CN103928320B - The preparation method of trench gate carborundum insulated gate bipolar transistor - Google Patents
The preparation method of trench gate carborundum insulated gate bipolar transistor Download PDFInfo
- Publication number
- CN103928320B CN103928320B CN201410162752.8A CN201410162752A CN103928320B CN 103928320 B CN103928320 B CN 103928320B CN 201410162752 A CN201410162752 A CN 201410162752A CN 103928320 B CN103928320 B CN 103928320B
- Authority
- CN
- China
- Prior art keywords
- trench
- sic substrate
- substrate
- type sic
- implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 79
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000758 substrate Substances 0.000 claims abstract description 80
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 78
- 238000005468 ion implantation Methods 0.000 claims abstract description 37
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 23
- 229920005591 polysilicon Polymers 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000000137 annealing Methods 0.000 claims abstract description 7
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 238000002513 implantation Methods 0.000 claims description 41
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- -1 nitrogen ions Chemical class 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 239000007943 implant Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 6
- 238000000206 photolithography Methods 0.000 claims description 6
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 2
- 239000012159 carrier gas Substances 0.000 claims description 2
- 230000003628 erosive effect Effects 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims description 2
- 229910000077 silane Inorganic materials 0.000 claims description 2
- 238000005245 sintering Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 2
- 238000005520 cutting process Methods 0.000 abstract description 3
- 238000005498 polishing Methods 0.000 abstract description 2
- 230000004913 activation Effects 0.000 abstract 1
- 239000003292 glue Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D12/00—Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
- H10D12/01—Manufacture or treatment
- H10D12/031—Manufacture or treatment of IGBTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
Landscapes
- Electrodes Of Semiconductors (AREA)
- Thyristors (AREA)
Abstract
本发明公开了一种沟槽栅碳化硅绝缘栅双极型晶体管的制备方法,主要解决目前碳化硅绝缘栅双极型晶体管制备成本过高的问题。其实现步骤包括:1.选用结构性能优良的P型碳化硅衬底,对该衬底背面切割减薄并抛光氧化切割面;2.在衬底正面依次通过离子注入,形成N阱区、N+体接触区、P阱区;3.在衬底正面刻蚀出沟槽,接着生长沟槽栅氧化层,并进行多晶硅淀积,使多晶硅填满沟槽;4.在衬底背面离子注入缓冲层与集电区;5.高温退火,激活注入杂质;6.制备器件电极。与现有方法相比,本发明不需要外延生长过厚的耐压层,节省了大量生产成本,简化了工艺步骤,可用于逆变器、开关电源和照明电路领域。
The invention discloses a method for preparing a trench gate silicon carbide insulated gate bipolar transistor, which mainly solves the problem of high manufacturing cost of the current silicon carbide insulated gate bipolar transistor. The implementation steps include: 1. Selecting a P-type silicon carbide substrate with excellent structural performance, cutting and thinning the back of the substrate and polishing the oxidized cut surface; + body contact region, P well region; 3. Etch a trench on the front of the substrate, then grow a trench gate oxide layer, and deposit polysilicon to fill the trench with polysilicon; 4. Ion implantation on the back of the substrate Buffer layer and collector area; 5. High temperature annealing, activation of implanted impurities; 6. Preparation of device electrodes. Compared with the existing method, the present invention does not require epitaxial growth of an excessively thick voltage-resistant layer, saves a lot of production costs, simplifies the process steps, and can be used in the fields of inverters, switching power supplies and lighting circuits.
Description
技术领域 technical field
本发明属于微电子技术领域,涉及半导体器件的制备方法,特别是一种利用衬底充当耐压层的沟槽栅结构SiC IGBT,可广泛用于变频器、逆变器、开关电源、照明电路和电机等领域。 The invention belongs to the field of microelectronic technology, and relates to a method for preparing a semiconductor device, in particular to a trench gate structure SiC IGBT using a substrate as a voltage-resistant layer, which can be widely used in frequency converters, inverters, switching power supplies, and lighting circuits and motor fields.
技术背景 technical background
碳化硅绝缘栅双极型晶体管,即SiC IGBT,是基于碳化硅材料发展起来的新型耐高压器件。目前电力电子领域应用的固态主流器件是Si IGBT,其关断电压为0.6~6.5kV。经过三十年的发展,Si IGBT已达到性能和器件结构的极限,而随着电动汽车、光伏和风能绿色能源、智能电网等新的应用发展,要求电力电子器件性能上新的飞跃。低微管缺陷密度的SiC宽禁带半导体材料的突破,使新一代电力电子器件成为可能。宽禁带的材料结构导致半导体器件低漏电、高工作温度和抗辐照等性能的改善。宽禁带半导体SiC具有比Si高一个数量级的临界击穿电场,意味着SiC电力电子器件的关断漂移层能更薄和具有更高的掺杂浓度,导致SiC与Si同等器件相比具有低一个量级的导通电阻;更高的载流子饱和速度导致更高的工作频率;更高的热导率将改善热耗散,使器件可以工作在更高的功率密度。 Silicon carbide insulated gate bipolar transistor, or SiC IGBT, is a new type of high-voltage resistant device developed based on silicon carbide materials. At present, the mainstream solid-state device used in the field of power electronics is Si IGBT, and its turn-off voltage is 0.6-6.5kV. After 30 years of development, Si IGBT has reached the limit of performance and device structure. With the development of new applications such as electric vehicles, photovoltaic and wind energy green energy, and smart grids, a new leap in the performance of power electronic devices is required. The breakthrough of SiC wide bandgap semiconductor material with low micropipe defect density has made a new generation of power electronic devices possible. The wide bandgap material structure leads to the improvement of the performance of semiconductor devices such as low leakage, high operating temperature and radiation resistance. The wide bandgap semiconductor SiC has a critical breakdown electric field an order of magnitude higher than Si, which means that the off-drift layer of SiC power electronic devices can be thinner and have higher doping concentration, resulting in SiC having a lower energy efficiency than Si equivalent devices. An order of magnitude on-resistance; higher carrier saturation velocity leads to higher operating frequency; higher thermal conductivity will improve heat dissipation, allowing the device to work at higher power densities.
20世纪90年代中期提出了一种新概念,即IGBT采用U形沟槽栅结构,它采用了从大规模集成工艺借鉴来的硅干法刻蚀技术。在沟槽栅IGBT中,栅压在漂移区中形成电子积累层,增强了PIN二极管中的电子注入,提高了表面的载流子浓度。而原来IGBT中的MOS结构“T”字型导电通路缩短为两条平行的垂直导电通路,沟道从横向变为纵向,导致元胞面积减小,从而增加了单位器件面积内的沟道面积,进而降低了沟道电阻;而且槽栅消除了JFET效应,不会出现电流“瓶颈”区域。所以与平面栅IGBT相比,沟槽栅IGBT能大幅降低通态压降,从而在通态压降和关断能量之间达到更优的折衷。此外,相对于PNP晶体管电流,PIN二极管电流比重的增加能有效抑制擎住效应,所以沟槽栅IGBT比平面栅IGBT具有更大的SOA安全工作区。 In the mid-1990s, a new concept was proposed, that is, the IGBT uses a U-shaped trench gate structure, which uses the silicon dry etching technology borrowed from the large-scale integration process. In the trench gate IGBT, the gate voltage forms an electron accumulation layer in the drift region, which enhances the electron injection in the PIN diode and increases the carrier concentration on the surface. However, the "T"-shaped conductive path of the MOS structure in the original IGBT is shortened to two parallel vertical conductive paths, and the channel changes from horizontal to vertical, resulting in a decrease in cell area, thereby increasing the channel area per unit device area. , thereby reducing the channel resistance; and the groove gate eliminates the JFET effect, and there will be no current "bottleneck" area. Therefore, compared with the planar gate IGBT, the trench gate IGBT can greatly reduce the on-state voltage drop, thereby achieving a better compromise between the on-state voltage drop and the turn-off energy. In addition, relative to the PNP transistor current, the increase in the proportion of the PIN diode current can effectively suppress the latching effect, so the trench gate IGBT has a larger SOA safe operating area than the planar gate IGBT.
传统的沟槽栅SiC IGBT的工艺步骤如下:首先在衬底硅面上生长缓冲层;接着 在缓冲层上生长50~200μm厚的外延耐压层;接着在耐压层上通过离子注入形成阱区、发射区和重掺杂体接触区;然后在衬底正面刻蚀沟槽,生长槽栅氧化层、淀积多晶硅槽栅;最后淀积、光刻器件的金属接触。这种方法存在两方面的不足:一是制备成本高。例如,SiC外延设备价格昂贵,外延过程耗能大等;二是生长较厚SiC外延层的技术难度大,例如对于生长100μm及以上厚度的外延层,其工艺要求高,在国际上只有像Cree等这样顶尖的碳化硅器件公司才能做到,因此,技术瓶颈问题限制了大功率SiC IGBT的普及与应用。 The process steps of the traditional trench gate SiC IGBT are as follows: first grow a buffer layer on the silicon surface of the substrate; then grow a 50-200 μm thick epitaxial withstand voltage layer on the buffer layer; then form a well on the withstand voltage layer by ion implantation region, emitter region and heavily doped body contact region; then etch trenches on the front side of the substrate, grow a trench gate oxide layer, and deposit polysilicon trench gates; finally deposit and lithography the metal contacts of devices. There are two disadvantages in this method: the one is that the preparation cost is high. For example, SiC epitaxial equipment is expensive, and the epitaxial process consumes a lot of energy. Second, it is difficult to grow thicker SiC epitaxial layers. Such a top silicon carbide device company can only do it. Therefore, the technical bottleneck problem limits the popularization and application of high-power SiC IGBT.
发明内容 Contents of the invention
本发明目的在于提出一种沟槽栅碳化硅绝缘栅双极型晶体管的新型制备方法,以解决现有技术制备成本高,工艺难度大的问题,实现大功率SiC IGBT的普及与应用。 The purpose of the present invention is to propose a novel preparation method of trench-gate silicon carbide insulated gate bipolar transistors, so as to solve the problems of high preparation cost and difficult process in the prior art, and realize the popularization and application of high-power SiC IGBTs.
本发明的技术方案包括以下步骤: Technical scheme of the present invention comprises the following steps:
(1)选用零微管的P型SiC衬底,其基平面位错为104/cm-3,衬底浓度为3×1014~8×1014cm-3,沿该P型SiC衬底的背面切割,使其减薄至100μm,再对切割面依次进行抛光、氧化并去除氧化层; (1) Select a P-type SiC substrate with zero micropipes, its basal plane dislocation is 10 4 /cm -3 , and the substrate concentration is 3×10 14 to 8×10 14 cm -3 , along the P-type SiC substrate The backside of the bottom is cut to make it thinner to 100μm, and then the cut surface is polished, oxidized and the oxide layer is removed in sequence;
(2)在所述零微管的P型SiC衬底正面用氮离子进行两次N阱离子注入:第一次注入剂量为1.5×1012cm-2~7.5×1012cm-2,注入能量为300~700Kev;第二次注入剂量8×1011cm-2~4×1012cm-2注入能量为200~450Kev,形成N阱区; (2) Perform two N-well ion implantations with nitrogen ions on the front side of the P-type SiC substrate of the zero micropipe: the first implantation dose is 1.5×10 12 cm -2 to 7.5×10 12 cm -2 , and the implanted The energy is 300-700Kev; the second implant dose is 8×10 11 cm -2 to 4×10 12 cm -2 and the energy is 200-450Kev to form an N well region;
(3)在N阱区左上方与右上方的区域,用氮离子进行重掺杂N+离子注入:注入剂量为9×1013~7×1014cm-2,注入能量为150~300Kev,形成体接触区; (3) In the upper left and upper right regions of the N well region, heavily doped N + ion implantation with nitrogen ions: the implantation dose is 9×10 13 ~7×10 14 cm -2 , and the implantation energy is 150~300Kev, form a body contact zone;
(4)在N阱区上部中间区域用Al离子进行离子注入:注入剂量为3×1014cm-2~1×1015cm-2,注入能量为150~300Kev,形成P阱区; (4) Perform ion implantation with Al ions in the upper middle region of the N well region: the implantation dose is 3×10 14 cm -2 to 1×10 15 cm -2 , and the implantation energy is 150 to 300Kev to form the P well region;
(5)在整个零微管的P型SiC衬底上淀积一层厚度为0.2um的SiO2,在P阱区上面的中间区域光刻沟槽窗口,并对该窗口下部SiC衬底进行沟槽刻蚀,直至沟槽位于N阱下方,使P阱区被隔开为左右两部分,该左右两部分成为发射区; (5) Deposit a layer of SiO 2 with a thickness of 0.2um on the entire P-type SiC substrate with zero micropipes, photoetch the trench window in the middle area above the P well region, and conduct the SiC substrate under the window The groove is etched until the groove is located under the N well, so that the P well region is separated into left and right parts, and the left and right parts become the emission region;
(6)对上述刻蚀出的沟槽的底部和侧壁进行氧化,形成沟槽栅氧化层; (6) Oxidizing the bottom and sidewalls of the etched trench to form a trench gate oxide layer;
(7)在长有沟槽栅氧化层的沟槽内采用低压热壁化学汽相淀积法生长多晶硅,直至多晶硅填满沟槽; (7) growing polysilicon in the trench with the trench gate oxide layer by low-pressure hot-wall chemical vapor deposition until the polysilicon fills the trench;
(8)在所述零微管的P型SiC衬底的背面用铝离子进行离子注入,注入剂量为 4×1012cm-2~3×1013cm-2,注入能量为400~600Kev,形成P型缓冲层; (8) performing ion implantation with aluminum ions on the backside of the P-type SiC substrate with zero micropipes, the implantation dose is 4×10 12 cm -2 to 3×10 13 cm -2 , and the implantation energy is 400-600Kev, Forming a P-type buffer layer;
(9)在P型SiC衬底背面用氮离子进行N+离子注入,注入剂量为4×1013~2×1014cm-2,注入能量为200~350Kev,形成集电区; (9) Perform N + ion implantation with nitrogen ions on the back of the P-type SiC substrate, the implantation dose is 4×10 13 to 2×10 14 cm -2 , and the implantation energy is 200 to 350Kev to form a collector region;
(10)将所述零微管的P型SiC衬底置于1700℃下进行高温退火8~15分钟,激活所有注入杂质; (10) placing the P-type SiC substrate with zero micropipes at 1700° C. for high-temperature annealing for 8 to 15 minutes to activate all implanted impurities;
(11)在所述零微管的P型SiC衬底正面刻蚀出多晶硅栅的侧墙,接着在该衬底正面上依次淀积钛金属层与镍金属层,并进行金属光刻与刻蚀,引出发射极与栅极; (11) Etch the sidewall of the polysilicon gate on the front side of the P-type SiC substrate of the zero micropipe, then deposit a titanium metal layer and a nickel metal layer on the front side of the substrate in sequence, and carry out metal photolithography and etching Erosion, leading to the emitter and gate;
(12)在上述P型SiC衬底背面淀积厚度为1μm镍金属层,引出集电极; (12) Deposit a nickel metal layer with a thickness of 1 μm on the back of the above-mentioned P-type SiC substrate, and lead out the collector;
(13)将完成上述步骤后的基片在900℃温度下金属烧结4~7分钟,完成器件制作。 (13) Metal sintering the substrate after the above steps at a temperature of 900° C. for 4 to 7 minutes to complete device fabrication.
本发明由于选用没有微管结构的P型SiC衬底制备沟槽栅IGBT器件,无需进行外延,可直接通过离子注入制备器件;同时由于省去了外延工艺,进而降低了制备难度,节省了制备成本与时间,极大得节约了资源与能源。 In the present invention, because the P-type SiC substrate without micropipe structure is used to prepare the trench gate IGBT device, the device can be prepared directly by ion implantation without epitaxy; at the same time, because the epitaxy process is omitted, the preparation difficulty is further reduced, and the preparation cost is saved. Cost and time are greatly saved in resources and energy.
附图说明 Description of drawings
图1是现有沟槽栅碳化硅绝缘栅双极型晶体管结构图; FIG. 1 is a structural diagram of an existing trench gate silicon carbide insulated gate bipolar transistor;
图2是本发明制备图1器件的流程图; Fig. 2 is the flow chart of the present invention preparation Fig. 1 device;
图3是本发明制备图1器件的工艺示意图。 Fig. 3 is a schematic diagram of the process for preparing the device of Fig. 1 according to the present invention.
具体实施方式 detailed description
本发明所用到的设备主要有热氧化炉,离子注入机,磁控溅射仪,多晶硅淀积设备。 The equipment used in the present invention mainly includes a thermal oxidation furnace, an ion implanter, a magnetron sputtering apparatus, and polysilicon deposition equipment.
如图1所示,本发明要制备的沟槽栅碳化硅绝缘栅双极型晶体管,其结构包括P型SiC衬底1,N阱区2,N+体接触区3,发射区4,沟槽栅氧化层5,多晶硅槽栅6,缓冲层7,集电区8,SiO2侧墙9,钛金属层10,镍金属层11。其中,P型SiC衬底1是轻掺杂的衬底,P型SiC衬底1的上方是N阱区2,N阱区2的左上角与右上角是体接触区3,N阱区2的中部区域是多晶硅槽栅6,沟槽栅氧化层5包裹着多晶硅槽栅6的底部与侧壁,发射区4位于衬底上部、夹在多晶硅槽栅6左右两边,集电区8位于衬底的最下方,缓冲层7位于集电区8的上方,SiO2侧墙9位于多晶硅槽栅6最上方的左右两侧,钛金属层10分别位于N+体接触区3、发射区4、多晶硅槽 栅6的上方,镍金属层11分别位于集电区8的下方与钛金属层10的上方。 As shown in Figure 1, the trench gate silicon carbide insulated gate bipolar transistor to be prepared in the present invention has a structure comprising a P-type SiC substrate 1, an N well region 2, an N + body contact region 3, an emitter region 4, a trench Groove gate oxide layer 5, polysilicon groove gate 6, buffer layer 7, collector region 8, SiO 2 spacer 9, titanium metal layer 10, nickel metal layer 11. Among them, the P-type SiC substrate 1 is a lightly doped substrate, the top of the P-type SiC substrate 1 is the N well region 2, the upper left corner and the upper right corner of the N well region 2 are the body contact region 3, and the N well region 2 The middle area of the polysilicon trench gate 6 is the polysilicon trench gate 6, the trench gate oxide layer 5 wraps the bottom and side walls of the polysilicon trench gate 6, the emitter region 4 is located on the upper part of the substrate, and is sandwiched between the left and right sides of the polysilicon trench gate 6, and the collector region 8 is located on the substrate. At the bottom of the bottom, the buffer layer 7 is located above the collector region 8, the SiO 2 sidewall 9 is located on the left and right sides of the uppermost polysilicon trench gate 6, and the titanium metal layer 10 is respectively located in the N + body contact region 3, emitter region 4, Above the polysilicon trench gate 6 , the nickel metal layer 11 is respectively located below the collector region 8 and above the titanium metal layer 10 .
本发明制备所述沟槽栅碳化硅绝缘栅双极型晶体管的方法,给出如下三种实施例: The method for preparing the trench gate silicon carbide insulated gate bipolar transistor of the present invention provides the following three embodiments:
实施例1:在基平面位错为104/cm-3、衬底浓度为3×1014cm-3的零微管结构P型SiC衬底上,制备沟槽栅碳化硅绝缘栅双极型晶体管。 Example 1: On a P-type SiC substrate with a zero micropipe structure with a basal plane dislocation of 10 4 /cm -3 and a substrate concentration of 3×10 14 cm -3 , a trench gate silicon carbide insulated gate bipolar was prepared type transistor.
参照图2和图3,本实施例的实现步骤如下: With reference to Fig. 2 and Fig. 3, the implementation steps of the present embodiment are as follows:
步骤1:衬底处理。 Step 1: Substrate processing.
选用基平面位错为104/cm-3、衬底浓度为3×1014cm-3的零微管结构P型SiC衬底,沿该P型SiC衬底1的背面切割使其减薄至100μm;对切割面抛光后,在950℃下湿氧氧化20分钟,再去除氧化层,恢复切割面结构与平整度。 Select a P-type SiC substrate with zero micropipe structure with a basal plane dislocation of 10 4 /cm -3 and a substrate concentration of 3×10 14 cm -3 , cut along the back surface of the P-type SiC substrate 1 to make it thinner to 100 μm; after polishing the cutting surface, wet oxygen oxidation at 950°C for 20 minutes, then remove the oxide layer, and restore the structure and flatness of the cutting surface.
步骤2:N阱离子注入。 Step 2: N well ion implantation.
(2.1)采用低压化学汽相淀积方式在经过上述处理后的P型SiC衬底正面淀积一层厚度为0.1μm的SiO2,再淀积厚度为1μm的Al作为氮离子注入的阻挡层,涂胶光刻出N阱注入区窗口; (2.1) Deposit a layer of SiO 2 with a thickness of 0.1 μm on the front of the P-type SiC substrate after the above treatment by low-pressure chemical vapor deposition, and then deposit Al with a thickness of 1 μm as a barrier layer for nitrogen ion implantation , the window of the N well implantation region is etched out by photolithography;
(2.2)对N阱注入区窗口进行两次离子注入:在650℃下,先采用300Kev的注入能量、1.5×1012cm-2的注入剂量进行一次氮离子注入,再采用200Kev的注入能量、8×1011cm-2的注入剂量进行二次氮离子注入,形成N阱区2,如图3中a。 (2.2) Perform two ion implantations on the window of the N well implantation region: at 650°C, first perform a nitrogen ion implantation with an implantation energy of 300Kev and an implantation dose of 1.5×10 12 cm -2 , and then use an implantation energy of 200Kev, The implantation dose of 8×10 11 cm -2 is implanted with nitrogen ions twice to form the N well region 2, as shown in Fig. 3 a.
步骤3:体接触区离子注入。 Step 3: Ion implantation in the body contact region.
在完成上述工艺的P型SiC衬底正面涂胶,光刻出N阱区2的左上角与右上角窗口,对这两个窗口使用氮离子进行一次重掺杂N+离子注入,注入剂量为9×1013cm-2,注入能量为150Kev,形成体接触区3,如图3中b。 Glue is applied on the front side of the P-type SiC substrate after the above process, and the upper left and upper right windows of the N well region 2 are photoetched, and nitrogen ions are used to perform a heavily doped N + ion implantation on these two windows, and the implantation dose is 9×10 13 cm -2 , the implantation energy is 150Kev, forming a body contact region 3, as shown in b in Fig. 3 .
步骤4:P阱区离子注入。 Step 4: Ion implantation in the P well region.
(4.1)在包含体接触区的P型SiC衬底正面涂胶、光刻出N阱区2的中间区域窗口,在该窗口上用铝离子进行一次P+离子注入,注入剂量3×1014cm-2,注入能量为150Kev,形成P阱区,如图3中c; (4.1) Apply glue on the front side of the P-type SiC substrate including the body contact region, and photoetch the middle region window of the N well region 2, and perform a P + ion implantation on the window with an implantation dose of 3×10 14 cm -2 , the implantation energy is 150Kev to form a P well region, as shown in c in Figure 3;
(4.2)去除P型SiC衬底正面淀积的Al和SiO2。 (4.2) Removing Al and SiO 2 deposited on the front side of the P-type SiC substrate.
步骤5:沟槽刻蚀。 Step 5: Trench etching.
(5.1)在经过多步离子注入的P型SiC衬底的整个正面上采用低压化学气相法淀积一层厚度为0.2μm的SiO2层; (5.1) Deposit a SiO2 layer with a thickness of 0.2 μm on the entire front surface of the P-type SiC substrate after multi-step ion implantation by low-pressure chemical vapor method;
(5.2)在上述SiO2层上磁控溅射一层的Ti膜作为ICP刻蚀掩膜,然后涂胶、光刻出沟槽窗口,进行ICP刻蚀直至N阱区下方,形成穿过P阱区的沟槽,如图3中d;最后去胶,除去刻蚀掩膜并清洗,ICP刻蚀的工艺条件为:ICP线圈功率850W,源功率100W,反应气体SF6和O2分别为48sccm和12sccm。 (5.2) Magnetron sputtering a layer on the above SiO2 layer The Ti film is used as an ICP etching mask, and then the glue is applied, and the trench window is etched by photolithography, and the ICP etching is carried out until the bottom of the N well region to form a trench passing through the P well region, as shown in Figure 3 d; finally, the glue is removed , remove the etching mask and clean, the process conditions of ICP etching are: ICP coil power 850W, source power 100W, reaction gas SF 6 and O 2 are 48sccm and 12sccm respectively.
(5.3)穿过P阱区的刻蚀沟槽,将P阱区分隔为左右两部分,用这左右两部分作为发射区4。 (5.3) Through the etched groove of the P well region, the P well region is divided into left and right parts, and the left and right parts are used as the emission region 4 .
步骤6:沟槽栅氧化层的生长。 Step 6: Growth of the trench gate oxide layer.
在1200℃下,对完成沟槽刻蚀的P型SiC衬底正面进行干氧氧化2个小时,在沟槽底部与侧壁形成厚度为40nm的沟槽栅氧化层5;然后在1050℃的N2氛围下进行退火,降低SiO2薄膜表面的粗糙度,如图3中e。 At 1200°C, perform dry oxygen oxidation on the front side of the P-type SiC substrate after trench etching for 2 hours, and form a trench gate oxide layer 5 with a thickness of 40nm on the bottom and side walls of the trench; then at 1050°C Annealing is performed under N 2 atmosphere to reduce the roughness of the SiO 2 film surface, as shown in Figure 3 e.
步骤7:沟槽多晶硅淀积。 Step 7: Trench polysilicon deposition.
在生长有沟槽栅氧化层5的P型SiC衬底的正面,采用低压热壁化学汽相淀积法生长多晶硅,使其填满沟槽,如图3中f;然后涂胶光刻,刻蚀多晶硅层,形成多晶硅槽栅;最后去胶、清洗,其中,生长多晶硅的工艺条件是:环境温度为650℃, On the front side of the P-type SiC substrate with the trench gate oxide layer 5 grown, polysilicon is grown by the low-pressure hot-wall chemical vapor deposition method to fill the trench, as shown in Fig. 3 f; Etching the polysilicon layer to form a polysilicon groove gate; finally removing glue and cleaning, wherein the process conditions for growing polysilicon are: the ambient temperature is 650°C,
淀积压强为80Pa,反应气体为硅烷和磷化氢,载运气体为氦气。 The deposition pressure is 80Pa, the reaction gas is silane and phosphine, and the carrier gas is helium.
步骤8:缓冲层离子注入。 Step 8: Buffer layer ion implantation.
在P型SiC衬底的背面进行P+离子注入,注入剂量为4×1012cm-2,注入能量为400Kev,形成缓冲层7,如图3中g。 Perform P + ion implantation on the back of the P-type SiC substrate with an implant dose of 4×10 12 cm -2 and an implant energy of 400Kev to form a buffer layer 7 , as shown in g in FIG. 3 .
步骤9:集电极区离子注入。 Step 9: Ion implantation in the collector region.
在含有缓冲层的P型SiC衬底背面用氮离子进行N+离子注入,注入剂量为4×1013cm-2,注入能量为200Kev,形成集电极区8,如图3中g。 Nitrogen ions were used to implant N + ions on the back of the P-type SiC substrate containing the buffer layer. The implant dose was 4×10 13 cm -2 , and the implant energy was 200Kev to form the collector region 8 , as shown in g in FIG. 3 .
步骤10:把上述所制备的P型SiC衬底置于1700℃的氩气环境中,进行高温退火,时间为15分钟,激活注入杂质。 Step 10: Put the above-prepared P-type SiC substrate in an argon environment at 1700° C., perform high-temperature annealing for 15 minutes, and activate the implanted impurities.
步骤11:在衬底正面制备发射极和栅极。 Step 11: Prepare emitter and gate on the front side of the substrate.
(11.1)在上述P型SiC衬底的正面涂胶光刻,刻蚀出槽栅的SiO2侧墙9,如图3中h; (11.1) Apply photolithography on the front side of the above-mentioned P-type SiC substrate, and etch out the SiO2 sidewall 9 of the groove gate, as shown in Figure 3 h;
(11.2)采用磁控溅射法在刻蚀出侧墙9后的P型SiC衬底正面依次淀积钛金属层和镍金属层11,其中,钛金属层厚度为50nm,镍金属层厚度为150nm;接着在金属层上涂胶、显影,进行金属腐蚀形成发射极与栅极,然后去胶、清洗,如图3中i。 (11.2) Deposit a titanium metal layer and a nickel metal layer 11 sequentially on the front side of the P-type SiC substrate after the sidewall 9 has been etched by magnetron sputtering, wherein the thickness of the titanium metal layer is 50 nm, and the thickness of the nickel metal layer is 150nm; then apply glue on the metal layer, develop it, perform metal corrosion to form the emitter and grid, and then remove the glue and clean it, as shown in Figure 3 i.
步骤12:在衬底背面制备集电极。 Step 12: Prepare a collector on the back of the substrate.
在完成栅极和发射极制备的P型SiC衬底背面淀积厚度为1μm镍金属层,引出集电极,如图3中i; Deposit a nickel metal layer with a thickness of 1 μm on the back of the P-type SiC substrate that has completed the gate and emitter preparations, and lead out the collector, as shown in Figure 3 i;
步骤13:将完成上述步骤后的基片在900℃温度下金属烧结4分钟,完成器件制作。 Step 13: Sinter the substrate after the above steps at a temperature of 900° C. for 4 minutes to complete the fabrication of the device.
实施例2:在基平面位错为104/cm-3、衬底浓度为6×1014cm-3的无微管结构P型SiC衬底上,制备沟槽栅型碳化硅绝缘栅双极型晶体管。 Example 2: On a P-type SiC substrate without a micropipe structure with a basal plane dislocation of 10 4 /cm -3 and a substrate concentration of 6×10 14 cm -3 , a trench gate silicon carbide insulated gate double polar transistor.
参照图2和图3,本实施例的实现步骤如下: With reference to Fig. 2 and Fig. 3, the implementation steps of the present embodiment are as follows:
步骤A:衬底处理。 Step A: Substrate treatment.
本步骤与实施例1的步骤1相同。 This step is the same as Step 1 of Example 1.
步骤B:N阱离子注入。 Step B: N well ion implantation.
(b1)本步骤与实施例1的步骤(2.1)相同; (b1) This step is the same as the step (2.1) of Example 1;
(b2)对N阱注入区窗口进行两次离子注入:在650℃下,先采用500Kev的注入能量、4.5×1012cm-2的注入剂量进行一次氮离子注入,再采用350Kev的注入能量、1×1012cm-2的注入剂量进行二次氮离子注入,形成N阱区2,如图3中a。 (b2) Perform two ion implantations on the window of the N-well implantation region: at 650°C, first perform a nitrogen ion implantation with an implantation energy of 500Kev and an implantation dose of 4.5×10 12 cm -2 , and then use an implantation energy of 350Kev, A second nitrogen ion implantation is performed with an implantation dose of 1×10 12 cm -2 to form an N well region 2 , as shown in a in FIG. 3 .
步骤C:在完成上述工艺的P型SiC衬底正面涂胶,光刻出N阱区2左上角与右上角窗口,对这两个窗口使用氮离子进行一次重掺杂N+离子注入,注入剂量为3×1014cm-2,注入能量为250Kev,形成体接触区3,如图3中b。 Step C: Apply glue on the front side of the P-type SiC substrate that has completed the above process, and photoetch the windows in the upper left corner and upper right corner of the N well region 2, and perform a heavily doped N + ion implantation on these two windows using nitrogen ions. The dose is 3×10 14 cm -2 , the implantation energy is 250Kev, and the body contact region 3 is formed, as shown in b in Fig. 3 .
步骤D:在包含体接触区的P型SiC衬底正面涂胶、光刻出N阱区2中间区域的窗口,在该窗口上用铝离子进行一次P+离子注入,注入剂量6×1014cm-2,注入能量为220Kev,形成P阱区,如图3中c;接着去除去除P型SiC衬底正面淀积的Al和SiO2阻挡层。 Step D: Apply glue on the front side of the P-type SiC substrate including the body contact region, and photoetch a window in the middle area of the N well region 2, and perform a P + ion implantation on the window with an implantation dose of 6×10 14 cm -2 , the implantation energy is 220Kev to form a P well region, as shown in c in Figure 3; then remove the Al and SiO 2 barrier layer deposited on the front side of the P-type SiC substrate.
步骤E:沟槽刻蚀。 Step E: trench etching.
本步骤与实施例1的步骤5相同。 This step is the same as Step 5 of Example 1.
步骤F:在1200℃下,对完成沟槽刻蚀的P型SiC衬底正面进行干氧氧化3个小时,在沟槽底部与侧壁形成厚度为60nm的沟槽栅氧化层5;然后在1050℃的N2氛围下进行退火,降低SiO2薄膜表面的粗糙度,如图3中e。 Step F: Perform dry oxygen oxidation on the front side of the P-type SiC substrate after trench etching at 1200° C. for 3 hours, and form a trench gate oxide layer 5 with a thickness of 60 nm on the bottom and side walls of the trench; Annealing was performed under N 2 atmosphere at 1050°C to reduce the roughness of the SiO 2 film surface, as shown in Fig. 3 e.
步骤G:沟槽多晶硅淀积。 Step G: trench polysilicon deposition.
本步骤与实施例1的步骤7相同。 This step is the same as Step 7 of Example 1.
步骤H:在P型SiC衬底的背面进行P+离子注入,注入剂量为8×1012cm-2,注入能量为500Kev,形成缓冲层7,如图3中g。 Step H: Perform P + ion implantation on the back of the P-type SiC substrate with an implant dose of 8×10 12 cm -2 and an implant energy of 500Kev to form a buffer layer 7 , as shown in g in FIG. 3 .
步骤I:在含有缓冲层的P型SiC衬底背面用氮进行N+离子注入,注入剂量为8×1013cm-2,注入能量为250Kev,形成集电极区8,如图3中g。 Step I: Implant N + ions with nitrogen on the back of the P-type SiC substrate containing the buffer layer, the implant dose is 8×10 13 cm -2 , and the implant energy is 250Kev to form the collector region 8 , as shown in g in FIG. 3 .
步骤J:把上述所制备的P型SiC衬底置于1700℃的氩气环境中,进行高温退火,时间为10分钟,激活注入杂质。 Step J: placing the above-prepared P-type SiC substrate in an argon environment at 1700° C., performing high-temperature annealing for 10 minutes, and activating the implanted impurities.
步骤K:在衬底正面制备发射极和栅极。 Step K: preparing an emitter and a gate on the front side of the substrate.
本步骤与实施例1的步骤11相同。 This step is the same as Step 11 of Embodiment 1.
步骤L:在衬底背面制备集电极。 Step L: preparing a collector on the back of the substrate.
本步骤与实施例1的步骤12相同。 This step is the same as Step 12 of Embodiment 1.
步骤M:将完成上述步骤后的基片在900℃温度下金属烧结11分钟,完成器件制作。 Step M: Metal sintering the substrate after the above steps at a temperature of 900° C. for 11 minutes to complete device fabrication.
实施例3:在基平面位错为104/cm-3、衬底浓度为8×1014cm-3的无微管结构P型SiC衬底上,制备沟槽栅碳化硅绝缘栅双极型晶体管。 Example 3: On a P-type SiC substrate without a micropipe structure with a basal plane dislocation of 10 4 /cm -3 and a substrate concentration of 8×10 14 cm -3 , a trench gate silicon carbide insulated gate bipolar was prepared type transistor.
参照图2和图3,本实施例的实现步骤如下: With reference to Fig. 2 and Fig. 3, the implementation steps of the present embodiment are as follows:
第一步:衬底处理。 The first step: substrate processing.
本步骤与实施例1的步骤1相同。 This step is the same as Step 1 of Example 1.
第二步:采用低压化学汽相淀积方式在经过上述处理的P型SiC衬底正面淀积一层厚度为1.2μm的Al作为氮离子注入的阻挡层,涂胶光刻出N阱注入区窗口;在650℃下对N阱区窗口进行两次离子注入,即先用700Kev的注入能量、7.5×1012cm-2的注入剂量进行一次氮离子注入,再用450Kev的注入能量、4×1012cm-2的注入剂量进行二次氮离子注入,形成N阱区2,如图3中a。 Step 2: Deposit a layer of Al with a thickness of 1.2 μm on the front of the above-treated P-type SiC substrate by low-pressure chemical vapor deposition as a barrier layer for nitrogen ion implantation, and coat the N well implantation area by photolithography Window: Perform two ion implantations on the window of the N well region at 650°C, that is, first perform a nitrogen ion implantation with an implantation energy of 700Kev and an implantation dose of 7.5×10 12 cm -2 , and then use an implantation energy of 450Kev and a 4× The implantation dose of 10 12 cm -2 is implanted with nitrogen ions twice to form the N well region 2, as shown in Fig. 3a.
第三步:在完成上述工艺的P型SiC衬底正面涂胶,光刻出N阱区2的左上角与右上角窗口,对这两个窗口使用氮离子进行一次重掺杂N+离子注入,注入剂量为7×1014cm-2,注入能量为300Kev,形成体接触区3,如图3中b。 Step 3: Apply glue on the front of the P-type SiC substrate that has completed the above process, and photoetch the upper left and upper right windows of the N well region 2, and use nitrogen ions to perform a heavily doped N + ion implantation on these two windows , the implantation dose is 7×10 14 cm -2 , and the implantation energy is 300Kev to form a body contact region 3 , as shown in b in FIG. 3 .
第四步:在包含体接触区的P型SiC衬底正面涂胶、光刻出N阱区2的中间区域窗口,在该窗口上用铝离子进行能量为300Kev、剂量1×1015cm-2的一次P+离子注 入,形成P阱区4;接着去除P型SiC衬底正面淀积的Al阻挡层,如图3中c。 Step 4: Apply glue on the front side of the P-type SiC substrate including the body contact region, and photoetch the middle region window of the N well region 2, and use aluminum ions on the window with an energy of 300Kev and a dose of 1×10 15 cm - 2 to form a P well region 4; then remove the Al barrier layer deposited on the front side of the P - type SiC substrate, as shown in Figure 3 c.
第五步:沟槽刻蚀。 Step 5: Trench etching.
本步骤与实施例1的步骤5相同。 This step is the same as Step 5 of Example 1.
第六步:在1200℃下,对完成沟槽刻蚀的P型SiC衬底正面进行干氧氧化4个小时,在沟槽底部与侧壁形成厚度为75nm的沟槽栅氧化层5;然后在1050℃的N2氛围下进行退火,降低SiO2薄膜表面的粗糙度,如图3中e。 Step 6: Perform dry oxygen oxidation on the front side of the P-type SiC substrate after trench etching at 1200°C for 4 hours, and form a trench gate oxide layer 5 with a thickness of 75nm on the bottom and side walls of the trench; then Annealing is performed under N2 atmosphere at 1050 °C to reduce the roughness of the SiO2 film surface, as shown in Fig. 3 e.
第七步:沟槽多晶硅淀积。 Step 7: Trench polysilicon deposition.
本步骤与实施例1的步骤7相同。 This step is the same as Step 7 of Example 1.
第八步:在P型SiC衬底的背面用铝离子进行剂量为3×1013cm-2、能量为600Kev的P+离子注入,形成缓冲层7,如图3中g。 Step 8: Perform P + ion implantation with aluminum ions at a dose of 3×10 13 cm -2 and an energy of 600Kev on the back of the P-type SiC substrate to form a buffer layer 7 , as shown in g in FIG. 3 .
第九步:在含有缓冲层的P型SiC衬底背面用氮离子进行剂量为2×1014cm-2、能量为350Kev的N+离子注入,形成集电极区8,如图3中g。 Step 9: Perform N + ion implantation with nitrogen ions at a dose of 2×10 14 cm -2 and an energy of 350Kev on the back of the P-type SiC substrate containing a buffer layer to form a collector region 8 , as shown in g in FIG. 3 .
第十步:把经过上述步骤后的P型SiC衬底置于1700℃的氩气环境中,进行高温退火,时间为8分钟,激活注入杂质。 Step 10: Place the P-type SiC substrate after the above steps in an argon environment at 1700° C., perform high-temperature annealing for 8 minutes, and activate the implanted impurities.
第十一步:在衬底正面制备发射极和栅极。 Step 11: Prepare the emitter and gate on the front side of the substrate.
本步骤与实施例1的步骤11相同。 This step is the same as Step 11 of Embodiment 1.
第十二步:在衬底背面制备集电极。 Step 12: Prepare a collector on the back of the substrate.
本步骤与实施例1的步骤12相同。 This step is the same as Step 12 of Embodiment 1.
第十三步:将完成上述步骤后的基片在900℃温度下金属烧结7分钟,完成器件制作。 Step 13: Sinter the substrate after the above steps at a temperature of 900° C. for 7 minutes to complete the fabrication of the device.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410162752.8A CN103928320B (en) | 2014-04-21 | 2014-04-21 | The preparation method of trench gate carborundum insulated gate bipolar transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410162752.8A CN103928320B (en) | 2014-04-21 | 2014-04-21 | The preparation method of trench gate carborundum insulated gate bipolar transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103928320A CN103928320A (en) | 2014-07-16 |
CN103928320B true CN103928320B (en) | 2016-08-24 |
Family
ID=51146502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410162752.8A Active CN103928320B (en) | 2014-04-21 | 2014-04-21 | The preparation method of trench gate carborundum insulated gate bipolar transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103928320B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109244129A (en) * | 2018-11-09 | 2019-01-18 | 上海擎茂微电子科技有限公司 | A kind of trench-type insulated gate bipolar transistor device and preparation method |
CN111490098A (en) * | 2020-04-17 | 2020-08-04 | 重庆伟特森电子科技有限公司 | Groove type SiC IGBT structure and preparation method thereof |
CN113270492A (en) * | 2021-05-13 | 2021-08-17 | 重庆邮电大学 | Trench type GaN insulated gate bipolar transistor |
CN113189637A (en) * | 2021-06-07 | 2021-07-30 | 杭州电子科技大学 | Silicon carbide neutron detector based on double-sided T-shaped grooves |
CN113838756B (en) * | 2021-09-24 | 2024-08-16 | 南瑞联研半导体有限责任公司 | Device manufacturing method for improving Trench-IGBT wafer micro-deformation |
CN116666210A (en) * | 2022-02-21 | 2023-08-29 | 珠海零边界集成电路有限公司 | Insulated gate bipolar transistor, manufacturing method thereof, electronic equipment and storage medium |
CN116666211A (en) * | 2022-02-21 | 2023-08-29 | 珠海零边界集成电路有限公司 | Insulated gate bipolar transistor, manufacturing method, electronic device, and storage medium |
CN114975602B (en) * | 2022-07-29 | 2022-11-08 | 深圳芯能半导体技术有限公司 | High-reliability IGBT chip and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2075847A1 (en) * | 2006-10-16 | 2009-07-01 | National Institute Of Advanced Industrial Science | Silicon carbide semiconductor device and method for fabricating the same |
CN102017159A (en) * | 2008-09-12 | 2011-04-13 | 住友电气工业株式会社 | Silicon carbide semiconductor device and process for producing the silicon carbide semiconductor device |
CN103295884A (en) * | 2012-03-02 | 2013-09-11 | 株式会社东芝 | Method of manufacturing semiconductor device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7391058B2 (en) * | 2005-06-27 | 2008-06-24 | General Electric Company | Semiconductor devices and methods of making same |
-
2014
- 2014-04-21 CN CN201410162752.8A patent/CN103928320B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2075847A1 (en) * | 2006-10-16 | 2009-07-01 | National Institute Of Advanced Industrial Science | Silicon carbide semiconductor device and method for fabricating the same |
CN102017159A (en) * | 2008-09-12 | 2011-04-13 | 住友电气工业株式会社 | Silicon carbide semiconductor device and process for producing the silicon carbide semiconductor device |
CN103295884A (en) * | 2012-03-02 | 2013-09-11 | 株式会社东芝 | Method of manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN103928320A (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103928320B (en) | The preparation method of trench gate carborundum insulated gate bipolar transistor | |
CN104241348B (en) | A kind of SiC IGBT of low on-resistance and preparation method thereof | |
CN102227000B (en) | Silicon carbide MOSFET device based on super junction and preparation method | |
CN101383287A (en) | A method of manufacturing a vertical double-diffused metal oxide semiconductor device | |
CN106711207B (en) | SiC junction gate bipolar transistor with vertical channel and method for making the same | |
CN102832248A (en) | Silicon carbide MOSFET (metal-oxide-semiconductor field effect transistor) based on semi-super junction and manufacturing method | |
CN114823911B (en) | Trench silicon carbide MOSFET with integrated high-speed freewheeling diode and preparation method thereof | |
CN102244099A (en) | SiC IEMOSFET (Implantation and Epitaxial Metal-Oxide -Semiconductor Field Effect Transistor) device with epitaxy channel and manufacturing method of SiC IEMOSFET device | |
CN107731923B (en) | Silicon carbide super-junction MOSFET device with low on-resistance and small gate charge and preparation method | |
CN105679816A (en) | Trench gate charge storage type IGBT and manufacturing method thereof | |
CN110349853A (en) | Wide bandgap semiconductor device and the method for being used to form wide bandgap semiconductor device | |
CN105161533A (en) | Silicon carbide VDMOS device and manufacturing method | |
CN107658214A (en) | A low on-resistance silicon carbide MOSFET device with double trenches and a floating region and its preparation method | |
CN103928309B (en) | Method for manufacturing N-channel silicon carbide insulated gate bipolar transistor | |
CN113506826B (en) | A trench type silicon carbide transistor and its preparation method | |
CN107658215A (en) | Silicon carbide device and manufacturing method thereof | |
CN103928321B (en) | The preparation method of carborundum insulated gate bipolar transistor | |
CN103681256B (en) | A kind of silicon carbide MOSFET device and preparation method thereof | |
CN111755521A (en) | A Silicon Carbide UMOSFET Device with Integrated TJBS | |
CN107658213A (en) | Silicon carbide power device terminal and manufacturing method thereof | |
CN112838126B (en) | Asymmetric silicon carbide UMOSFET device with shielding area and preparation method | |
CN106783987A (en) | The SiC Schottky gates bipolar transistor and preparation method of a kind of longitudinal channel | |
CN107731912B (en) | Double-groove silicon carbide IGBT device with low on-resistance and small gate charge and preparation method | |
CN103928322B (en) | The preparation method of punch carborundum insulated gate bipolar transistor | |
CN104347403B (en) | A kind of manufacture method of insulated gate bipolar transistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |