CN103903861A - 金属硫化物与石墨烯复合材料对电极及其制备方法和应用 - Google Patents
金属硫化物与石墨烯复合材料对电极及其制备方法和应用 Download PDFInfo
- Publication number
- CN103903861A CN103903861A CN201410168621.0A CN201410168621A CN103903861A CN 103903861 A CN103903861 A CN 103903861A CN 201410168621 A CN201410168621 A CN 201410168621A CN 103903861 A CN103903861 A CN 103903861A
- Authority
- CN
- China
- Prior art keywords
- graphene
- sulfide
- electrode
- metal sulfide
- counter electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 89
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 83
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 229910052976 metal sulfide Inorganic materials 0.000 title claims abstract description 25
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 13
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 9
- 239000006185 dispersion Substances 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 239000012298 atmosphere Substances 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 230000008021 deposition Effects 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 20
- 230000003197 catalytic effect Effects 0.000 abstract description 13
- 206010070834 Sensitisation Diseases 0.000 abstract description 5
- 230000008313 sensitization Effects 0.000 abstract description 5
- 239000011230 binding agent Substances 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 3
- 238000001035 drying Methods 0.000 abstract 1
- 238000009776 industrial production Methods 0.000 abstract 1
- 238000007747 plating Methods 0.000 abstract 1
- 229910052750 molybdenum Inorganic materials 0.000 description 32
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 31
- 239000011733 molybdenum Substances 0.000 description 31
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 239000007772 electrode material Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 238000011160 research Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000006722 reduction reaction Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 4
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052961 molybdenite Inorganic materials 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- YSHMQTRICHYLGF-UHFFFAOYSA-N 4-tert-butylpyridine Chemical compound CC(C)(C)C1=CC=NC=C1 YSHMQTRICHYLGF-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052809 inorganic oxide Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000012536 packaging technology Methods 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种二维金属硫化物与石墨烯复合材料对电极及其制备方法和在染料敏化太阳能电池中的应用。将金属硫化物与石墨烯复合物负载到导电基底上制备。金属硫化物与石墨烯复合物分散于溶液中,过滤沉积成膜,再加压镀膜于导电基底上,干燥,冷却到室温。所述的金属硫化物与石墨烯的质量比为:20∶1-20;所述的硫化物与叔丁基锂的质量比为:1∶5-50。本发明无需加入粘结剂,因此不需高温除杂,可以很好地保持材料的形貌与结构。与Pt对电极相比,该材料在自然界储量丰富,可大批量工业化生产。与其他对电极材料相比,制备方法简便、催化性能优异,因此该二维金属硫化物石墨烯复合材料在染料敏化太阳能电池领域有广泛的应用前景。
Description
技术领域
本发明涉及一种二维金属硫化物与石墨烯复合材料对电极及其制备方法和在染料敏化太阳能电池中的应用。
背景技术
随着能源危机与环境危机的日益严峻,寻找经济、环保的燃料替代品迫在眉睫。太阳光作为资源丰富、分布广泛、环境友好、可持续利用的可再生资源而受到广泛关注,将太阳能转化为电能的有利转换引发了太阳能电池的研究热潮。染料敏化太阳能电池因其价格低,封装工艺简单,能耗低,材料环境友好以及光电转化效率较高(AM1.5模拟太阳光下转化率可达12.3%)正在逐渐显现其价值。然而染料敏化太阳能电池的研究仍处于初期阶段,目前可遇见的成本和可实现的转化效率仍不能满足商业化推广的需求。因此,近年来人们为降低染料敏化太阳能电池的制备成本,并尽可能提高其光电转化效率,开展了大量的研究工作。
染料敏化太阳能电池由吸附有染料的光阳极(TiO2),含有氧化还原电对(I-/I3 -)的电解液以及催化活性强的对电极组成三明治的电池结构。作为染料敏化电池的重要组成部分,对电极性能的改善将会有效地提高电池的转化效率。Pt电极是目前最常用的对电极,但Pt储备稀缺、价格昂贵,并且在碘溶液中有腐蚀,因此人们不断尝试寻找价格低廉、储量丰富、导电性强、化学/电化学稳定,并且催化活性可与Pt相匹的材料来替代Pt电极。目前已研究的对电极材料包括碳材料(石墨/炭黑,多孔碳,碳纳米管,富勒烯及石墨烯等)对电极[CN200610114581.7;CN200710177810.4;CN200710010546.5;CN200810118071.6;CN200810227107.4;CN201010212640],有机导电聚合物(聚噻吩,聚吡咯,聚苯胺,聚对苯,聚苯乙烯等)对电极[CN200910043344.X;CN200910072716.1;CN200910072714.2],无机氮化物(TiN,WN,MoN,Fe2N等)对电极[CN200910068409.6;CN201110004928.8;Chem.Commun.2009,6720;Angew.Chem.Int.Ed.2010,49,3653],无机氧化物(NiO,WO3/WO2,NbO2/Nb2O5)对电极[Chem.Commun.2011,47,4535;Chem.Commun.2011,47,11489;Electrochem.Commun.2012,24,69],无机碳化物(MoC,VC,TiC,ZrC等)对电极[Chem.Commun.2010,46,8600;Angew.Chem.Int.Ed.2011,50,3520],无机硫化物(CoS,CuS2,NiS,MoS2,WS2等)对电极[J.Am.Chem.Soc.2009,131,15976;Energy Environ.Sci.2011,4,2630;Angew.Chem.Int.Ed.2011,50,11739;Aust.J.Chem.2012,65,1342;J.Mater.Chem.2012,22,18572],以及其中一些材料的复合材料对电极。
催化活性高,稳定性好的硫化物对电极的研究与实施为降低对电极成本提供了一条有效的途径。尤其是具有层状结构的硫化物MS2(其中M可以是Mo、W和Sn等),由于层与层之间的弱相互作用很容易被物理或化学方法克服,可以通过多种手段合成出几层或单层的硫化物二维薄片。这种硫化物薄片具有非常高的比表面积和离子迁移效率,可以为I3 -的还原提供丰富的活性吸附位点,因此是一种非常有前景的染料敏化太阳能电池对电极材料。Wu等人[Phys.Chem.Chem.Phys.2011,13,19298]分别合成出了二硫化钼和二硫化钨纳米薄片对电极材料,两种材料呈现出与Pt对电极相当的光催化能力。
然而二维硫化物材料普遍为带隙较大的半导体,需要与导电材料复合来提高其导电能力。近年来,随着研究的不断进步,石墨烯产业化已经成为可能,意味着石墨烯在太阳能电池中的使用已经不受成本限制。Liu等人[J.Mater.Chem.2012,22,21057]通过高温复合的方法合成出了二硫化钼石墨烯复合材料,与石墨烯复合后二硫化钼的光催化能力明显提高,但是由于此方法对二硫化钼结构的可控性差,不能有效地合成出具有二维结构的二硫化钼。因此,能否制备出比表面积大、活性高的二维硫化物薄片并将其与石墨烯有效复合,对于提高其导电性,催化能力以及稳定性至关重要。
发明内容
本发明的目的在于提供一种二维金属硫化物与石墨烯复合材料对电极及其制备方法和应用。通过有效可行的方法制备出具有二维结构的金属硫化物与石墨烯复合对电极材料。通过合成二维金属硫化物纳米片并进一步与石墨烯复合,得到具有大的比表面积和良好导电能力的复合材料,与此同时通过低温成膜的方法,使材料形貌免于高温烧结的破坏,进而优化染料敏化太阳能电池对电极的催化性能,从而得到成本低、催化活性高、性质稳定的染料敏化太阳能电池,促进染料敏化太阳能电池向工业化推广的发展。本发明无需加入粘结剂,因此不需高温除杂,可以很好地保持材料的形貌与结构。与Pt对电极相比,该类型材料在自然界储量丰富,可以实现大批量工业化生产。与其他同类型半导体对电极材料相比,二维金属硫化物石墨烯对电极制备方法简便、催化性能优异,因此该二维金属硫化物石墨烯复合材料在染料敏化太阳能电池领域有广泛的应用前景。
本发明所提供的二维金属硫化物与石墨烯复合材料对电极是将金属硫化物与石墨烯复合物负载到导电基底上制备得到的,具体过程是将合成的金属硫化物与石墨烯复合物分散于溶液中,通过过滤沉积成膜,再通过加压镀膜于导电基底上,将镀膜后的导电基底干燥后,自然冷却到室温,得到染料敏化太阳能电池的金属硫化物石墨烯对电极。
本发明提供的二维金属硫化物与石墨烯复合材料对电极的制备方法包括以下步骤:
1)按计量将金属硫化物与石墨烯均匀混合后在惰性气氛保护下注入叔丁基锂溶液中,混合均匀,在常温条件下搅拌12-48h。
2)反应产物过滤,得到锂化后的金属硫化物石墨烯粉末。
3)将锂化后得到的硫化物石墨烯粉末分散到大量的水中,并在常温超声1-10h,静置12-72h后取上层悬浮液得到剥离后的产物,过滤,于真空、氩气或氮气气氛30-80℃下于燥1-4h,自然冷却到室温,得到二维金属硫化物石墨烯复合物;
4)将得到的二维金属硫化物石墨烯复合物分散到大量的分散液中,并在常温超声1-5h,经过过滤成膜,再将其加压到导电基底上,在30-80℃下于燥1-4h,自然冷却到室温,得到金属硫化物石墨烯对电极。
所述的硫化物与叔丁基锂的质量比为:1∶5-50。
所述的惰性气体可以是氩气、氮气等。
所述的金属硫化物与石墨烯的质量比为:20∶1-20。
所述的金属硫化物为:MoS2、WS2或SnS2。
所述的分散液可以为水,乙醇,或水与乙醇以任意比例混合的混合物。
步骤3)锂化后的硫化物石墨烯粉末与水的质量比:1∶200-20000。
步骤4)所述的分散液为水,乙醇,或者两者的任意比例的混溶液。
步骤4)所述的二维金属硫化物石墨烯复合物与分散液的质量比:1∶100-10000。
所述的导电基底为导电玻璃或金属(铜,铝等)。
本发明是以N-719染料敏化的TiO2膜作为光阳极。采用的电解液是由0.05摩尔I2、0.1摩尔LiI、0.6摩尔1,2-dimethyl-3-propylimidazolium iodide(DMPII)和0.5摩尔4-tert-butylpyridine溶解于氰化甲烷(acetonitrile)配制而成。采用本发明制备的二维金属硫化物石墨烯对电极,与染料敏化的光阳极和电解液共同组成模拟电池系统进行测试。
本发明通过结合二维金属硫化物与石墨烯的优势,使得材料呈现出良好的导电性和催化能力。测试结果表明,二维金属硫化物石墨烯对电极材料可以呈现出与Pt对电极相当的甚至优于Pt对电极的光电转化效率和填充因子。因此,二维金属硫化物石墨烯复合材料能够很好的实现对电极材料催化性能的提高,因其制备工艺简单、成本低,此类复合材料可以成为良好的Pt金属替代材料,并能够推广到大批量的工业化生产中。二维金属硫化物石墨烯复合材料不仅合成技术简单而且具有高的催化能力和稳定性,因此此类材料在染料敏化太阳能电池中具有较高的商业价值和广阔的应用前景。
附图说明
图1二硫化钼与石墨烯复合材料(MoS2/rGO)的XRD图与MoS2的标准XRD图。
图2石墨烯的扫描(a)、透射(b)电镜图与二硫化钼石墨烯复合材料的扫描电镜图(c)、透射电镜图(d)。
图3二硫化钼与石墨烯复合材料对电极的电流密度-电压曲线。
图4二硫化钼与石墨烯复合材料对电极的功率密度-电压曲线。
具体实施方式
下面结合实例对本发明作进一步说明,但不限于此。
实施例1:二维二硫化钼石墨烯对电极的制备
1)二维二硫化钼石墨烯的合成:将0.25g二硫化钼粉末(天津市光复精细化工研究所,AR)与0.05g石墨烯粉末(根据修饰的Hummer法制备而成,市售的石墨烯粉末均可)放于圆底烧瓶中,在氩气气氛保护下注入10mL叔丁基锂,并搅拌24h,过滤后得到锂化后的二硫化钼[见Angew.Chem.2010,122,4153;Angew.Chem.2013,125,4254]石墨烯混合物。将锂化后的二硫化钼石墨烯混合物分散于500mL蒸馏水中,超声3h,得到含有二硫化钼和石墨烯的混合悬浮液,溶液静置24h后,取上层悬浮液溶液过滤并用大量蒸馏水清洗,真空60℃干燥2h,得到二硫化钼石墨烯复合物。
2)取0.05g二硫化钼石墨烯复合物分散于蒸馏水中超声2h,过滤到微孔滤膜(混合纤维树脂,孔径0.45μm)上,然后将其加压(常温施力加压)在导电基底(掺杂氟的SnO2透明导电玻璃,FTO)上,在60℃干燥1.5h,对电极薄膜厚度5~10μm,得到二硫化钼石墨烯复合材料对电极。
3)电解液由0.05摩尔I2、0.1摩尔LiI、0.6摩尔1,2-dimethyl-3-propylimidazolium iodide(DMPll)和0.5摩尔4-tert-butyl pyridine溶解于氰化甲烷(acetonitrile)配制而成。
将上述对电极、N-719染料敏化TiO2光阳极及上述配比电解液组成模拟染料敏化太阳能电池,在模拟太阳光源Global AM1.5的100mW cm-2的照射条件下测其光伏曲线。
图1是实施例1得到的二硫化钼/石墨烯复合物(MoS2/rGO,rGO为氧化石墨烯)样品的XRD图与二硫化钼标准谱图的对照图,由图可知实施例1中的MoS2也属于六方晶系(JCPDS No.9-312),由于剥离后的二硫化钼厚度降低,使(002)峰值明显减弱。
图2(a)和(b)是实施例1中所使用的石墨烯的扫描电镜图和透射电镜图片,由图可知所制备的石墨烯为薄层的二维片状结构,这种结构将具有较高的比表面积。图2(c)、(d)是实例1所合成的二硫化钼石墨烯复合物的扫描电镜图和透射电镜图,由图2(c)可以看出合成出的二硫化钼石墨烯复合物呈现出片状结构,具有很高的比表面积,可以和太阳能电池中的电解液充分的接触,为I3 -/I-的转化反应提供丰富的反应位点。从图2(d)中可看到二硫化钼石墨烯复合物中的二硫化钼已经被剥离成单层到少层堆积的结构。由于催化I3 -还原的反应发生在二硫化钼的表面,因此这种薄层结构可以更有效地提高二硫化钼的催化效率。与此同时,由于二硫化钼与石墨烯的有效接触,可以使材料呈现出良好地导电能力,进而为电极表面进行的还原反应提供有效的电子传输。
图3是实例1合成出的二硫化钼石墨烯复合材料对电极的电流密度-电压曲线,复合材料作为染料敏化太阳能电池的对电极材料具有与Pt电极相比拟的电流密度-电压特征,二硫化钼石墨烯复合物对电极甚至表现出比Pt对电极更高的短路电流密度。图4给出了实例1合成出的二硫化钼石墨烯复合材料对电极的功率密度-电压曲线。由图4可知,二硫化钼石墨烯复合物为对电极时可达到的光转化效率为5.66%其算得的填充因子为0.57,相同条件下作为对照的Pt作为对电极时可达到的光转化效率为5.58%而填充因子为0.56.因此,通过比较可以看出,所合成出的硫化物-石墨烯对电极材料,由于其良好地导电性能和大的比表面积为电解液中的氧化还原对的转换提供了有效的催化辅助,从而呈现出良好地光转化效果,并可与Pt电极的测量结果相匹敌。
本发明无需加入粘结剂,因此不需高温除杂,可以很好地保持材料的形貌与结构。与Pt对电极相比,该类型材料在自然界储量丰富,可以实现大批量工业化生产。与其他同类型半导体对电极材料相比,二维金属硫化物石墨烯对电极制备方法简便、催化性能优异,因此该二维金属硫化物石墨烯复合材料在染料敏化太阳能电池领域有广泛的应用前景。
Claims (10)
1.一种二维金属硫化物与石墨烯复合材料对电极,其特征在于它是将金属硫化物与石墨烯复合物负载到导电基底上制备得到的,具体过程是将金属硫化物与石墨烯复合物分散于溶液中,通过过滤沉积成膜,再通过加压镀膜于导电基底上,将镀膜后的导电基底干燥后,自然冷却到室温,得到染料敏化太阳能电池的金属硫化物石墨烯对电极。
2.根据权利要求1所述的二维金属硫化物与石墨烯复合材料对电极,其特征在于所述的金属硫化物与石墨烯的质量比为:20∶1-20:所述的硫化物与叔丁基锂的质量比为:1∶5-50。
3.根据权利要求1所述的二维金属硫化物与石墨烯复合材料对电极,其特征在于所述的金属硫化物为:MoS2、WS2或SnS2。
4.根据权利要求1所述的二维金属硫化物与石墨烯复合材料对电极,其特征在于所述的导电基底为导电玻璃或金属铜、铝。
5.一种权利要求1所述的二维金属硫化物与石墨烯复合材料对电极的制备方法,其特征在于包括以下步骤:
1)按计量将金属硫化物与石墨烯均匀混合后在惰性气氛保护下注入叔丁基锂溶液中,混合,在常温条件下搅拌12-48h;
2)反应产物过滤,得到锂化后的金属硫化物石墨烯粉末;
3)将锂化后得到的金属硫化物石墨烯粉末分散到大量的水中,并在常温超声1-10h,静置12-72h后取上层悬浮液得到剥离后的产物,过滤,于真空、氩气或氮气气氛30-80℃下干燥1-4h,自然冷却到室温,得到二维金属硫化物石墨烯复合物;
4)将得到的二维金属硫化物石墨烯复合物分散到大量的分散液中,并在常温超声1-5h,经过过滤成膜,再将其加压到导电基底上,在30-80℃下干燥1-4h,自然冷却到室温,得到金属硫化物石墨烯对电极。
6.根据权利要求5所述的方法,其特征在于所述的硫化物与叔丁基锂的质量比为:1∶5-50。
7.根据权利要求5所述的方法,其特征在于所述的惰性气体是氩气、氮气。
8.根据权利要求5所述的方法,其特征在于所述的分散液为水,乙醇,或水与乙醇以任意比例混合的混合物。
9.根据权利要求5所述的方法,其特征在于步骤3)二维金属硫化物石墨烯粉末与水的质量比:1∶200-20000。
10.根据权利要求5所述的方法,其特征在于步骤4)所述的二维金属硫化物石墨烯复合物与分散液的质量比:1∶100-10000。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410168621.0A CN103903861B (zh) | 2014-04-23 | 2014-04-23 | 金属硫化物与石墨烯复合材料对电极及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410168621.0A CN103903861B (zh) | 2014-04-23 | 2014-04-23 | 金属硫化物与石墨烯复合材料对电极及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103903861A true CN103903861A (zh) | 2014-07-02 |
CN103903861B CN103903861B (zh) | 2017-05-03 |
Family
ID=50995133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410168621.0A Expired - Fee Related CN103903861B (zh) | 2014-04-23 | 2014-04-23 | 金属硫化物与石墨烯复合材料对电极及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103903861B (zh) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104477997A (zh) * | 2014-12-19 | 2015-04-01 | 上海交通大学 | 一种在拉锥光纤侧面高效沉积硫化钨的方法 |
CN104821240A (zh) * | 2015-04-29 | 2015-08-05 | 岭南师范学院 | 一种一步水热合成SnS2/MoS2复合材料的方法及其应用 |
CN105280900A (zh) * | 2015-09-22 | 2016-01-27 | 复旦大学 | 一种二硫化钨/石墨烯纳米带复合材料及其制备方法 |
CN105336508A (zh) * | 2015-11-06 | 2016-02-17 | 东华大学 | 一种柔性的透明二硫化钼薄膜电极的制备方法 |
CN105374573A (zh) * | 2015-12-21 | 2016-03-02 | 哈尔滨工业大学 | 一种硫掺杂石墨烯基超级电容器电极材料的制备方法 |
CN105719845A (zh) * | 2015-12-22 | 2016-06-29 | 信阳师范学院 | 一种超级电容器电极材料硫化钨-炭气凝胶及其制备方法 |
CN106299315A (zh) * | 2016-10-14 | 2017-01-04 | 黑龙江科技大学 | 利用三维石墨烯骨架上生长具有分级结构的层状金属硫化物制备三维复合电极材料的方法 |
CN106356202A (zh) * | 2016-09-28 | 2017-01-25 | 上海电力学院 | 石墨烯/二硫化钨薄膜柔性超级电容器及其制备方法与应用 |
CN107799314A (zh) * | 2017-10-10 | 2018-03-13 | 浙江理工大学 | 二硫化钼/碳化钛/碳复合纳米纤维膜及其制备方法和应用 |
CN107848803A (zh) * | 2015-10-13 | 2018-03-27 | 韩国窑业技术院 | 二维混杂复合材料的制备方法 |
CN109174128A (zh) * | 2018-09-13 | 2019-01-11 | 浙江大学 | 一种二硫化钨的改性方法及其应用 |
CN110534257A (zh) * | 2019-08-19 | 2019-12-03 | 北京理工大学 | 一种不耐热二维薄层材料的微电极精确制作方法 |
CN113307327A (zh) * | 2021-06-23 | 2021-08-27 | 山东华素制药有限公司 | 一种用于1-苄基-3-哌啶醇的废水处理方法 |
CN113426468A (zh) * | 2021-06-23 | 2021-09-24 | 山东华素制药有限公司 | 一种废水处理材料及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005122322A1 (ja) * | 2004-06-08 | 2005-12-22 | Sfc Co., Ltd. | 色素増感型太陽電池及びその製造方法 |
US20090117467A1 (en) * | 2007-11-05 | 2009-05-07 | Aruna Zhamu | Nano graphene platelet-based composite anode compositions for lithium ion batteries |
CN102142540A (zh) * | 2011-02-25 | 2011-08-03 | 浙江大学 | 石墨烯/SnS2复合纳米材料的锂离子电池电极及其制备方法 |
CN102214816A (zh) * | 2011-02-25 | 2011-10-12 | 浙江振龙电源股份有限公司 | 一种锂离子电池石墨烯/ws2复合纳米材料电极及制备方法 |
CN102839388A (zh) * | 2012-09-05 | 2012-12-26 | 中国科学院上海微系统与信息技术研究所 | 一种石墨烯/二硫化钼复合电极材料及其制备方法 |
CN103500661A (zh) * | 2013-09-23 | 2014-01-08 | 同济大学 | 掺氮石墨烯量子点及氧化石墨烯修饰碳纳米管对电极薄膜材料的制备方法和应用 |
-
2014
- 2014-04-23 CN CN201410168621.0A patent/CN103903861B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005122322A1 (ja) * | 2004-06-08 | 2005-12-22 | Sfc Co., Ltd. | 色素増感型太陽電池及びその製造方法 |
US20090117467A1 (en) * | 2007-11-05 | 2009-05-07 | Aruna Zhamu | Nano graphene platelet-based composite anode compositions for lithium ion batteries |
CN102142540A (zh) * | 2011-02-25 | 2011-08-03 | 浙江大学 | 石墨烯/SnS2复合纳米材料的锂离子电池电极及其制备方法 |
CN102214816A (zh) * | 2011-02-25 | 2011-10-12 | 浙江振龙电源股份有限公司 | 一种锂离子电池石墨烯/ws2复合纳米材料电极及制备方法 |
CN102839388A (zh) * | 2012-09-05 | 2012-12-26 | 中国科学院上海微系统与信息技术研究所 | 一种石墨烯/二硫化钼复合电极材料及其制备方法 |
CN103500661A (zh) * | 2013-09-23 | 2014-01-08 | 同济大学 | 掺氮石墨烯量子点及氧化石墨烯修饰碳纳米管对电极薄膜材料的制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
GENTIAN YUE ET AL: "A catalytic composite film of MoS2/graphene flake as a counter electrode for Pt-free dye-sensitized solar cells", 《ELECTROCHIMICA ACTA》 * |
马琳,常焜,陈卫祥: "轻度剥离二硫化钼/石墨烯复合材料的制备及其电化学储锂性能", 《中国科技论文》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104477997A (zh) * | 2014-12-19 | 2015-04-01 | 上海交通大学 | 一种在拉锥光纤侧面高效沉积硫化钨的方法 |
CN104821240B (zh) * | 2015-04-29 | 2017-05-10 | 岭南师范学院 | 一种一步水热合成SnS2/MoS2复合材料的方法及其应用 |
CN104821240A (zh) * | 2015-04-29 | 2015-08-05 | 岭南师范学院 | 一种一步水热合成SnS2/MoS2复合材料的方法及其应用 |
CN105280900A (zh) * | 2015-09-22 | 2016-01-27 | 复旦大学 | 一种二硫化钨/石墨烯纳米带复合材料及其制备方法 |
CN107848803B (zh) * | 2015-10-13 | 2021-06-22 | 韩国窑业技术院 | 二维混杂复合材料的制备方法 |
CN107848803A (zh) * | 2015-10-13 | 2018-03-27 | 韩国窑业技术院 | 二维混杂复合材料的制备方法 |
CN105336508A (zh) * | 2015-11-06 | 2016-02-17 | 东华大学 | 一种柔性的透明二硫化钼薄膜电极的制备方法 |
CN105374573A (zh) * | 2015-12-21 | 2016-03-02 | 哈尔滨工业大学 | 一种硫掺杂石墨烯基超级电容器电极材料的制备方法 |
CN105719845A (zh) * | 2015-12-22 | 2016-06-29 | 信阳师范学院 | 一种超级电容器电极材料硫化钨-炭气凝胶及其制备方法 |
CN105719845B (zh) * | 2015-12-22 | 2018-02-13 | 信阳师范学院 | 一种超级电容器电极材料硫化钨‑炭气凝胶及其制备方法 |
CN106356202A (zh) * | 2016-09-28 | 2017-01-25 | 上海电力学院 | 石墨烯/二硫化钨薄膜柔性超级电容器及其制备方法与应用 |
CN106299315B (zh) * | 2016-10-14 | 2018-08-14 | 黑龙江科技大学 | 利用三维石墨烯骨架上生长具有分级结构的层状金属硫化物制备三维复合电极材料的方法 |
CN106299315A (zh) * | 2016-10-14 | 2017-01-04 | 黑龙江科技大学 | 利用三维石墨烯骨架上生长具有分级结构的层状金属硫化物制备三维复合电极材料的方法 |
CN107799314A (zh) * | 2017-10-10 | 2018-03-13 | 浙江理工大学 | 二硫化钼/碳化钛/碳复合纳米纤维膜及其制备方法和应用 |
CN107799314B (zh) * | 2017-10-10 | 2023-06-06 | 浙江理工大学 | 二硫化钼/碳化钛/碳复合纳米纤维膜及其制备方法 |
CN109174128A (zh) * | 2018-09-13 | 2019-01-11 | 浙江大学 | 一种二硫化钨的改性方法及其应用 |
CN110534257A (zh) * | 2019-08-19 | 2019-12-03 | 北京理工大学 | 一种不耐热二维薄层材料的微电极精确制作方法 |
CN113307327A (zh) * | 2021-06-23 | 2021-08-27 | 山东华素制药有限公司 | 一种用于1-苄基-3-哌啶醇的废水处理方法 |
CN113426468A (zh) * | 2021-06-23 | 2021-09-24 | 山东华素制药有限公司 | 一种废水处理材料及其制备方法 |
CN113426468B (zh) * | 2021-06-23 | 2022-09-16 | 山东华素制药有限公司 | 一种废水处理材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103903861B (zh) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103903861B (zh) | 金属硫化物与石墨烯复合材料对电极及其制备方法和应用 | |
Murugadoss et al. | A simple one-step hydrothermal synthesis of cobaltnickel selenide/graphene nanohybrid as an advanced platinum free counter electrode for dye sensitized solar cell | |
Miao et al. | Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells | |
Luo et al. | Towards optimization of materials for dye‐sensitized solar cells | |
Li et al. | A composite film of TiS 2/PEDOT: PSS as the electrocatalyst for the counter electrode in dye-sensitized solar cells | |
Lin et al. | Hydrothermal synthesis of graphene flake embedded nanosheet-like molybdenum sulfide hybrids as counter electrode catalysts for dye-sensitized solar cells | |
Nemala et al. | Novel high-pressure airless spray exfoliation method for graphene nanoplatelets as a stable counter electrode in DSSC | |
Wang et al. | Facile synthesis of NiCo2O4/carbon black composite as counter electrode for dye-sensitized solar cells | |
Jiang et al. | Cobalt-nickel based ternary selenides as high-efficiency counter electrode materials for dye-sensitized solar cells | |
Nemala et al. | Few layers graphene based conductive composite inks for Pt free stainless steel counter electrodes for DSSC | |
Chang et al. | Facile fabrication of PtNP/MWCNT nanohybrid films for flexible counter electrode in dye-sensitized solar cells | |
CN103985552A (zh) | 过渡金属硫化物与石墨烯复合材料对电极及其制备和应用 | |
Pitchaiya et al. | Nickel sulphide-carbon composite hole transporting material for (CH3NH3PbI3) planar heterojunction perovskite solar cell | |
Xiao et al. | Efficient hydrothermal-processed platinum–nickel bimetallic nano-catalysts for use in dye-sensitized solar cells | |
Huang et al. | Solution-processed relatively pure MoS2 nanoparticles in-situ grown on graphite paper as an efficient FTO-free counter electrode for dye-sensitized solar cells | |
Yue et al. | PEDOT: PSS and glucose assisted preparation of molybdenum disulfide/single-wall carbon nanotubes counter electrode and served in dye-sensitized solar cells | |
Nan et al. | Economically synthesized NiCo2S4/reduced graphene oxide composite as efficient counter electrode in dye-sensitized solar cell | |
Wang et al. | The sesame ball-like CoS/MoS2 nanospheres as efficient counter electrode catalysts for dye-sensitized solar cells | |
Chen et al. | Highly efficient dye-sensitized solar cell with a novel nanohybrid film of Cu2ZnSnS4-MWCNTs as counter electrode | |
Yao et al. | One-step hydrothermal synthesis of ZnS-CoS microcomposite as low cost counter electrode for dye-sensitized solar cells | |
Rao et al. | A hydrothermal reaction combined with a post anion-exchange reaction of hierarchically nanostructured NiCo 2 S 4 for high-performance QDSSCs and supercapacitors | |
Liu et al. | Promising cobalt oxide and cobalt oxide/silver photocathodes for photoelectrochemical water splitting | |
Chen et al. | Efficient dye-sensitized solar cells with CoSe/graphene composite counter electrodes | |
Sookhakian et al. | Layer-by-layer electrodeposited reduced graphene oxide-copper nanopolyhedra films as efficient platinum-free counter electrodes in high efficiency dye-sensitized solar cells | |
Wang et al. | Dye-sensitized solar cells based on low cost carbon-coated tungsten disulphide counter electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170503 |
|
CF01 | Termination of patent right due to non-payment of annual fee |