to be realized in the severe environment.
Disclosure of Invention
Aiming at the defects of the prior art, the invention provides an ALV (equivalent-to-average-value) transverse control method based on active disturbance rejection and differential smoothing, and the control effect and robustness of the differential smoothing and active disturbance rejection combined method on an under-actuated system are proved through simulation under different conditions.
The technical scheme of the invention is as follows:
an ALV transverse control method based on active disturbance rejection and differential smoothing is characterized by firstly establishing a transverse dynamic model of a ground autonomous driving vehicle; then designing differential smooth output according to the dynamic model; and finally, designing a composite controller of a transverse control system of the ground autonomous driving vehicle according to the differential smooth output and control law and the active disturbance rejection controller.
The active disturbance rejection controller comprises a tracking differentiator, an extended state observer and a nonlinear feedback control law.
The invention has the beneficial effects that:
1. when the vehicle speed is high, the transverse dynamic linear model of the mobile platform can meet the requirement of transverse motion control;
2. under the control of the controller combining the differential smoothing and the ADRC, the mobile platform realizes stable and high-precision transverse motion within the speed range of 0-40 m/s, has strong robustness on the change of self parameters, road conditions, lane changing time and the like, and can meet the requirement of high-performance control, thereby showing that the controller combining the differential smoothing and the ADRC is feasible for controlling the transverse motion of the high-speed mobile platform;
3. the invention can provide guidance for the engineering design of the high-speed high-mobility platform under study.
Drawings
FIG. 1 is a diagram of a lateral control model of a ground autonomous driving vehicle system;
FIG. 2 shows a controller U1Lower system S1The output response of (1);
FIG. 3 shows a controller U1Lower system S2The output response of (1);
FIG. 4 shows a controller U2Lower system S2The output response of (1);
FIG. 5 is a graph of expected lateral displacement of a rail;
FIG. 6. reference trajectory of body angle;
FIG. 7.VxThe parameters of the platform and 1m/s are output curves under nominal values;
FIG. 8.VxThe 20m/s and the platform parameters are output curves under nominal values;
FIG. 9.Vx13m/s and the platform parameter is an output curve under a non-nominal value;
FIG. 10 is a graph of output for a platform with perturbation and perturbation.
Detailed Description
The present invention will be described in detail with reference to the accompanying drawings.
The invention discloses a vehicle system transverse control method based on differential smoothing and active disturbance rejection control technology, which comprises the following steps:
firstly, a transverse control model of a ground autonomous driving vehicle system is established, which is shown in the attached figure 1 and described as follows:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>mv</mi> <mi>x</mi> </msub> </mfrac> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <msub> <mi>l</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>f</mi> </msub> <msub> <mi>l</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>mv</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&psi;</mi> <mo>.</mo> </mover> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <msub> <mi>&delta;</mi> <mi>f</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&psi;</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </mfrac> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>l</mi> <mi>f</mi> <mn>2</mn> </msubsup> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msubsup> <mi>l</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mover> <mi>&psi;</mi> <mo>.</mo> </mover> <mo>+</mo> <mfrac> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> </mfrac> <msub> <mi>&delta;</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein lfIs the distance between the center of mass and the front axis,/rIs the distance between the center of mass and the rear axle, m is the equipment mass of the whole vehicle, Cf、CrCornering stiffness, δ, of front and rear tires, respectivelyfFor the turning angle of the front wheels of the vehicle, IzRepresenting moment of inertia about the Z axis, vxRepresenting longitudinal velocity, vyThe lateral velocity is indicated in the form of,the yaw rate is shown.
And step two, designing differential smooth output according to the control model established in the step one:
equation (1) has a differential smoothing characteristic, and its differential smoothing output is:
F = m 2 C af V y - I z 2 l f C af r - - - ( 2 )
control quantity delta of front wheelfThe inputs are represented as:
<math> <mrow> <mi>&delta;</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>B</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>B</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mfenced open='{' close='}'> <mtable> <mtr> <mtd> <mover> <mi>F</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>-</mo> <mo>[</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>A</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>V</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>D</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>A</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>V</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>]</mo> <mover> <mi>F</mi> <mo>.</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mo>[</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>A</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>A</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>V</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>A</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msup> <mi>V</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>A</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>V</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mn>1</mn> </msub> <msub> <mi>D</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>C</mi> <mn>2</mn> </msub> <msub> <mi>D</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>]</mo> <mover> <mi>F</mi> <mo>.</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
all states of the system, VyR and control input deltafBoth can be represented by a function of the smoothed output F and its derivative, so that the under-actuated motion control system has the characteristic of differential smoothing when implementing track control according to the definition of the differential smoothing system.
And thirdly, designing a controller based on differential smoothing and ADRC.
1. Mathematical model transformation of transverse motion smoothing system of ground autonomous mobile platform
In order to design the ADRC controller of the platform transverse motion smoothing system, the smoothing system model (3) needs to be converted into a simulated model. To this end, let x1=F,When u is δ, formula (3) is rewritten to formula (4).
x . 1 = x 2 x . 2 = f ( x 1 , x 2 ) + Bu - - - ( 4 )
Wherein, f ( x 1 , x 2 ) = [ E 1 + E 2 ] F . + [ E 3 + E 4 ] F . , B = 1 C 1 B 1 + C 2 B 2 , E 1 = D 2 ( C 1 A 1 + C 2 A 3 ) V ( C 1 D 2 - C 2 D 1 )
E 2 = D 1 ( C 1 A 2 - C 1 V 2 + C 2 A 4 ) V ( C 2 D 1 - C 1 D 2 ) , E 3 = C 2 ( C 1 A 1 + C 2 A 3 ) V ( C 2 D 1 - C 1 D 2 ) , E 4 = C 1 ( C 1 A 2 - C 1 V 2 + C 2 A 4 ) V ( C 1 D 2 - C 2 D 1 ) .
in order to make the system a pure integral system, we should design an extended state observer to eliminate the internal and external disturbances. We write equation (4) in the form of an expanded state space expression, as in equation (5):
x . 1 = x 2 x . 2 = x 3 + Bu x . 3 = g ( x 1 , x 2 ) - - - ( 5 )
wherein, g (x)1,x2) Is f (x)1,x2) The derivative of (c).
2. Controller design based on differential smoothing and ADRC
In the following, we design the controller of the autonomous mobile platform lateral motion smoothing system based on equation (5) and the active disturbance rejection control method.
The active disturbance rejection controller of the autonomous mobile platform transverse motion smoothing system based on the formula (5) is expressed as formulas (6) to (9):
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>fh</mi> <mo>=</mo> <mi>fhan</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>F</mi> <mi>r</mi> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>h</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>h</mi> <mo>&CenterDot;</mo> <mi>fh</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>e</mi> <mo>=</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>F</mi> </mtd> </mtr> <mtr> <mtd> <mi>fe</mi> <mo>=</mo> <mi>fal</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>,</mo> <mn>0.5</mn> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>fe</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>fal</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>,</mo> <mn>0.25</mn> <mo>,</mo> <mi>h</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>h</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>01</mn> </msub> <mo>&CenterDot;</mo> <mi>e</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>+</mo> <mi>h</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>02</mn> </msub> <mo>&CenterDot;</mo> <mi>fe</mi> <mo>+</mo> <mi>B</mi> <mo>&CenterDot;</mo> <mi>u</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>=</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mo>+</mo> <mi>h</mi> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>03</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>fe</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
e 1 = v 1 - z 1 , e 2 = v 2 - z 2 u 0 = k ( e 1 , e 2 , p ) - - - ( 8 )
<math> <mrow> <msub> <mi>u</mi> <mi>&psi;&delta;</mi> </msub> <mo>=</mo> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> </mrow> <msub> <mi>b</mi> <mi>&psi;&delta;</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein FrIs a reference track of a smoothing function andVyrand rrReference trajectories for the lateral velocity and the body attitude angular velocity, respectively.
3. Differential smoothing and ADRC based parameter tuning of a controller
The underactuated system control of the transverse motion of the ground autonomous mobile platform is realized by designing differential smooth output and controlling the track tracking of the differential smooth output. The designed differential smooth output is controlled by using Active Disturbance Rejection (ADRC), and the controller is shown in formulas (6) to (9).
The most critical part of the controller design is parameter debugging, and since the adjustment of the parameters with overlarge coefficient and overlarge time scale of the smooth output system designed by the method is difficult to carry out and cannot be directly obtained through multiple times of debugging, a time scale method is selected to adjust the parameters.
Firstly, a reference system is selected
F . . + F . + 2 F = u - - - ( 10 )
The time scale p of the system (10) is obtained by adjusting parameters by a time scale method10.241 and adjust its parameters.
According to model GS1Can adjust ADRC controller U1Is composed of
r11=0.1,r12=0.02,h=0.01,
h1=0.02,c=100,β1=100,
β2=200,β3=30000.
Substituting the system parameters into the system (3) to obtain
F . . + 326 F . + 26490 F = 12.1 u - - - ( 11 )
The time scale p of the system (11) is obtained by adjusting parameters by a time scale method22.83. First, using ADRC controller U1For the non-linear model, i.e. the system S1And S2And performing control simulation, wherein the obtained output F is shown in the attached figures 2 and 3.
FIGS. 2 and 3 show the results of controller U1Although S can be well matched1Implementing smooth control; however, for S2The control process of (1) can not follow the track to be dispersed completely, and at the moment, U can be seen1Has not been adapted to S2
From S1And S2Time scale ratio m ═ p2/p1Is approximately equal to 10, and then can be obtained according to the controller U by the ADRC parameter setting method of the time scale of the controlled system1Obtaining the controller U after parameter adjustment2
r11=0.1,r12=0.2,h=0.001,
h1=0.002,c=200,β1=1000,
β2=2800,β3=30000000.
Then respectively utilize the controllers U1And U2To system S2Control simulation is carried out, and the obtained output y is shown in figure 4. As shown.
FIG. 4 shows a phase comparison controller U1Controller U2To S2A satisfactory control effect is obtained, and the controller U is visible2Is applicable to S2In (1).
In order to verify the method for realizing the design of the transverse controller of the ground autonomous driving vehicle system based on the combination of differential smoothing and active disturbance rejection, the control effect and robustness of the differential smoothing method on the under-actuated system are verified through simulation under different conditions.
The dynamic equation of the transverse control of the ground autonomous driving vehicle system established in the invention is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>v</mi> <mo>.</mo> </mover> <mi>y</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>mv</mi> <mi>x</mi> </msub> </mfrac> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>C</mi> <mi>r</mi> </msub> <msub> <mi>l</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>f</mi> </msub> <msub> <mi>l</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>mv</mi> <mi>x</mi> </msub> </mfrac> <mo>-</mo> <msub> <mi>v</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&psi;</mi> <mo>.</mo> </mover> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <mi>f</mi> </msub> <mi>m</mi> </mfrac> <msub> <mi>&delta;</mi> <mi>f</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&psi;</mi> <mrow> <mo>.</mo> <mo>.</mo> </mrow> </mover> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </mfrac> <msub> <mi>v</mi> <mi>y</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msubsup> <mi>l</mi> <mi>f</mi> <mn>2</mn> </msubsup> <msub> <mi>C</mi> <mi>f</mi> </msub> <mo>+</mo> <msubsup> <mi>l</mi> <mi>r</mi> <mn>2</mn> </msubsup> <msub> <mi>C</mi> <mi>r</mi> </msub> </mrow> <mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> <msub> <mi>v</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mover> <mi>&psi;</mi> <mo>.</mo> </mover> <mo>+</mo> <mfrac> <mrow> <msub> <mi>l</mi> <mi>f</mi> </msub> <msub> <mi>C</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>I</mi> <mi>z</mi> </msub> </mfrac> <msub> <mi>&delta;</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
wherein lfIs the distance between the center of mass and the front axle of 1.05m, lrThe distance between the mass center and the rear axle is 1.63m, and m is 1480Kg of the whole vehicle equipment mass, CfThe cornering stiffness of the front tyre is 67500N/rad, CrThe cornering stiffness of the rear tire is 47500N/rad, deltafFor the turning angle of the front wheels of the vehicle, IzRepresenting moment of inertia around the Z axis 2350Kg im2,vxRepresenting longitudinal velocity, vyThe lateral velocity is indicated in the form of,the yaw rate is shown.
The invention takes the model as an example, and the specific simulation implementation steps are as follows:
simulation environment
Assuming that the platform is moving in a double line at a fixed longitudinal speed, the track change trajectory (the transition of the arrangement) is shown in fig. 5. The trajectory is generated using a sine function planning algorithm, the planning formula being shown in equation (12). In the formula, v0(t): a desired lateral displacement; w: lane width; t is t1: the time to turn from the right lane to the left lane; t is t2: the time to start driving on the left lane; t is t3: the time to turn from the left lane to the right lane; t is t4: and returning to the right lane. Assuming that the ideal posture of the vehicle body is the tangential direction of the transverse track, the reference track of the vehicle body angle is shown in fig. 6.
<math> <mrow> <msub> <mi>v</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi>W</mi> <mn>2</mn> </mfrac> <mo>[</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>T</mi> </mfrac> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>,</mo> </mtd> <mtd> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mi>W</mi> <mo>,</mo> </mtd> <mtd> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi>W</mi> <mn>2</mn> </mfrac> <mo>[</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> </mrow> <mi>T</mi> </mfrac> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>]</mo> <mo>,</mo> </mtd> <mtd> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>4</mn> </msub> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>,</mo> </mtd> <mtd> <msub> <mi>t</mi> <mn>4</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
During simulation, parameters of the platform and the steering mechanism and the longitudinal speed V are changedxTo examine the robustness of the ADRC controller, wherein the tire angular stiffness Csf,CsrThe change of (a) may represent both a perturbation of the tyre's own parameters and a variation (disturbance) of the road-ground conditions; changes in platform centroid to front and rear axle distances can then represent both mass distribution and changes in road longitudinal unevenness (disturbances) thus, the above-described set of simulation parameters can examine the ability of the designed ADRC controller to adapt to "internal" and "external" uncertainties.
Simulation result
See the attached figures 7-8, each is Vx1m/s, 40m/s and platform parameters are simulation results under nominal values; FIG. 9 is a simulation result of the following parameters: vx35m/s, 2220kg (1.5 times the nominal value), Iz=3290kg·m2(1.4 times the nominal value), lf1.2m (center of mass shifted backward 0.15 m), lr 1.48m, Csf40500N/rad (60% of nominal), Csr28500N/rad (60% of nominal). FIG. 10 is at Csf=[0.85+0.15(2U(0,1)-1)]Csf_nom、Csr=[0.85+0.15(2U(0,1)-1)]Csr_nomThe results for the same other parameters as the simulation conditions of FIG. 9, where U (0,1) is a unity uniform distribution function. The conditions corresponding to fig. 4.7 and 4.8 are very harsh for automatic control of the lateral motion of the platform. The blue track represents a reference track, the red track represents an actual track of the controller controlled trolley designed based on the ADRC method, and the green track represents an actual running track of the controller controlled trolley designed based on the neural network and the fuzzy control method.
The results of the attached figures 7-8 show that compared with a method combining a neural network and fuzzy control, a controller combining differential smoothing and ADRC has good adaptability to the change of the platform speed, and the stable and high-precision control on the transverse motion of the system is successfully realized. The results of fig. 9-10 show that even if the road switching time is shortened and the platform parameters and the road conditions are greatly changed, the platform still has ideal lateral motion performance under the control of the ADRC controller.

Claims (5)

1. An ALV lateral control method based on active disturbance rejection and differential smoothing is characterized in that: firstly, establishing a transverse dynamic model of a ground autonomous driving vehicle; then designing differential smooth output according to the dynamic model; and finally, designing a composite controller of a transverse control system of the ground autonomous driving vehicle according to the differential smooth output and control law and the active disturbance rejection controller.
2. The ALV lateral control method based on active disturbance rejection and differential smoothing as claimed in claim 1, wherein: the active disturbance rejection controller comprises a tracking differentiator, an extended state observer and a nonlinear feedback control law.
3. The ALV lateral displacement tracking system control method based on active disturbance rejection as claimed in claim 2, characterized in that: the tracking differentiator adopts the following model:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>h</mi> <mo>&CenterDot;</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>h</mi> <mo>&CenterDot;</mo> <mi>fst</mi> <mrow> <mo>(</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>r</mi> <mo>,</mo> <msub> <mi>h</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
wherein <math> <mrow> <mi>fst</mi> <mrow> <mo>(</mo> <mo>&bull;</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mo>-</mo> <mi>ra</mi> </mtd> <mtd> <mo>|</mo> <mi>a</mi> <mo>|</mo> <mo>&le;</mo> <mi>d</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>r</mi> <mo>&CenterDot;</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>a</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>a</mi> <mo>|</mo> <mo>></mo> <mi>d</mi> </mtd> </mtr> </mtable> </mfenced> <mo>:</mo> </mrow> </math>
And sgn is a function of the sign,
<math> <mrow> <mi>a</mi> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <msub> <mi>v</mi> <mn>0</mn> </msub> <mi>h</mi> </mfrac> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mi></mi> <mo>|</mo> <mo>></mo> <msub> <mi>d</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>+</mo> <mfrac> <mrow> <mi>sgn</mi> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mi></mi> <mo>|</mo> <mo>></mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mi></mi> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein,d=rh,d0=dh,y0=v1-v0-hv2
where r is the parameter to be adjusted and also the velocity factor of the tracking differentiator, h0Is the filter factor, h is the sampling step, v0Is a lateral control reference input, v, of a ground autonomous driving vehicle system1(k) For input signals to track, v2(k) Is to obtain an approximately differential signal of the input signal, d0,a,a0,y,y0Intermediate variables in the equation solving process are eliminated in iteration; by solving this equation, an approximate differential signal is obtained, that is, an approximate differential signal is obtained while tracking the input signal.
4. The ALV lateral displacement tracking system control method based on active disturbance rejection as claimed in claim 2 or 3, characterized in that: the extended state observer adopts the following model:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>e</mi> <mo>=</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>y</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>01</mn> </msub> <mi>e</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&beta;</mi> <mn>02</mn> </msub> <mo>&CenterDot;</mo> <mi>fal</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mi>&delta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>z</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>z</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>h</mi> <mo>&CenterDot;</mo> <msub> <mi>&beta;</mi> <mn>03</mn> </msub> <mo>&CenterDot;</mo> <mi>fal</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>2</mn> </msub> <mo>,</mo> <mi>&delta;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
wherein: <math> <mrow> <mi>fal</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>,</mo> <mi>&alpha;</mi> <mo>,</mo> <mi>&delta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mrow> <mo>|</mo> <mi>e</mi> <mo>|</mo> </mrow> <mi>&alpha;</mi> </msup> <mo>&CenterDot;</mo> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>e</mi> <mo>|</mo> <mo>></mo> <mi>&delta;</mi> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi>e</mi> <msup> <mi>&delta;</mi> <mrow> <mn>1</mn> <mo>-</mo> <mi>&alpha;</mi> </mrow> </msup> </mfrac> <mo>,</mo> </mtd> <mtd> <mo>|</mo> <mi>e</mi> <mo>|</mo> <mo>&le;</mo> <mi>&delta;</mi> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein z is1,z2,z3Is the output of the extended state observer, z1Tracking system state v1,z2Tracking the state v of the system2,z3Estimating the internal disturbance and the external disturbance of the system, h is a sampling step length, b0Coefficient z being a control variable1(k+1),z2(k+1),z3(k +1) is the output of the extended state observer, z1(k +1) tracking System State v1(k),z2(k +1) tracking the State v of the System2(k),z3(k +1) is the internal and external disturbance, β, of the estimated system010203Is the coefficient of the observer, reflects the observation ability of the observer, e is the state error, u (k) is the control quantity of the system, y is the system output, delta is the linear segment interval length of the power function fal, and the requirement of delta epsilon [0,1]Taking δ to be 0.01, α represents the power of a power function fal, and α is represented as α in both fal functions1α2Satisfy 0<α21<1, take alpha1=0.5,α2=0.25。
5. The ALV lateral displacement tracking system control method based on active disturbance rejection of claim 4, wherein: the nonlinear feedback control law adopts the following model:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>z</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mn>0</mn> </msub> <mo>=</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>&CenterDot;</mo> <mi>fal</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>p</mi> </msub> <mo>,</mo> <mi>&delta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mi>D</mi> </msub> <mo>&CenterDot;</mo> <mi>fal</mi> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>D</mi> </msub> <mo>,</mo> <mi>&delta;</mi> <mo>)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mfenced> </math>
wherein e is1、e2Respectively the error between the observed quantity and the input signal and the differential, Kp、KDFor error feedback gain, the control capability of the controller is embodied, and delta in the formula satisfies delta epsilon [0,1 ∈]Taking delta to be 0.01, the power of two power functions satisfies 0<αp<1<αDTaking alphap=0.5,αD2; the expression of the control law of the active disturbance rejection controller is obtained as follows:
u(k)=u0-z3(k)/b0
CN201410194055.0A 2014-05-08 2014-05-08 Based on active disturbance rejection and the smooth ALV crosswise joint methods of differential Active CN103970138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410194055.0A CN103970138B (en) 2014-05-08 2014-05-08 Based on active disturbance rejection and the smooth ALV crosswise joint methods of differential

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410194055.0A CN103970138B (en) 2014-05-08 2014-05-08 Based on active disturbance rejection and the smooth ALV crosswise joint methods of differential

Publications (2)

Publication Number Publication Date
CN103970138A true CN103970138A (en) 2014-08-06
CN103970138B CN103970138B (en) 2017-08-11

Family

ID=51239764

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410194055.0A Active CN103970138B (en) 2014-05-08 2014-05-08 Based on active disturbance rejection and the smooth ALV crosswise joint methods of differential

Country Status (1)

Country Link
CN (1) CN103970138B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137968A (en) * 2015-07-20 2015-12-09 柳州一健科技有限公司 Agricultural vehicle automatic steering control method based on disturbance observation
CN105467996A (en) * 2015-12-21 2016-04-06 北京理工大学 Four-wheel steering automobile track tracking control method based on differential flat and active disturbance rejection
CN105676643A (en) * 2016-03-02 2016-06-15 厦门大学 Adaptive coordination control method for intelligent vehicle steering and braking
CN106168758A (en) * 2016-05-24 2016-11-30 中国人民解放军空军第航空学院 The course tracking control method of four motorized wheels electric automobile
CN106527139A (en) * 2016-11-29 2017-03-22 桂林航天工业学院 Robust controller design method for vehicle yawing motion under limited communication condition
CN107272692A (en) * 2017-07-18 2017-10-20 北京理工大学 Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection
CN107272707A (en) * 2017-08-03 2017-10-20 郑州轻工业学院 Unmanned vehicle automatic orbit fuzzy follow-up control method based on IPV6
CN108196545A (en) * 2018-01-03 2018-06-22 浙江同筑科技有限公司 Using the AGV magnetic navigation control methods of Auto Disturbances Rejection Control Technique
CN108646756A (en) * 2018-07-05 2018-10-12 合肥工业大学 Intelligent automobile crosswise joint method and system based on piecewise affine fuzzy sliding mode
CN109164699A (en) * 2018-08-29 2019-01-08 浙江工业大学 A kind of chip mounter head running position accuracy control method
CN110212514A (en) * 2019-06-27 2019-09-06 上海电力学院 A kind of direct current power spring nonlinear control method based on the smooth theory of differential
CN110825095A (en) * 2019-12-06 2020-02-21 苏州智加科技有限公司 Transverse control method for automatic driving vehicle
CN111949036A (en) * 2020-08-25 2020-11-17 重庆邮电大学 Trajectory tracking control method and system and two-wheeled differential mobile robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199997A1 (en) * 2002-04-18 2003-10-23 Zhiqiang Gao Scaling and parameterizing a controller
US7203555B2 (en) * 2004-05-14 2007-04-10 University Of Delaware Predictive regulatory controller
CN102354104A (en) * 2005-09-19 2012-02-15 克利夫兰州立大学 Controllers, observers, and applications thereof
CN102981407A (en) * 2012-11-29 2013-03-20 北京理工大学 Tank gun control servo control method based on auto-disturbance rejection control technology
CN103412481A (en) * 2013-08-13 2013-11-27 江苏大学 Construction method for active-disturbance-rejection controller of hybrid electric vehicle BSG system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030199997A1 (en) * 2002-04-18 2003-10-23 Zhiqiang Gao Scaling and parameterizing a controller
US7203555B2 (en) * 2004-05-14 2007-04-10 University Of Delaware Predictive regulatory controller
CN102354104A (en) * 2005-09-19 2012-02-15 克利夫兰州立大学 Controllers, observers, and applications thereof
CN102981407A (en) * 2012-11-29 2013-03-20 北京理工大学 Tank gun control servo control method based on auto-disturbance rejection control technology
CN103412481A (en) * 2013-08-13 2013-11-27 江苏大学 Construction method for active-disturbance-rejection controller of hybrid electric vehicle BSG system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. LUVIANO-JUA´REZ,ETC: "Active Disturbance Rejection Control Based on a Simultaneous Adaptive Observer and a Time Varying Parameter Identifier", 《2013 EUROPEAN CONTROL CONFERENCE》 *
GAO YUAN,ETC: "Lateral Path Tracking Control Of Autonomous Land Vehicle Based on Active Disturbance Rejection Control", 《PROCEEDINGS OF THE 32ND CHINESE CONTROL CONFERENCE》 *
夏元清等: "多变量不确定时滞系统ADRC控制", 《第二十三届中国控制会议》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137968A (en) * 2015-07-20 2015-12-09 柳州一健科技有限公司 Agricultural vehicle automatic steering control method based on disturbance observation
CN105467996A (en) * 2015-12-21 2016-04-06 北京理工大学 Four-wheel steering automobile track tracking control method based on differential flat and active disturbance rejection
CN105467996B (en) * 2015-12-21 2018-07-03 北京理工大学 Four-wheel steering automobile Trajectory Tracking Control method based on differential flat and active disturbance rejection
CN105676643B (en) * 2016-03-02 2018-06-26 厦门大学 A kind of intelligent automobile turns to and braking self-adaptive wavelet base method
CN105676643A (en) * 2016-03-02 2016-06-15 厦门大学 Adaptive coordination control method for intelligent vehicle steering and braking
CN106168758A (en) * 2016-05-24 2016-11-30 中国人民解放军空军第航空学院 The course tracking control method of four motorized wheels electric automobile
CN106168758B (en) * 2016-05-24 2019-12-06 中国人民解放军空军第一航空学院 course tracking control method of four-wheel independent drive electric vehicle
CN106527139A (en) * 2016-11-29 2017-03-22 桂林航天工业学院 Robust controller design method for vehicle yawing motion under limited communication condition
CN106527139B (en) * 2016-11-29 2019-07-26 桂林航天工业学院 Communicate the vehicle yaw motion robust Controller Design method under limited situation
CN107272692A (en) * 2017-07-18 2017-10-20 北京理工大学 Unmanned vehicle path planning and tracking and controlling method based on differential flat and active disturbance rejection
CN107272707A (en) * 2017-08-03 2017-10-20 郑州轻工业学院 Unmanned vehicle automatic orbit fuzzy follow-up control method based on IPV6
CN108196545A (en) * 2018-01-03 2018-06-22 浙江同筑科技有限公司 Using the AGV magnetic navigation control methods of Auto Disturbances Rejection Control Technique
CN108646756A (en) * 2018-07-05 2018-10-12 合肥工业大学 Intelligent automobile crosswise joint method and system based on piecewise affine fuzzy sliding mode
CN108646756B (en) * 2018-07-05 2021-01-19 合肥工业大学 Intelligent automobile transverse control method and system based on segmented affine fuzzy sliding mode
CN109164699A (en) * 2018-08-29 2019-01-08 浙江工业大学 A kind of chip mounter head running position accuracy control method
CN110212514A (en) * 2019-06-27 2019-09-06 上海电力学院 A kind of direct current power spring nonlinear control method based on the smooth theory of differential
CN110825095A (en) * 2019-12-06 2020-02-21 苏州智加科技有限公司 Transverse control method for automatic driving vehicle
CN111949036A (en) * 2020-08-25 2020-11-17 重庆邮电大学 Trajectory tracking control method and system and two-wheeled differential mobile robot
CN111949036B (en) * 2020-08-25 2022-08-02 重庆邮电大学 Trajectory tracking control method and system and two-wheeled differential mobile robot

Also Published As

Publication number Publication date
CN103970138B (en) 2017-08-11

Similar Documents

Publication Publication Date Title
CN103970138B (en) Based on active disturbance rejection and the smooth ALV crosswise joint methods of differential
Yao et al. Control strategies on path tracking for autonomous vehicle: State of the art and future challenges
Guo et al. A computationally efficient path-following control strategy of autonomous electric vehicles with yaw motion stabilization
CN107831761B (en) Path tracking control method of intelligent vehicle
Marzbani et al. Autonomous vehicles: Autodriver algorithm and vehicle dynamics
CN107015477B (en) Vehicle route based on state feedback tracks H ∞ control method
Ma et al. Direct yaw-moment control of electric vehicles based on adaptive sliding mode
Cai et al. Implementation and development of a trajectory tracking control system for intelligent vehicle
CN103970137A (en) Control method of ALV transverse displacement tracking system based on active disturbance rejection
Vivek et al. A comparative study of Stanley, LQR and MPC controllers for path tracking application (ADAS/AD)
CN113050651B (en) Time lag control method and system for tracking autonomous driving path of intelligent vehicle
Guo et al. Intelligent vehicle trajectory tracking based on neural networks sliding mode control
Velenis FWD vehicle drifting control: The handbrake-cornering technique
Zhang et al. An adaptive constrained path following control scheme for autonomous electric vehicles
Guo et al. Integrated adaptive dynamic surface car-following control for nonholonomic autonomous electric vehicles
Shen et al. A lateral control method for wheel-footed robot based on sliding mode control and steering prediction
Polack et al. Finite-time stabilization of longitudinal control for autonomous vehicles via a model-free approach
Dong et al. Real-time model predictive control for simultaneous drift and trajectory tracking of autonomous vehicles
Lu et al. Adaptive heading control strategy for unmanned ground vehicle with variable wheelbase based on robust-active disturbance rejection control
Jin et al. Path following control for skid steering vehicles with vehicle speed adaption
CN105676674B (en) Unmanned plane front-wheel steer control method based on instruction wave filter
Sahoo et al. Design and development of a heading angle controller for an unmanned ground vehicle
Liu et al. Research on path-tracking control of articulated vehicle with a trailer based on advanced model prediction control strategy
Iyer et al. Sliding mode control using power rate exponential reaching law for urban platooning
Zhang et al. A nonlinear dynamic control design with conditional integrators applied to unmanned skid-steering vehicle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant