[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103944586A - Method for constructing code-rate compatibility QC-LDPC code - Google Patents

Method for constructing code-rate compatibility QC-LDPC code Download PDF

Info

Publication number
CN103944586A
CN103944586A CN201410142370.9A CN201410142370A CN103944586A CN 103944586 A CN103944586 A CN 103944586A CN 201410142370 A CN201410142370 A CN 201410142370A CN 103944586 A CN103944586 A CN 103944586A
Authority
CN
China
Prior art keywords
code
matrix
rate
compatible
ldpc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410142370.9A
Other languages
Chinese (zh)
Inventor
王汝言
秦亮
赵辉
鲍霄霄
王琴
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201410142370.9A priority Critical patent/CN103944586A/en
Publication of CN103944586A publication Critical patent/CN103944586A/en
Pending legal-status Critical Current

Links

Landscapes

  • Error Detection And Correction (AREA)

Abstract

本发明涉及无线通信系统和卫星通信系统的信道编码技术领域,提供了一种基于矩阵行列删除的码率兼容QC-LDPC码的构造方法。所述方法包括:首先,基于GCDg8算法构造一个大围长的低码率QC-LDPC码作为母码;然后进行指数矩阵的逐次行列删除获取信息位长度不变的高码率子码,避免了高码率码字出现短环,因为行列删除即是在无短环的母码对应的Tanner图中删除相应的边,不仅不会产生短环,而且还可能增大围长;最后,采用隐蔽技术分别对子码进行处理,提高了码字的最小距离及性能。本方法采用结构化设计的码率兼容QC-LDPC码,与PEG算法构造的LDPC码相比,构造更简单,硬件实现复杂度不高,性能更优越。

The invention relates to the technical field of channel coding of a wireless communication system and a satellite communication system, and provides a method for constructing a rate-compatible QC-LDPC code based on matrix row and column deletion. The method comprises: first, constructing a low code rate QC-LDPC code with a large girth length based on the GCDg8 algorithm as the mother code; Short loops appear in high bit rate codewords, because row and column deletion is to delete the corresponding edges in the Tanner graph corresponding to the mother code without short loops, not only will not produce short loops, but also may increase the girth; finally, using concealment The technology processes subcodes separately, which improves the minimum distance and performance of codewords. Compared with the LDPC code constructed by the PEG algorithm, the method adopts a structurally designed rate-compatible QC-LDPC code, which has a simpler structure, less complex hardware implementation, and superior performance.

Description

一种码率兼容QC-LDPC码的构造方法A Construction Method of Rate Compatible QC-LDPC Codes

技术领域technical field

本发明涉及无线通信系统和卫星通信系统的信道编码技术领域,特别涉及一种码率兼容QC-LDPC码的构造方法。The invention relates to the technical field of channel coding of a wireless communication system and a satellite communication system, in particular to a construction method of a rate-compatible QC-LDPC code.

背景技术Background technique

区别于传统的无线、卫星通信系统的信道编码技术,低密度奇偶校验(Low-Density Parity-Check,LDPC)码是通过稀疏的校验矩阵定义的一类线性分组码,采用置信传播(belief propagation,BP)算法译码,不仅有逼近Shannon限的良好性能,而且译码复杂度较低,结构灵活,是近年来信道编码领域的研究热点,目前已广泛应用于深空通信、光纤通信、卫星数字视频和音频广播等领域。Different from the channel coding technology of traditional wireless and satellite communication systems, low-density parity-check (Low-Density Parity-Check, LDPC) code is a kind of linear block code defined by sparse parity check matrix, using belief propagation (belief propagation, BP) algorithm decoding, not only has good performance close to the Shannon limit, but also has low decoding complexity and flexible structure. It is a research hotspot in the field of channel coding in recent years. Satellite digital video and audio broadcasting and other fields.

近年来,研究人员发现在无线、卫星通信系统所处的时变的信道条件下引入码率兼容LDPC码的编码技术,能够使信道编码的纠错能力自适应的根据信道环境做出相应调整。采用码率兼容的LDPC码,可以在保证服务质量的前提下,根据信道环境通过调整码率来实时的调整其纠错能力,从而实现信道的吞吐率最大化,提高了数据的传输效率。从实现复杂度的角度考虑,码率兼容LDPC码是由一个嵌套结构组成,它能够在一定码率范围内采用单个编码器/译码器工作,从而大大降低了系统的复杂度。在混合自动请求重传(HARQ)中,发送端可以采用码率兼容LDPC码发送递增的校验位,以确保接收端译码器能够成功的译码。在不等差错保护(UEP)中,它能够根据信息的重要程度进行有效的差错保护。In recent years, researchers have found that the introduction of rate-compatible LDPC code coding technology under the time-varying channel conditions of wireless and satellite communication systems can make the error correction capability of channel coding adaptively adjusted according to the channel environment. Using code rate compatible LDPC codes can adjust the error correction capability in real time by adjusting the code rate according to the channel environment under the premise of ensuring the service quality, so as to maximize the channel throughput and improve the data transmission efficiency. From the perspective of implementation complexity, the rate-compatible LDPC code is composed of a nested structure, which can work with a single encoder/decoder within a certain range of bit rate, thus greatly reducing the complexity of the system. In Hybrid Automatic Repeat Request (HARQ), the sender can use rate-compatible LDPC codes to send incremental parity bits to ensure that the decoder at the receiver can decode successfully. In Unequal Error Protection (UEP), it can perform effective error protection according to the importance of information.

目前,设计码率兼容LDPC码常用的方法主要有:(1)打孔(Puncture),即对低码率的LDPC码打孔得到码率越来越高的子码。McLaughlin等人在“Rate-compatible puncturing of low-density parity-check codes”【Information Theory,IEEE Transactions on,2004,50(11):2824-2836】文章中采用高斯逼近的方法针对码率兼容LDPC码的最优打孔度分布展开研究。这种方法虽然操作简单,但是通过打孔得到的码字依然存在随着码率的增大其译码性能下降十分严重这一弊端。(2)基于矩阵行列拓展的方法,即对高码率的LDPC码逐次行列拓展得到码率越来越小的子码。针对打孔过程中子码译码性能恶化这一弊端,Jacobsen等人在“Design of rate-compatible irregular LDPCcodes based on edge growth and parity splitting”【Vehicular TechnologyConference,2007.VTC-2007Fall.2007IEEE66th.IEEE,2007:1052-1056】文章中采用外部信息转移图(EXIT)的度分布优化方法针对基于扩展方法设计的码率兼容LDPC码展开研究。这种方法虽然能够避免打孔过程中子码译码性能恶化这一弊端,但是,拓展过程相当于在其对应的Tanner图增加新的校验节点、变量节点和新增非零元素对应的边,因此需要考虑避免新增加的非零元素在对应的Tanner图中产生新的短环,从而增加了拓展过程度中度分布优化的复杂度。因此,构造码字性能好、复杂度低的码率兼容LDPC码成为了近年来人们研究码率兼容LDPC码应用的热点问题之一。At present, the commonly used methods for designing rate-compatible LDPC codes mainly include: (1) Puncture, that is, to punch LDPC codes with low bit rates to obtain subcodes with higher and higher bit rates. In the article "Rate-compatible puncturing of low-density parity-check codes" [Information Theory, IEEE Transactions on, 2004, 50(11): 2824-2836], McLaughlin et al. adopted a Gaussian approximation method for rate-compatible LDPC codes. Research on the optimal porosity distribution of . Although this method is simple to operate, the codewords obtained by puncturing still have the disadvantage that the decoding performance drops very seriously with the increase of the code rate. (2) Based on the method of matrix row and column expansion, that is, the row and column expansion of the high code rate LDPC code is carried out successively to obtain subcodes with smaller and smaller code rates. Aiming at the disadvantage of deteriorating subcode decoding performance in the puncturing process, Jacobsen et al. "Design of rate-compatible irregular LDPCcodes based on edge growth and parity splitting" [Vehicular Technology Conference, 2007.VTC-2007Fall.2007IEEE66th.IEEE, 2007 :1052-1056] In this paper, the degree distribution optimization method using the external information transfer graph (EXIT) is used to study the rate-compatible LDPC codes based on the extension method design. Although this method can avoid the disadvantage of deteriorating subcode decoding performance during the puncturing process, the expansion process is equivalent to adding new check nodes, variable nodes, and edges corresponding to new non-zero elements in the corresponding Tanner graph. , so it is necessary to consider avoiding the newly added non-zero elements to generate new short loops in the corresponding Tanner graph, thus increasing the complexity of degree distribution optimization in the expansion process. Therefore, the construction of rate-compatible LDPC codes with good codeword performance and low complexity has become one of the hot issues in researching the application of rate-compatible LDPC codes in recent years.

发明内容Contents of the invention

目前,通过打孔技术设计的码率兼容LDPC码字存在随着码率的增大其译码性能下降十分严重的弊端,而针对这一弊端提出的基于矩阵拓展方法设计的码率兼容LDPC码,大多数由于需要进行大量的优化工作以避免新增加的非零元素在对应的Tanner图中产生新的短环以及其非结构化的设计而无法保证其低的编码复杂度。At present, the rate-compatible LDPC codewords designed by punching technology have the disadvantage that the decoding performance decreases seriously with the increase of the code rate, and the rate-compatible LDPC code designed based on the matrix expansion method is proposed to solve this disadvantage. , most of them cannot guarantee low coding complexity due to the need to do a lot of optimization work to avoid new short cycles in the corresponding Tanner graphs caused by newly added non-zero elements and their unstructured design.

针对以上现有技术中的不足,本发明的目的在于提供一种产生多码率、性能优越的码率兼容QC-LDPC码;本发明的技术方案如下:一种码率兼容QC-LDPC码的构造方法,其包括以下步骤:For above deficiencies in the prior art, the object of the present invention is to provide a kind of code rate compatible QC-LDPC code that produces multi-code rate, superior performance; The technical scheme of the present invention is as follows: a kind of code rate compatible QC-LDPC code A construction method, which includes the following steps:

101、初始化序列S为{0,1},输入指数矩阵E的行数J,列数L,根据GCDg8算法得到序列S={a0,a1,…,aJ-1},然后根据计算式P≥(aJ-1-a0)(L-1)+1,得出循环置换矩阵的维数为P×P,元素ai·j对应于P×P单位矩阵的每行向右循环移ai·j位,,i=0,1,…,J-1;j=0,1,…,L-1,所述指数矩阵E为101. The initialization sequence S is {0,1}, input the number of rows J and the number of columns L of the exponential matrix E, and obtain the sequence S={a 0 ,a 1 ,…,a J-1 } according to the GCDg8 algorithm, and then calculate according to The formula P≥(a J-1 -a 0 )(L-1)+1, the dimension of the cyclic permutation matrix is P×P, and the element a i j corresponds to each row of the P×P identity matrix to the right cyclically shift a i j bits, i=0,1,...,J-1; j=0,1,...,L-1, the index matrix E is

E ( a 0 , a 1 , . . . , a J - 1 ) = a 0 &CenterDot; 0 a 0 &CenterDot; 1 . . . a 0 &CenterDot; ( L - 1 ) a 1 &CenterDot; 0 a 1 &CenterDot; 1 . . . a 1 &CenterDot; ( L - 1 ) . . . . . . . . . . . . a J - 1 &CenterDot; 0 a J - 1 &CenterDot; 1 . . . a J - 1 &CenterDot; ( L - 1 ) ; J和L为两个整数,J≥3,L≥3,且0≤a0<a1<…<aJ-1,a0,…,aJ-1为整数; E. ( a 0 , a 1 , . . . , a J - 1 ) = a 0 &Center Dot; 0 a 0 &Center Dot; 1 . . . a 0 &CenterDot; ( L - 1 ) a 1 &Center Dot; 0 a 1 &Center Dot; 1 . . . a 1 &Center Dot; ( L - 1 ) . . . . . . . . . . . . a J - 1 &CenterDot; 0 a J - 1 &Center Dot; 1 . . . a J - 1 &CenterDot; ( L - 1 ) ; J and L are two integers, J≥3, L≥3, and 0≤a 0 <a 1 <…<a J-1 , a 0 ,…,a J-1 are integers;

102、根据步骤101中得到的序列S={a0,a1,…,aJ-1}和循环置换矩阵的维数P×P,依据101中指数矩阵的构造原则得到其校验矩阵,且该校验矩阵的围长大于或等于8;102. According to the sequence S={a 0 ,a 1 ,…,a J-1 } obtained in step 101 and the dimension P×P of the cyclic permutation matrix, the parity check matrix is obtained according to the construction principle of the exponential matrix in 101, And the girth of the parity check matrix is greater than or equal to 8;

103、删除步骤102所得的准循环低密度奇偶校验QC-LDPC码母码LDPC0的指数矩阵最后一行和最后一列得到子码LDPC1,再删除子码LDPC1的指数矩阵的最后一行和最后一列得到子码LDPC2,以此类推进行删除得到多个码率的高码率子码,经过逐次行列删除方法后得到的高码率码字的码率为103. Delete the last row and the last column of the index matrix of the quasi-cyclic low density parity check QC-LDPC code mother code LDPC0 obtained in step 102 to obtain the subcode LDPC1, and then delete the last row and the last column of the index matrix of the subcode LDPC1 to obtain the subcode LDPC1. The code LDPC2 is deleted by analogy to obtain multiple high code rate subcodes, and the code rate of the high code rate codeword obtained after the row and column deletion method is

n=1,2,…,表示对母码的指数矩阵总共删除的行/列数; n=1,2,..., represents the number of rows/columns deleted in total for the exponential matrix of the mother code;

104、分别对步骤103中所得的母码LDPC0和子码LDPC1、LDPC2的指数矩阵E采用相同维数的隐蔽矩阵M处理,隐蔽矩阵M(J,L,J′)=(mi,j)0≤i<J,0≤j<L为一个J×L的二元矩阵,隐蔽操作定义如下:如果mi,j=1,则mi,j·Ei,j=Ei,j,否则mi,j=0时,mi,j·Ei,j对应P×P的全零矩阵,采用和指数矩阵相同维数的二元隐蔽矩阵对相应码率的QC-LDPC码的指数矩阵进行处理,即是将对应的指数矩阵中与隐蔽矩阵中0对应的位置单元采用同等维数的零矩阵替换,与隐蔽矩阵中1对应的位置单元保持不变,得到码率兼容的QC-LDPC码。104. The index matrix E of the mother code LDPC0 and the subcodes LDPC1 and LDPC2 obtained in step 103 is respectively processed by a concealment matrix M of the same dimension, and the concealment matrix M(J,L,J′)=(m i,j ) 0 ≤i<J,0≤j<L is a J×L binary matrix, hidden operation It is defined as follows: If m i,j =1, then m i,j ·E i,j =E i,j , otherwise when m i,j =0, m i,j ·E i,j corresponds to a P×P all-zero matrix , use the binary concealment matrix with the same dimension as the exponential matrix to process the exponential matrix of the QC-LDPC code of the corresponding code rate, that is, the position unit corresponding to 0 in the corresponding exponential matrix and the concealment matrix adopts the same dimension The zero matrix is replaced, and the position unit corresponding to 1 in the hidden matrix remains unchanged, and a rate-compatible QC-LDPC code is obtained.

进一步的,当设定J=6,L=12时,则步骤103中的母码LDPC0、子码LDPC1、子码LDPC2的信息位长度均为2514,码率分别为1/2、6/11、3/5,通过GCDg8算法搜索得到的序列为(a0,a1,…,a5)={0,1,12,13,35,38},P=419。Further, when J=6 and L=12 are set, the information bit lengths of mother code LDPC0, subcode LDPC1 and subcode LDPC2 in step 103 are all 2514, and the code rates are 1/2 and 6/11 respectively , 3/5, the sequence obtained by GCDg8 algorithm search is (a 0 ,a 1 ,…,a 5 )={0,1,12,13,35,38}, P=419.

进一步的,所述码率兼容QC-LDPC码是由一个嵌套的码字结构组成,它能够在单个编/译码器下工作。Further, the rate-compatible QC-LDPC code is composed of a nested codeword structure, which can work under a single encoder/decoder.

进一步的,在时变信道环境下的无线通信和卫星通信系统中,待发送信息经过信源编码后,自适应的根据信道环境采用码率兼容QC-LDPC编码器进行信道编码在信道中传输,即当信道环境良好时采用高码率码字进行编码,反之当信道环境不理想时采用低码率码字进行编码。Furthermore, in the wireless communication and satellite communication systems under the time-varying channel environment, after the information to be sent is coded by the source, it adaptively adopts a rate-compatible QC-LDPC coder for channel coding according to the channel environment and transmits it in the channel. That is, when the channel environment is good, a codeword with a high code rate is used for encoding; otherwise, when the channel environment is not ideal, a codeword with a low code rate is used for encoding.

本发明的优点及有益效果:Advantage of the present invention and beneficial effect:

本发明提出的基于指数矩阵行列删除的码率兼容QC-LDPC码的构造方法考虑了无线、卫星通信环境下信道的时变性,提出用一种码率兼容QC-LDPC码的构造方法,其纠错能力能够自适应的根据信道环境做出相应调整。采用这种码率兼容QC-LDPC码可以在保证服务质量的前提下,根据信道环境通过调整码率来实时的调整其纠错能力,从而提高信道的吞吐率。这种基于指数矩阵行列删除思想构造码率兼容QC-LDPC码,可以避免子码出现短环,因为行列删除即是在无短环的母码对应的Tanner图中删除相应的边,不仅不会产生短环,而且还会增大围长。因此,基于行列删除思想的构造方法能够很好的克服打孔后子码译码性能的严重下降和拓展过程中出现短环的缺点。The construction method of the code rate compatible QC-LDPC code based on the index matrix row and column deletion proposed by the present invention considers the time-varying nature of the channel under the wireless and satellite communication environment, and proposes a construction method of the code rate compatible QC-LDPC code, which corrects The error capability can be adaptively adjusted according to the channel environment. Using this code rate compatible QC-LDPC code can adjust its error correction capability in real time by adjusting the code rate according to the channel environment under the premise of ensuring the quality of service, thereby improving the throughput of the channel. This kind of code rate compatible QC-LDPC code based on the idea of exponent matrix row and column deletion can avoid short loops in subcodes, because row and column deletion is to delete the corresponding edges in the Tanner graph corresponding to the mother code without short loops, not only will not Short rings are produced, and the girth is also increased. Therefore, the construction method based on the idea of row and column deletion can well overcome the serious degradation of subcode decoding performance after puncturing and the shortcomings of short loops in the expansion process.

附图说明Description of drawings

图1为本发明中码率兼容QC-LDPC码的构造流程图;Fig. 1 is the construction flowchart of code rate compatible QC-LDPC code among the present invention;

图2为本发明中码率兼容QC-LDPC码的指数矩阵结构图;Fig. 2 is the exponent matrix structural diagram of code rate compatible QC-LDPC code among the present invention;

图3为本发明中基于GCDg8算法的码率兼容QC-LDPC码的指数矩阵结构图;Fig. 3 is the exponent matrix structural diagram of the code rate compatible QC-LDPC code based on GCDg8 algorithm among the present invention;

图4为本发明中采用码率兼容QC-LDPC码的无线、卫星通信系统模型图;Fig. 4 adopts the wireless, satellite communication system model diagram of code rate compatible QC-LDPC code among the present invention;

图5为本发明中三种码率兼容QC-LDPC码的BER性能仿真图;Fig. 5 is the BER performance emulation diagram of three kinds of code rates compatible QC-LDPC code among the present invention;

图6为本发明中三种码率兼容QC-LDPC码与PEG算法构造LDPC码的BER性能比较仿真图。FIG. 6 is a simulation diagram of BER performance comparison between three code rate compatible QC-LDPC codes and PEG algorithm-constructed LDPC codes in the present invention.

具体实施方式Detailed ways

下面结合附图给出一个非限定性的实施例对本发明作进一步的阐述。A non-limiting embodiment is given below in conjunction with the accompanying drawings to further illustrate the present invention.

参照图1-图3所示,对于码率兼容的QC-LDPC码的构造,本发明选取的是基于GCDg8算法构造的QC-LDPC码作为为母码,然后对其J×L的指数矩阵逐次行列删除得到高码率的信息位长度不变的子码,最后对其采用隐蔽矩阵进行处理。With reference to Fig. 1-shown in Fig. 3, for the structure of the code rate compatible QC-LDPC code, what the present invention selects is based on the QC-LDPC code of GCDg8 algorithm construction as mother code, then its index matrix of J * L successively Rows and columns are deleted to obtain high code rate subcodes with constant information bit length, which are finally processed by concealment matrix.

如图1所示为本发明中码率兼容QC-LDPC码的构造流程图。包括以下步骤:首先基于GCDg8算法构造一个大围长的低码率QC-LDPC码作为母码,然后对上述QC-LDPC母码的指数矩阵逐次行列删除获取信息位长度不变的高码率子码,最后采用隐蔽技术分别对各个码率的码字进行处理,即得到一种码字性能好、复杂度低的码率兼容LDPC码。As shown in FIG. 1, it is a flow chart of the construction of the rate-compatible QC-LDPC code in the present invention. The method comprises the following steps: first constructing a low code rate QC-LDPC code with a large girth length based on the GCDg8 algorithm as a mother code, and then deleting rows and columns of the exponential matrix of the above QC-LDPC mother code to obtain a high code rate code with constant information bit length Finally, the concealment technology is used to process the codewords of each code rate respectively, that is, a rate-compatible LDPC code with good code word performance and low complexity is obtained.

具体包括以下步骤:Specifically include the following steps:

1.基于GCDg8算法构造大围长的低码率QC-LDPC母码:本步骤选取的是基于GCDg8算法构造的QC-LDPC码作为母码,也可以选取其它的方法来构造符合上述要求的LDPC母码。基于GCDg8算法QC-LDPC码的构造如下:1. Based on the GCDg8 algorithm to construct a low code rate QC-LDPC mother code with a large girth length: In this step, the QC-LDPC code constructed based on the GCDg8 algorithm is selected as the mother code, and other methods can also be selected to construct an LDPC that meets the above requirements mother code. The construction of the QC-LDPC code based on the GCDg8 algorithm is as follows:

指数矩阵E中的每一个元素可以表示为:Pr,c=f(r,c)。根据Wang X等人在“Construction of girth-eight QC-LDPC codes from greatest commondivisor”【Communications Letters,IEEE,2013,17(2):369-372】给出的GCDg8算法,Pr,c=g(r)h(c),其中g(ri)=ai(i=0,1,…,J-1),h(cj)=j(j=0,1,…,L-1)。那么,一个J×L的指数矩阵对应着一个无零单元的块循环校验矩阵:Each element in the index matrix E can be expressed as: P r,c =f(r,c). According to the GCDg8 algorithm given by Wang X et al. in "Construction of youth-eight QC-LDPC codes from greatest commondivisor" [Communications Letters, IEEE, 2013, 17(2): 369-372], P r,c =g( r)h(c), where g(r i )=a i (i=0,1,…,J-1),h(c j )=j(j=0,1,…,L-1) . Then, a J×L exponential matrix corresponds to a block cyclic check matrix without zero elements:

EE. (( aa 00 ,, aa 11 ,, .. .. .. ,, aa JJ -- 11 )) == aa 00 &CenterDot;&Center Dot; 00 aa 00 &CenterDot;&Center Dot; 11 .. .. .. aa 00 &CenterDot;&Center Dot; (( LL -- 11 )) aa 11 &CenterDot;&Center Dot; 00 aa 11 &CenterDot;&Center Dot; 11 .. .. .. aa 11 &CenterDot;&Center Dot; (( LL -- 11 )) .. .. .. .. .. .. .. .. .. .. .. .. aa JJ -- 11 &CenterDot;&Center Dot; 00 aa JJ -- 11 &CenterDot;&Center Dot; 11 .. .. .. aa JJ -- 11 &CenterDot;&Center Dot; (( LL -- 11 )) -- -- -- (( 11 ))

其中J和L(J≥3,L≥3)为两个整数,且0≤a0<a1<…<aJ-1(a0,…,aJ-1为整数)。当指数矩阵转化为校验矩阵时,元素ai·j(i=0,1,…,J-1;j=0,1,…,L-1)对应于P×P单位矩阵的每行向右循环移ai·j(mod P)位。Where J and L (J≥3, L≥3) are two integers, and 0≤a 0 <a 1 <…<a J-1 (a 0 ,…,a J-1 are integers). When the index matrix is converted into a check matrix, the element a i j (i=0,1,…,J-1;j=0,1,…,L-1) corresponds to each row of the P×P identity matrix Circularly shift a i · j (mod P) bits to the right.

在上述指数矩阵中,我们需要搜索序列ai和确定循环置换矩阵的维数。构造围长至少为8的QC-LDPC码,首先,我们根据GCDg8算法来搜索序列ai。GCDg8算法的步骤如下:In the above exponential matrix, we need to search for the sequence a i and determine the dimensionality of the cyclic permutation matrix. To construct a QC-LDPC code with a girth of at least 8, first, we search the sequence a i according to the GCDg8 algorithm. The steps of the GCDg8 algorithm are as follows:

输入:列重J和行重L。Input: column weight J and row weight L.

输出:序列S={a0,a1,…,aJ-1}。Output: sequence S={a 0 ,a 1 ,...,a J-1 }.

初始化:集合S初始化为{0,1}。初始化j=0。Initialization: The set S is initialized to {0,1}. Initializej=0.

步骤1:如果j<(J-2),则转至步骤2。否则结束,搜索完成。Step 1: If j<(J-2), go to step 2. Otherwise end and the search is complete.

步骤2:初始化:Y=S最后一个元素的值+1。Step 2: Initialization: Y = value of the last element of S + 1.

步骤3:在当前的S集合中遍历的选取两个数S(i)和S(j),且S(j)>S(i),如果对于任意两个S(i)和S(j),如果都满足:Step 3: Traverse and select two numbers S(i) and S(j) in the current S set, and S(j)>S(i), if for any two S(i) and S(j) , if both satisfy:

(Y-S(i))/gcd(Y-S(i),S(j)-S(i))≥L(gcd(a,b)表示a,b的最大公因数)(2)那么设置check=1;否则,设置check=0。(Y-S(i))/gcd(Y-S(i),S(j)-S(i))≥L (gcd(a,b) represents the greatest common factor of a,b) (2) Then set check=1 ; Otherwise, set check=0.

步骤4:如果check=0,Y=Y+1,并返回至步骤3;如果check=1,S=S∪Y,j=j+1,并返回至步骤1。Step 4: If check=0, Y=Y+1, and return to step 3; if check=1, S=S∪Y, j=j+1, and return to step 1.

然后我们再根据P≥(aJ-1-a0)(L-1)+1(3),确定循环置换矩阵的维数为P×P。Then we determine the dimension of the cyclic permutation matrix as P×P according to P≥(a J-1 -a 0 )(L-1)+1(3).

最后,基于GCDg8算法的QC-LDPC码的校验矩阵H可以通过式子(1)、(2)、(3)根据指数矩阵的构造原则唯一的确定。Finally, the parity check matrix H of the QC-LDPC code based on the GCDg8 algorithm can be uniquely determined by formulas (1), (2), and (3) according to the construction principle of the exponential matrix.

2.基于QC-LDPC母码的指数矩阵逐次行列删除:对GCDg8算法或其他算法构造的J×L指数矩阵从最后一行和一列开始,进行逐次行列删除得到高码率子码。这种逐次删除的方法即是对指数矩阵每一次删除一行一列,保证了信息为长度的不变,其码率兼容QC-LDPC码的指数矩阵结构如图2所示。由于在已经构造大围长LDPC码的基础上进行逐次行列删除,即是在Tanner图中删除变量节点与校验节点以及与之对应的边,这样不仅会避免在拓展过程出现短环,而且减少的边会有助于增大围长,从而保了证码字的性能。2. The index matrix based on the QC-LDPC mother code is deleted row-by-row and column-by-row: starting from the last row and column of the J×L index matrix constructed by the GCDg8 algorithm or other algorithms, the high-code-rate subcode is obtained by row-column deletion. This method of successive deletion is to delete one row and one column of the exponential matrix at a time, which ensures that the length of the information remains unchanged, and its code rate is compatible with the exponential matrix structure of the QC-LDPC code as shown in Figure 2. Since the row and column deletion is performed successively on the basis of the large girth length LDPC code, that is, the variable nodes and check nodes and the corresponding edges are deleted in the Tanner graph, which will not only avoid short loops in the expansion process, but also reduce The sides of will help to increase the girth, thereby ensuring the performance of the codeword.

3.采用隐蔽技术分别对各个码率的码字进行处理:分别对各码率子码的指数矩阵采用相同维数的隐蔽矩阵进行处理。隐蔽技术通常被简单用来采用一些全零矩阵替换相应位置的循环置换矩阵。我们设M(J,L,J′)=(mi,j)0≤i<J,0≤j<L为一个J×L的二元矩阵,我们定义对指数矩阵E进行隐蔽技术的操作如下:3. Using concealment technology to process the codewords of each code rate respectively: the index matrix of each code rate subcode is respectively processed by the concealment matrix of the same dimension. Concealment techniques are usually used simply to replace the cyclic permutation matrices at the corresponding positions with some all-zero matrices. We set M(J,L,J′)=(m i,j ) 0≤i<J,0≤j<L as a J×L binary matrix, and we define the operation of concealment technology on the exponential matrix E as follows:

Mm &CircleTimes;&CircleTimes; EE. == &Delta;&Delta; (( mm ii ,, jj &CenterDot;&CenterDot; EE. ii ,, jj )) 00 &le;&le; ii << JJ ,, 00 &le;&le; jj << LL -- -- -- (( 44 ))

如果mi,j=1,则mi,j·Ei,j=Ei,j,否则mi,j=0时,mi,j·Ei,j对应P×P的全零矩阵。If m i,j =1, then m i,j ·E i,j =E i,j , otherwise when m i,j =0, m i,j ·E i,j corresponds to a P×P all-zero matrix .

如果QC-LDPC码的校验矩阵是由循环置换矩阵和零矩阵组成的J×L矩阵,那么列重相同的这类码字具有更大的最小距离。将隐蔽矩阵(Masking Matrix)和指数矩阵结合来设计大围长QC-LDPC,即通过将隐蔽矩阵中不同位置的“0”和“1”元素分别和指数矩阵中相对应位置的元素相乘得到新的指数矩阵来获得性能更好的码。If the check matrix of the QC-LDPC code is a J×L matrix composed of a cyclic permutation matrix and a zero matrix, then such codewords with the same column weight have a larger minimum distance. Combining the masking matrix (Masking Matrix) and the exponential matrix to design a large girth QC-LDPC, that is, by multiplying the "0" and "1" elements in different positions in the masking matrix with the elements in the corresponding positions in the exponential matrix to obtain New exponent matrix for better performing codes.

下面通过实施例,结合附图进一步说明本发明,但不以任何方式限制本发明的范围。Below through embodiment, further illustrate the present invention in conjunction with accompanying drawing, but do not limit the scope of the present invention in any way.

以下详细阐述利用本发明所陈述的构造方法,构造3种码率兼容的QC-LDPC码,其信息位长度都为k=2514,码率分别为1/2、6/11、3/5。The following describes in detail the use of the construction method stated in the present invention to construct three kinds of QC-LDPC codes with code rate compatibility, the information bit length of which is k=2514, and the code rates are 1/2, 6/11, and 3/5 respectively.

1)首先,通过GCDg8算法搜索得到(a0,a1,…,a5)={0,1,12,13,35,38},同时根据(3)确定P=419,根据(1)构造一个J=6,L=12,R=1/2的指数矩阵为母码。由此,得到1个列重为3的(5028,2514)QC-LDPC母码。1) First, search through the GCDg8 algorithm to obtain (a 0 ,a 1 ,…,a 5 )={0,1,12,13,35,38}, and determine P=419 according to (3), and according to (1) Construct an exponential matrix of J=6, L=12, R=1/2 as mother code. Thus, a (5028, 2514) QC-LDPC mother code with a column weight of 3 is obtained.

2)然后,经过第1次删除最后一行一列可以得到了码率R=6/11的第1个(4609,2514)QC-LDPC子码,再经过第2次删除最后一行一列得到了码率R=3/5的第2个(4190,2514)QC-LDPC子码。其逐次行列删除过程如图3所示。2) Then, after deleting the last row and column for the first time, the first (4609, 2514) QC-LDPC subcode with code rate R=6/11 can be obtained, and then delete the last row and column for the second time to obtain the code rate The second (4190, 2514) QC-LDPC subcode of R=3/5. The row-column deletion process is shown in Figure 3.

3)最后,采用相应维数的隐蔽矩阵对各个码率的指数矩阵进行处理。即采用上一部分给出M(6,12,3)、M(5,11,3)、M(4,10,3)分别对码率为1/2、6/11、3/5进行处理。对于J×L的指数矩阵,设定相应的隐蔽矩阵M(J,L,J′)为列重等于(近似)J′的J×L二元矩阵。取码率R=1/2的QC-LDPC码的隐蔽矩阵如下:3) Finally, the exponential matrix of each code rate is processed by the concealment matrix of the corresponding dimension. That is, M(6,12,3), M(5,11,3), and M(4,10,3) given in the previous part are used to process code rates of 1/2, 6/11, and 3/5, respectively. . For a J×L exponential matrix, set the corresponding hidden matrix M(J,L,J′) as a J×L binary matrix with column weight equal to (approximately) J′. The concealment matrix of the QC-LDPC code with code fetch rate R=1/2 is as follows:

Mm 11 // 22 (( 6,12,36,12,3 )) == 00 11 11 11 00 00 00 11 11 11 00 00 00 00 11 11 11 00 00 00 11 11 11 00 00 00 00 11 11 11 00 00 00 11 11 11 11 00 00 00 11 11 11 00 00 00 11 11 11 11 00 00 00 11 11 11 00 00 00 11 11 11 11 00 00 00 11 11 11 00 00 00 -- -- -- (( 55 ))

取码率R=6/11的QC-LDPC码的隐蔽矩阵如下:The concealment matrix of the QC-LDPC code with code fetch rate R=6/11 is as follows:

Mm 66 // 1111 (( 55 ,, 1111 ,, 33 )) == 00 11 11 11 00 00 11 11 11 00 00 00 00 11 11 11 00 00 11 11 11 00 11 00 00 11 11 11 00 00 11 11 11 11 11 00 00 11 11 11 00 00 11 11 11 11 11 00 00 11 11 11 00 00 11 -- -- -- (( 66 ))

取码率R=3/5的QC-LDPC码的隐蔽矩阵如下:The concealment matrix of the QC-LDPC code with code fetch rate R=3/5 is as follows:

Mm 33 // 55 (( 44 ,, 1010 ,, 33 )) == 00 11 11 11 00 11 11 11 11 11 11 00 11 11 11 00 11 11 11 11 11 11 00 11 11 11 00 11 11 11 11 11 11 00 11 11 11 00 11 11 -- -- -- (( 77 ))

经过上述一系列隐蔽矩阵处理后的矩阵,即是本部分提出的一系列大围长、较大最小距离的码率兼容QC-LDPC码的校验矩阵H。The matrices processed by the above series of hidden matrices are a series of check matrixes H of rate-compatible QC-LDPC codes with large girth length and large minimum distance proposed in this part.

针对上述码率兼容QC-LDPC码的编码,采用对上述构造的奇偶校验矩阵H利用高斯消元法,产生一个下三角矩阵,然后进一步初等变换得到右边单位阵形式:H=[P|I](I为(N-K)×(N-K)的单位阵,P为(N-K)×K的矩阵),由G=[I|PT]得生成矩阵G,从而由C=M·G直接进行编码得到编码码字(M为长度为K的信息向量,N为编码后的码长)。For the encoding of the above code rate compatible QC-LDPC code, the parity check matrix H constructed above is used to generate a lower triangular matrix by using the Gaussian elimination method, and then further elementary transformation is performed to obtain the form of the right unit matrix: H=[P|I ] (I is the unit matrix of (NK)×(NK), P is the matrix of (NK)×K), the generator matrix G is obtained by G=[I|P T ], and the encoding is directly performed by C=M·G The encoded codeword is obtained (M is an information vector with a length of K, and N is an encoded code length).

在无线通信和卫星通信这类具有时变信道的系统中,待发送信息经过信源编码后,自适应的根据信道环境采用单个码率兼容QC-LDPC编码器进行信道编码在信道中传输,从而极大地提高了信道的吞吐率,在接收端同样采用单个码率兼容QC-LDPC译码器,编码和译码同时采用一套编/译码器,极大降低了系统的复杂度。采用该码率兼容QC-LDPC码的无线、卫星通信系统模型如图4所示。In systems with time-varying channels such as wireless communication and satellite communication, after the information to be sent is coded by the source, it adaptively adopts a single rate-compatible QC-LDPC coder to perform channel coding and transmits in the channel according to the channel environment, so that The throughput rate of the channel is greatly improved, and a single code rate compatible QC-LDPC decoder is also used at the receiving end, and a set of encoder/decoder is used for encoding and decoding at the same time, which greatly reduces the complexity of the system. The wireless and satellite communication system model using this code rate compatible QC-LDPC code is shown in Figure 4.

接下来,提供本发明实施例中基于矩阵行列删除方法,构造3种码率兼容QC-LDPC码性能仿真结果。仿真是在AWGN信道下进行的,采用BPSK的方式调制,采用BP算法进行译码,设置最大迭代次等于100。Next, performance simulation results of constructing three rate-compatible QC-LDPC codes based on the matrix row and column deletion method in the embodiment of the present invention are provided. The simulation is carried out under the AWGN channel, modulated by BPSK, decoded by BP algorithm, and the maximum number of iterations is set equal to 100.

图5为加性高斯白噪声信道下3种码率兼容的码字BER性能曲线仿真结果。从图中可以看出本发明的实施例中,3种码率兼容QC-LDPC码的性能曲线从右至左,随着码率降低,码字性能越来越好。Figure 5 shows the simulation results of the BER performance curves of the three code rates compatible codewords under the additive Gaussian white noise channel. It can be seen from the figure that in the embodiment of the present invention, the performance curves of the three code rate compatible QC-LDPC codes are from right to left, and as the code rate decreases, the codeword performance becomes better and better.

为说明本发明的基于矩阵行列删除的码率兼容QC-LDPC码构造方法在无线、卫星通信信道下的优点,本发明选取了基于PEG算法构造的LDPC码和本发明提出的基于GCDg8算法构造的码率兼容码字进行对比。In order to illustrate the advantages of the rate-compatible QC-LDPC code construction method based on matrix row and column deletion of the present invention under wireless and satellite communication channels, the present invention has selected the LDPC code based on the PEG algorithm construction and the GCDg8 algorithm construction based on the present invention. Code rate compatible codewords for comparison.

图6为加性高斯白噪声信道下,本发明实施例中3种码率兼容QC-LDPC码与采用PEG算法构造的等码长、等码率、等码重、等围长的LDPC码BER性能比较仿真结果。本发明实施例中的3种码率兼容QC-LDPC码的性能与相对应等码长、码率、码重、围长的PEG算法构造的LDPC的性能略有提升,说明了本发明提出的基于大围长LDPC码,采用逐次行列删除方法构造的码率兼容QC-LDPC码能够十分有效的保证各个码率码字的性能。基于指数矩阵行列删除的构造方法能以较低的实现复杂度构造出和PEG算法所构造的随机码性能相当的码率兼容LDPC码。Figure 6 shows the BER of 3 code rate compatible QC-LDPC codes in the embodiment of the present invention and LDPC codes of equal code length, equal code rate, equal code weight, and equal girth length constructed by the PEG algorithm under the additive Gaussian white noise channel Performance comparison simulation results. The performance of the three code rate compatible QC-LDPC codes in the embodiment of the present invention is slightly improved with the performance of the LDPC constructed by the PEG algorithm corresponding to equal code length, code rate, code weight, and girth, which illustrates the proposed method of the present invention. Based on large-gauge LDPC codes, the rate-compatible QC-LDPC codes constructed by successive row-column deletion method can effectively guarantee the performance of each code rate. The construction method based on exponent matrix row and column deletion can construct the code rate compatible LDPC code with the same performance as the random code constructed by PEG algorithm with low implementation complexity.

指数矩阵逐次行列删除是指对母码的指数矩阵进行逐次删除最后一行一列(每次删除一行一列或者相同的行列数)以获取高码率码。设采用大围长构造算法构造的母码指数矩阵的维数是J×L,经过逐次行列删除方法后得到的高码率码字的码率为:The row-column deletion of the exponential matrix refers to the deletion of the last row and column of the exponential matrix of the mother code (deleting one row and one column or the same number of rows and columns each time) to obtain high-bit-rate codes. Assuming that the dimension of the mother code index matrix constructed by the large girth construction algorithm is J×L, the code rate of the high code rate code word obtained after the row and column deletion method is:

(n=1,2,…,表示对母码的指数矩阵总共删除的行/列数)(8) (n=1,2,..., indicates the total number of deleted rows/columns of the exponential matrix of the mother code) (8)

这种构造码率兼容QC-LDPC码的方法避免了高码率码字出现短环,这是因为矩阵的行列删除即是在无短环的高码率码字对应的Tanner图中删除相应的边,不仅不会产生短环,而且还可能会增大围长。因此,基于行列删除思想的构造方法能够很好的克服打孔后子码译码性能的严重下降和拓展过程中出现短环的缺点。This method of constructing code-rate compatible QC-LDPC codes avoids short loops in high-rate codewords, because the deletion of rows and columns of the matrix is to delete the corresponding Edges, not only will not produce short loops, but may also increase the girth. Therefore, the construction method based on the idea of row and column deletion can well overcome the serious degradation of subcode decoding performance after puncturing and the shortcomings of short loops in the expansion process.

以上对本发明所陈述的基于矩阵行列删除的码率兼容QC-LDPC码构造方法进行了详细的介绍和说明。上述具体实施说明可用于帮助理解本发明的核心思想。本发明密切联系无线、卫星通信系统信道时变的特点,考虑到构造码率兼容LDPC码的打孔技术产生的高码率码字译码性能容易恶化和基于矩阵行列拓展由于需要进行大量的优化工作和非结构化的设计而无法保证其低的编码复杂度这一些缺点、弊端,本发明提出了一种基于矩阵行列删除的码率兼容QC-LDPC码构造方法,与打孔、拓展这些传统的码率兼容的实现方案相比,本方法能够有效的克服打孔后高码率码字译码性能的严重下降和拓展过程中容易出现短环的这些弊端。与PEG算法构造的同码率、码长的码字相比,本方法使用结构化的构造方法对码率兼容QC-LDPC码的校验矩阵的块矩阵进行调整,从而保证了构造过程的较低复杂度。The method for constructing a rate-compatible QC-LDPC code based on matrix row and column deletion stated in the present invention has been introduced and illustrated in detail above. The above specific implementation description can be used to help understand the core idea of the present invention. The present invention is closely related to the time-varying characteristics of wireless and satellite communication system channels, considering that the decoding performance of high codewords generated by the puncturing technology of constructing code rate compatible LDPC codes is easy to deteriorate, and due to the need for a large number of optimizations based on matrix row and column expansion Work and unstructured design can't guarantee its low coding complexity, these shortcoming, drawbacks, the present invention proposes a kind of code rate compatible QC-LDPC code construction method based on matrix row and column deletion, and punching, expanding these traditional Compared with the code rate compatible implementation scheme, this method can effectively overcome the serious degradation of high code rate codeword decoding performance after puncturing and the disadvantages of short loops that are prone to appear in the expansion process. Compared with the code words with the same code rate and code length constructed by the PEG algorithm, this method uses a structured construction method to adjust the block matrix of the parity check matrix of the code rate compatible QC-LDPC code, thus ensuring a relatively smooth construction process. low complexity.

以上这些实施例应理解为仅用于说明本发明而不用于限制本发明的保护范围。在阅读了本发明的记载的内容之后,技术人员可以对本发明作各种改动或修改,这些等效变化和修饰同样落入本发明方法权利要求所限定的范围。The above embodiments should be understood as only for illustrating the present invention but not for limiting the protection scope of the present invention. After reading the content of the present invention, the skilled person can make various changes or modifications to the present invention, and these equivalent changes and modifications also fall within the scope defined by the method claims of the present invention.

Claims (4)

1. a building method for code-rate-compatible QC-LDPC code, is characterized in that comprising the following steps:
101, initialization sequence S is that { columns L, obtains sequence S={a according to GCDg8 algorithm for 0,1}, the line number J of input exponential matrix E 0, a 1..., a j-1, then according to calculating formula P>=(a j-1-a 0) (L-1)+1, the dimension that draws cyclic permutation matrices is P * P, element a ij circulates to the right and moves a corresponding to every row of P * P unit matrix ij position,, i=0,1 ..., J-1; J=0,1 ..., L-1, described exponential matrix E is
E ( a 0 , a 1 , . . . , a J - 1 ) = a 0 &CenterDot; 0 a 0 &CenterDot; 1 . . . a 0 &CenterDot; ( L - 1 ) a 1 &CenterDot; 0 a 1 &CenterDot; 1 . . . a 1 &CenterDot; ( L - 1 ) . . . . . . . . . . . . a J - 1 &CenterDot; 0 a J - 1 &CenterDot; 1 . . . a J - 1 &CenterDot; ( L - 1 ) ; J and L are two integers, J>=3, L>=3, and 0≤a 0<a 1< ... <a j-1, a 0..., a j-1for integer;
102, according to the sequence S={a obtaining in step 101 0, a 1..., a j-1and the dimension P * P of cyclic permutation matrices, according to the structure principle of 101 Exponential matrixes, obtain its check matrix, and enclosing of this check matrix is longly more than or equal to 8;
103, exponential matrix last column and last row of the female code of the quasi-circulating low-density parity check QC-LDPC code of delete step 102 gained LDPC0 obtain subcode LDPC1, last column and last row of deleting the exponential matrix of subcode LDPC1 obtain subcode LDPC2 again, delete by that analogy the high code check subcode that obtains a plurality of code checks, through the code check of the high rate codewords that obtains after ranks delet method successively, be
n=1,2 ..., represent the row/column number that the exponential matrix of female code is deleted altogether;
104, to the exponential matrix E of female code LDPC0 of gained in step 103 and subcode LDPC1, LDPC2, adopt the hidden matrix M of same dimension to process respectively, hidden matrix M (J, L, J ')=(m i,j) 0≤i<J, 0≤j<Lbe the binary matrix of a J * L, hidden operation be defined as follows: if m i,j=1, m i,je i,j=E i,j, otherwise m i,j=0 o'clock, m i,je i,jthe full null matrix of corresponding P * P, the hidden matrix of binary of employing and exponential matrix same dimension is processed the exponential matrix of the QC-LDPC code of phase code rate, be in corresponding exponential matrix, to adopt the null matrix of equal dimension to replace with 0 corresponding position units in hidden matrix, remain unchanged with 1 corresponding position units in hidden matrix, obtain the QC-LDPC code of code-rate-compatible.
2. the building method of code-rate-compatible QC-LDPC code according to claim 1, it is characterized in that: when setting J=6, during L=12, female code LDPC0, the subcode LDPC1 in step 103, the information bit length of subcode LDPC2 are 2514, code check is respectively 1/2,6/11,3/5, and the sequence obtaining by GCDg8 algorithm search is (a 0, a 1..., a 5)={ 0,1,12,13,35,38}, P=419.
3. the building method of code-rate-compatible QC-LDPC code according to claim 1, is characterized in that: described code-rate-compatible QC-LDPC code is comprised of a nested codeword structure, and it can work under single encoder/decoder.
4. according to building method and the coding and decoding mode of the code-rate-compatible QC-LDPC code one of claim 1~3 Suo Shu, it is characterized in that: in radio communication and satellite communication system under time varying channel environment, information to be sent is after information source coding, adaptively according to channel circumstance, adopt code-rate-compatible QC-LDPC encoder to carry out chnnel coding to transmit in channel, when channel circumstance is good, adopt high rate codewords to encode, otherwise when channel circumstance is undesirable, adopt low rate codewords to encode.
CN201410142370.9A 2014-04-10 2014-04-10 Method for constructing code-rate compatibility QC-LDPC code Pending CN103944586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410142370.9A CN103944586A (en) 2014-04-10 2014-04-10 Method for constructing code-rate compatibility QC-LDPC code

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410142370.9A CN103944586A (en) 2014-04-10 2014-04-10 Method for constructing code-rate compatibility QC-LDPC code

Publications (1)

Publication Number Publication Date
CN103944586A true CN103944586A (en) 2014-07-23

Family

ID=51192102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410142370.9A Pending CN103944586A (en) 2014-04-10 2014-04-10 Method for constructing code-rate compatibility QC-LDPC code

Country Status (1)

Country Link
CN (1) CN103944586A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835535A (en) * 2015-05-15 2015-08-12 华中科技大学 Solid disc self-adaptive error correction method and system
CN105490684A (en) * 2015-11-30 2016-04-13 华侨大学 Puncturing algorithm of finite length LDPC (Low Density Parity Check) code
CN106685597A (en) * 2017-02-14 2017-05-17 华南理工大学 A Partial Division Ring Coding Method of Raptor Codes Based on Degree Optimization
CN107592958A (en) * 2015-05-18 2018-01-16 华为技术有限公司 Ratio index table more than one and the LDPC of more ratios of spreading factor coding and decodings are used under different code length
CN108023663A (en) * 2016-11-01 2018-05-11 武汉芯泰科技有限公司 A kind of puncturing method and device based on configurable punctured table
CN108063622A (en) * 2016-11-07 2018-05-22 深圳超级数据链技术有限公司 The generation method and device of check matrix
CN108270510A (en) * 2016-12-30 2018-07-10 华为技术有限公司 Communication means and communication equipment based on LDPC code
CN108390676A (en) * 2017-12-27 2018-08-10 重庆邮电大学 A kind of QC-LDPC code innovative construction methods of combination arithmetic progression and protograph
CN108471340A (en) * 2018-03-15 2018-08-31 深圳清华大学研究院 Code-rate-compatible QC-LDPC codes construction and channel coding method and system
CN109617555A (en) * 2018-12-05 2019-04-12 重庆邮电大学 A Design Scheme of Sparse Superposition Code Based on Spatial Coupling
JP2019517209A (en) * 2016-05-13 2019-06-20 中興通訊股▲ふん▼有限公司Zte Corporation Structural LDPC encoding / decoding method and apparatus
US10355711B2 (en) 2014-12-30 2019-07-16 Huawei Technologies Co., Ltd. Data processing method and system based on quasi-cyclic LDPC
CN110830047A (en) * 2019-08-07 2020-02-21 湖南国科锐承电子科技有限公司 Method and system for generating quasi-cyclic low-density parity check code
CN112491500A (en) * 2017-07-07 2021-03-12 华为技术有限公司 Data transmission method and device, sending equipment and receiving equipment

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10355711B2 (en) 2014-12-30 2019-07-16 Huawei Technologies Co., Ltd. Data processing method and system based on quasi-cyclic LDPC
CN104835535A (en) * 2015-05-15 2015-08-12 华中科技大学 Solid disc self-adaptive error correction method and system
CN104835535B (en) * 2015-05-15 2017-12-12 华中科技大学 A kind of solid-state disk adaptive error correction method and system
CN107592958A (en) * 2015-05-18 2018-01-16 华为技术有限公司 Ratio index table more than one and the LDPC of more ratios of spreading factor coding and decodings are used under different code length
CN105490684A (en) * 2015-11-30 2016-04-13 华侨大学 Puncturing algorithm of finite length LDPC (Low Density Parity Check) code
CN105490684B (en) * 2015-11-30 2019-06-04 华侨大学 A Puncture Algorithm for Finite-Length LDPC Codes
JP7025349B2 (en) 2016-05-13 2022-02-24 中興通訊股▲ふん▼有限公司 Structural LDPC coding, decoding methods and equipment
JP2019517209A (en) * 2016-05-13 2019-06-20 中興通訊股▲ふん▼有限公司Zte Corporation Structural LDPC encoding / decoding method and apparatus
CN108023663A (en) * 2016-11-01 2018-05-11 武汉芯泰科技有限公司 A kind of puncturing method and device based on configurable punctured table
CN108023663B (en) * 2016-11-01 2021-04-13 武汉芯泰科技有限公司 Deleting method and device based on configurable deleting table
CN108063622A (en) * 2016-11-07 2018-05-22 深圳超级数据链技术有限公司 The generation method and device of check matrix
CN108063622B (en) * 2016-11-07 2022-01-04 江苏环雅丽书智能科技有限公司 Method and device for generating check matrix
CN108270510A (en) * 2016-12-30 2018-07-10 华为技术有限公司 Communication means and communication equipment based on LDPC code
CN108270510B (en) * 2016-12-30 2020-12-15 华为技术有限公司 Communication method and communication equipment based on LDPC code
CN106685597A (en) * 2017-02-14 2017-05-17 华南理工大学 A Partial Division Ring Coding Method of Raptor Codes Based on Degree Optimization
CN106685597B (en) * 2017-02-14 2019-11-15 华南理工大学 A Partial Division Ring Coding Method of Raptor Codes Based on Degree Optimization
CN112491500B (en) * 2017-07-07 2022-07-29 华为技术有限公司 Data transmission method and device, sending equipment and receiving equipment
CN112491500A (en) * 2017-07-07 2021-03-12 华为技术有限公司 Data transmission method and device, sending equipment and receiving equipment
CN108390676A (en) * 2017-12-27 2018-08-10 重庆邮电大学 A kind of QC-LDPC code innovative construction methods of combination arithmetic progression and protograph
CN108471340A (en) * 2018-03-15 2018-08-31 深圳清华大学研究院 Code-rate-compatible QC-LDPC codes construction and channel coding method and system
CN108471340B (en) * 2018-03-15 2020-10-30 深圳清华大学研究院 Rate Compatible QC-LDPC Code Construction and Channel Coding Method and System
CN109617555A (en) * 2018-12-05 2019-04-12 重庆邮电大学 A Design Scheme of Sparse Superposition Code Based on Spatial Coupling
CN110830047A (en) * 2019-08-07 2020-02-21 湖南国科锐承电子科技有限公司 Method and system for generating quasi-cyclic low-density parity check code

Similar Documents

Publication Publication Date Title
CN103944586A (en) Method for constructing code-rate compatibility QC-LDPC code
US11750220B2 (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
US10819370B2 (en) Transmission apparatus, transmission method, reception apparatus and reception method
RU2595542C2 (en) Device and method for transmitting and receiving data in communication/broadcasting system
CN100568755C (en) Apparatus and method for encoding and decoding block low density parity check code with variable encoding rate
JP4602418B2 (en) Parity check matrix generation method, encoding method, decoding method, communication apparatus, encoder, and decoder
JP5120862B2 (en) Channel coding apparatus and method for communication system using low density parity check code
CN103259545B (en) Quasi-cyclic low density odd-even check code belief propagation decoding method based on oscillation
CN101889398A (en) Method and apparatus for encoding and decoding channels in a communication system using low-density parity-check codes
CN102571105B (en) Coding method of code-rate-variable low-density parity-check codes (LDPCs) of which performance approximates to channel capacity
CN103731160A (en) Grouping space coupling low density parity check coding method
KR20170075627A (en) Apparatus and method for encoding and decoding in communication or broadcasting system
US12218685B2 (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
KR20170060562A (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
US8312344B2 (en) Communication method and apparatus using LDPC code
CN102904686B (en) For building method and the code modulating method of code modulated QC-LDPC code
JP2014099931A (en) Encoding method, encoder and decoder
KR20170060574A (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
KR102302366B1 (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
CN101150550A (en) Interleaving scheme of LDPC coded 16APSK system
CN104410428A (en) Multi-rate code encoding method for grouped Markov superposition coding based on time division
KR102445150B1 (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
Uchoa et al. Repeat accumulate based constructions for LDPC codes on fading channels
KR20190000768A (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system
KR20170060566A (en) Apparatus and method for channel encoding/decoding in communication or broadcasting system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140723

RJ01 Rejection of invention patent application after publication