CN103864044A - Method for converting ferrophosphorus into battery grade ferric phosphate by using microwave method - Google Patents
Method for converting ferrophosphorus into battery grade ferric phosphate by using microwave method Download PDFInfo
- Publication number
- CN103864044A CN103864044A CN201410083977.4A CN201410083977A CN103864044A CN 103864044 A CN103864044 A CN 103864044A CN 201410083977 A CN201410083977 A CN 201410083977A CN 103864044 A CN103864044 A CN 103864044A
- Authority
- CN
- China
- Prior art keywords
- microwave
- ferrophosphorus
- battery
- iron phosphate
- grade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 title claims abstract description 21
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910000399 iron(III) phosphate Inorganic materials 0.000 title claims abstract description 6
- 239000005955 Ferric phosphate Substances 0.000 title claims abstract description 5
- 229940032958 ferric phosphate Drugs 0.000 title claims abstract description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910000398 iron phosphate Inorganic materials 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims abstract description 10
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 8
- 239000002244 precipitate Substances 0.000 claims abstract description 6
- 239000002253 acid Substances 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 150000002500 ions Chemical class 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims abstract description 3
- 239000000243 solution Substances 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 238000004090 dissolution Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 abstract description 7
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 230000035484 reaction time Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- RFGNMWINQUUNKG-UHFFFAOYSA-N iron phosphoric acid Chemical compound [Fe].OP(O)(O)=O RFGNMWINQUUNKG-UHFFFAOYSA-N 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- OBSZRRSYVTXPNB-UHFFFAOYSA-N tetraphosphorus Chemical compound P12P3P1P32 OBSZRRSYVTXPNB-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种利用微波法将磷铁转化为电池级磷酸铁的方法。该方法是将磷铁研磨至200-300目,加入磷酸与硝酸混合酸液,置于微波反应器中,在压力为0.2-0.9MPa,温度为110℃-140℃的条件下,微波反应20-50min,磷铁粉末充分溶解;不需分离杂质离子的情况下,继续微波反应30-50min;压力为0.2-0.9MPa,温度为110℃-140℃;微波反应器通过泄压,将沉淀过滤、洗涤、干燥制备出白色电池级磷酸铁。本方法不需分离杂质离子,制备出的磷酸铁杂质含量少,粒度分布均匀,适用于进一步制备电池级磷酸铁锂。The invention discloses a method for converting ferrophosphorus into battery-grade ferric phosphate by utilizing a microwave method. The method is to grind ferrophosphorus to 200-300 mesh, add a mixed acid solution of phosphoric acid and nitric acid, place it in a microwave reactor, and microwave it for 20 -50min, the ferrophosphorus powder is fully dissolved; if there is no need to separate impurity ions, continue the microwave reaction for 30-50min; the pressure is 0.2-0.9MPa, the temperature is 110°C-140°C; the microwave reactor is depressurized to filter the precipitate , washing, and drying to prepare white battery-grade iron phosphate. The method does not need to separate impurity ions, and the prepared iron phosphate has less impurity content and uniform particle size distribution, and is suitable for further preparing battery-grade lithium iron phosphate.
Description
技术领域 technical field
本发明涉及磷酸盐,特别涉及由磷铁转化为电池级磷酸铁的方法。 The present invention relates to phosphate, in particular to a method for converting ferrophosphorus into battery-grade ferric phosphate.
背景技术 Background technique
磷酸铁锂由于具有高容量、高电压、循环性能好及环境友好的优点,有望成为电动汽车等所需大型储能电池的重要材料。 Lithium iron phosphate is expected to become an important material for large energy storage batteries required for electric vehicles due to its advantages of high capacity, high voltage, good cycle performance and environmental friendliness.
固相反应法是目前磷酸铁锂生产和研究过程中广泛使用的方法,磷酸铁逐渐成为碳热还原法中制作磷酸铁锂的重要前驱体。在众多文献及专利中均用磷酸铁提供铁源与磷源制作性能优良的电池级磷酸铁锂。 The solid-state reaction method is currently widely used in the production and research of lithium iron phosphate, and iron phosphate has gradually become an important precursor for the production of lithium iron phosphate in the carbothermal reduction method. In many literatures and patents, iron phosphate is used to provide iron source and phosphorus source to produce battery-grade lithium iron phosphate with excellent performance.
相关文献及实验研究表明,磷酸铁的制备通常用三价铁盐与磷酸或可溶性磷酸盐溶液混合,利用氨水或碱液控制pH值在1.8左右,在85℃左右加热条件下结晶而成;磷酸铁也可用二价铁盐与磷酸或可溶性磷酸盐构成混合溶液,通过氧化剂与碱液控制反应条件,得到磷酸铁晶体。但在工业化生产过程中,一方面难以有效地通过碱液控制所有反应区域达到均匀的pH值,会带来三价铁的水解,从而产生杂质;另一方面,氨水或其它碱液的使用增加磷酸铁锂的生产成本,同时可能引进杂质,同时由于原料中铁盐成本较高,使得磷酸铁成本较高。申请人针对目前磷酸铁的研究现状,开发了以黄磷生产副产品磷铁为原料,通过微波法溶解及结晶,以及不需要物理法或化学法除杂的基础上,直接制备出电池级磷酸铁。 Relevant literature and experimental studies have shown that iron phosphate is usually prepared by mixing ferric salt with phosphoric acid or soluble phosphate solution, using ammonia water or lye to control the pH value at about 1.8, and crystallizing it under heating conditions at about 85°C; phosphoric acid Iron can also be mixed with ferrous salt and phosphoric acid or soluble phosphate to form a mixed solution, and the reaction conditions can be controlled by oxidant and lye to obtain iron phosphate crystals. However, in the process of industrial production, on the one hand, it is difficult to effectively control all reaction areas to achieve a uniform pH value through lye, which will cause the hydrolysis of ferric iron, resulting in impurities; on the other hand, the use of ammonia or other lye increases The production cost of lithium iron phosphate may introduce impurities at the same time. At the same time, due to the high cost of iron salt in the raw material, the cost of iron phosphate is relatively high. In view of the current research status of iron phosphate, the applicant has developed a method to directly prepare battery-grade iron phosphate by using ferrophosphorus, a by-product of yellow phosphorus production, as raw material, dissolving and crystallizing by microwave method, and without removing impurities by physical or chemical methods. .
发明内容 Contents of the invention
本发明目的是提供一种以磷铁为原料,通过在酸性介质中微波法溶解及结晶,在不需要物理法或化学法除杂和不需要氨水或其它碱液控制pH值的情况下,制备电池级磷酸铁的方法。 The object of the present invention is to provide a ferrophosphorus as raw material, which can be prepared by microwave dissolution and crystallization in an acidic medium without the need for physical or chemical removal of impurities and the need for ammonia water or other lye to control the pH value. Method for battery grade iron phosphate.
本发明的技术方案:它包括如下步骤: Technical scheme of the present invention: it comprises the steps:
步骤1:将磷铁研磨至200目-300目,加入磷酸与硝酸混合酸液,置于微波反应器中,在压力为0.2MPa-0.9MPa,温度为110℃-140℃的条件下,微波反应20min-50min,磷铁粉末充分溶解; Step 1: Grind ferrophosphorus to 200-300 mesh, add phosphoric acid and nitric acid mixed acid solution, place in a microwave reactor, and microwave React for 20min-50min, and the ferrophosphorus powder is fully dissolved;
步骤2:磷铁在上述微波溶解基础上,不需分离杂质离子的情况下,继续微波反应30min-50min;压力为0.2MPa-0.9MPa,温度为110℃-140℃; Step 2: On the basis of the above-mentioned microwave dissolution of ferrophosphorus, without the need to separate impurity ions, continue the microwave reaction for 30min-50min; the pressure is 0.2MPa-0.9MPa, and the temperature is 110°C-140°C;
步骤3:微波反应器通过泄压,将沉淀过滤、洗涤、干燥制备出白色电池级磷酸铁。 Step 3: The microwave reactor is decompressed, and the precipitate is filtered, washed, and dried to prepare white battery-grade iron phosphate.
步骤1中所述混合酸液是指浓度为0.2mol·L-1-1 mol·L-1的磷酸与浓度为0.2mol·L-1-1 mol·L-1的硝酸构成的混合溶液,溶解体系中将磷元素与铁元素摩尔比控制在3:1-6:1。 The mixed acid solution described in step 1 refers to a mixed solution composed of phosphoric acid with a concentration of 0.2mol L -1 -1 mol L -1 and nitric acid with a concentration of 0.2mol L -1 -1 mol L -1 , In the dissolution system, the molar ratio of phosphorus to iron is controlled at 3:1-6:1.
所述微波反应器是指利用波长为0.001~1米的无线电波,即频率为300MHz-3000GHz的电磁波被极性物质吸收后转化为热能的反应器。 The microwave reactor refers to a reactor that uses radio waves with a wavelength of 0.001 to 1 meter, that is, electromagnetic waves with a frequency of 300MHz-3000GHz are absorbed by polar substances and converted into heat energy.
本发明的优点:使用原料磷铁价格低;本发明通过微波溶解与结晶,过程简单,不需要杂质分离;制备出的磷酸铁杂质含量少,正磷酸铁纯度高,粒度分布均匀,适用于进一步制备电池级磷酸铁锂。 The advantages of the present invention: the price of ferrophosphorus as raw material is low; the process of the present invention is simple through microwave dissolution and crystallization, and does not require impurity separation; the prepared ferric phosphate has less impurity content, high purity ferric orthophosphate, and uniform particle size distribution, which is suitable for further Preparation of battery-grade lithium iron phosphate.
具体实施方式 Detailed ways
实施例1: Example 1:
称取研磨至200目的磷铁3克,加入浓度为0.8 mol·L-1磷酸溶液50ml,浓度为0.5 mol·L-1硝酸溶液50ml,搅拌均匀后置于微波反应器密封容器中,第一阶段设置压控为0.7MPa,反应时间为30min,第二阶段设置压控为0.3MPa,反应时间为40min。 Weigh and grind 3 grams of ferrophosphorus to 200 mesh, add 50ml of phosphoric acid solution with a concentration of 0.8 mol L -1 , and 50ml of nitric acid solution with a concentration of 0.5 mol L - 1, stir evenly and place in a sealed container of a microwave reactor. In the first stage, the pressure control is set to 0.7MPa, and the reaction time is 30min. In the second stage, the pressure control is set to 0.3MPa, and the reaction time is 40min.
泄压后,将沉淀过滤、洗涤、干燥,制备出电池级磷酸铁。 After the pressure is released, the precipitate is filtered, washed, and dried to prepare battery-grade iron phosphate.
实施例2: Example 2:
称取研磨至300目的磷铁3克,加入浓度为0.8 mol·L-1磷酸溶液50毫升,浓度为0.5 mol·L-1硝酸溶液50毫升,置于微波反应器密封容器中,第一阶段设置压控为0.6MPa,反应时间为40min,第二阶段设置压控为0.4MPa,反应时间为50min。 Weigh 3 grams of ferrophosphorus ground to 300 mesh, add 50 milliliters of phosphoric acid solution with a concentration of 0.8 mol L -1 , and 50 milliliters of nitric acid solution with a concentration of 0.5 mol L - 1, place in a microwave reactor sealed container, the first stage Set the pressure control to 0.6MPa and the reaction time to 40min. In the second stage, set the pressure control to 0.4MPa and the reaction time to 50min.
泄压后,将沉淀过滤、洗涤、干燥,制备出电池级磷酸铁。 After the pressure is released, the precipitate is filtered, washed, and dried to prepare battery-grade iron phosphate.
实施例3: Example 3:
称取研磨至300目的磷铁3克,加入浓度为0.8 mol·L-1磷酸溶液50毫升,浓度为0.9 mol·L-1硝酸溶液50毫升,置于微波反应器密封容器中,第一阶段设置压控为0.6MPa,反应时间为35min,第二阶段设置压控为0.4MPa,反应时间为50min。 Weigh 3 grams of ferrophosphorus ground to 300 mesh, add 50 milliliters of phosphoric acid solution with a concentration of 0.8 mol L -1 , and 50 milliliters of nitric acid solution with a concentration of 0.9 mol L - 1, place in a microwave reactor sealed container, the first stage Set the pressure control to 0.6MPa, and the reaction time is 35min. In the second stage, set the pressure control to 0.4MPa, and the reaction time to 50min.
泄压后,将沉淀过滤、洗涤、干燥,制备出电池级磷酸铁。 After the pressure is released, the precipitate is filtered, washed, and dried to prepare battery-grade iron phosphate.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410083977.4A CN103864044B (en) | 2014-03-10 | 2014-03-10 | Microwave method is utilized ferrophosphorus to be converted into the method for battery-grade iron phosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410083977.4A CN103864044B (en) | 2014-03-10 | 2014-03-10 | Microwave method is utilized ferrophosphorus to be converted into the method for battery-grade iron phosphate |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103864044A true CN103864044A (en) | 2014-06-18 |
CN103864044B CN103864044B (en) | 2015-08-26 |
Family
ID=50903148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410083977.4A Active CN103864044B (en) | 2014-03-10 | 2014-03-10 | Microwave method is utilized ferrophosphorus to be converted into the method for battery-grade iron phosphate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103864044B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107792840A (en) * | 2017-10-27 | 2018-03-13 | 昆明理工大学 | A kind of method that accessory substance ferrophosphorus using industrial yellow phosphorus production prepares ferric phosphate |
CN107986252A (en) * | 2017-10-27 | 2018-05-04 | 昆明理工大学 | A kind of method that ferric phosphate is prepared using accessory substance ferrophosphorus |
CN108767197A (en) * | 2018-06-05 | 2018-11-06 | 贵州大学 | A kind of preparation method of optimized lithium-ion battery cathode sheet |
CN115432683A (en) * | 2022-10-09 | 2022-12-06 | 铜陵安伟宁新能源科技有限公司 | Method for preparing high-compaction battery-grade iron phosphate under low-temperature condition |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011030786A1 (en) * | 2009-09-09 | 2011-03-17 | 戸田工業株式会社 | Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery |
CN102167303A (en) * | 2011-04-30 | 2011-08-31 | 云南省化工研究院 | Method for preparing anhydrous ferric orthophosphate by microwave spouting |
WO2013099409A1 (en) * | 2011-12-26 | 2013-07-04 | 株式会社村田製作所 | Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery |
-
2014
- 2014-03-10 CN CN201410083977.4A patent/CN103864044B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011030786A1 (en) * | 2009-09-09 | 2011-03-17 | 戸田工業株式会社 | Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery |
CN102167303A (en) * | 2011-04-30 | 2011-08-31 | 云南省化工研究院 | Method for preparing anhydrous ferric orthophosphate by microwave spouting |
WO2013099409A1 (en) * | 2011-12-26 | 2013-07-04 | 株式会社村田製作所 | Method for producing iron phosphate, lithium iron phosphate, electrode active material, and secondary battery |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107792840A (en) * | 2017-10-27 | 2018-03-13 | 昆明理工大学 | A kind of method that accessory substance ferrophosphorus using industrial yellow phosphorus production prepares ferric phosphate |
CN107986252A (en) * | 2017-10-27 | 2018-05-04 | 昆明理工大学 | A kind of method that ferric phosphate is prepared using accessory substance ferrophosphorus |
CN108767197A (en) * | 2018-06-05 | 2018-11-06 | 贵州大学 | A kind of preparation method of optimized lithium-ion battery cathode sheet |
CN108767197B (en) * | 2018-06-05 | 2021-07-13 | 贵州大学 | A kind of preparation method of optimized lithium ion battery cathode sheet |
CN115432683A (en) * | 2022-10-09 | 2022-12-06 | 铜陵安伟宁新能源科技有限公司 | Method for preparing high-compaction battery-grade iron phosphate under low-temperature condition |
CN115432683B (en) * | 2022-10-09 | 2024-04-26 | 铜陵安伟宁新能源科技有限公司 | Method for preparing high-compaction battery-level ferric phosphate under low-temperature condition |
Also Published As
Publication number | Publication date |
---|---|
CN103864044B (en) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102891345B (en) | Method for recycling lithium chloride from waste lithium iron phosphate | |
CN103274383B (en) | Shape-controlled battery grade iron phosphate and preparation method thereof | |
CN110098406B (en) | Preparation method of high-compaction-density high-capacity lithium iron phosphate | |
CN102867954A (en) | Method for synthesizing lithium iron phosphate anode material by adopting emulsion liquid phase | |
CN105742744B (en) | A kind of method that lithium is extracted in the waste liquid containing lithium produced from waste and old lithium ion battery removal process | |
CN104600390B (en) | Method for preparing magnetostriction material by utilizing spent lithium ion batteries | |
CN105118995A (en) | Production method of battery-grade iron phosphate | |
CN104518217A (en) | Battery grade iron and manganese phosphate and preparation method thereof | |
CN107180999B (en) | A kind of method of comprehensive utilization of waste lithium iron phosphate material | |
CN103864044B (en) | Microwave method is utilized ferrophosphorus to be converted into the method for battery-grade iron phosphate | |
CN103086341B (en) | Method for preparing battery-grade iron phosphate with ferrophosphorus | |
CN103351010B (en) | Preparation process of battery-grade lithium carbonate | |
CN104557006A (en) | Method for preparing cobalt ferrite magnetostrictive material from waste lithium ion batteries in low magnetic field | |
CN103094571B (en) | Method for preparing ferric pyrophosphate for lithium battery and ferric pyrophosphate prepared by method | |
CN105977569A (en) | Method for preparing lithium iron phosphate by using lithium iron phosphate waste | |
CN103427081A (en) | A Simple Preparation Method of FePO4 | |
CN103441282A (en) | LiMnPO4/C lithium ion battery cathode material prepared by a template method and preparation method thereof | |
CN115583638A (en) | A kind of purification method of crude lithium phosphate | |
CN101016150A (en) | Continuous hydrothermal synthetic method for lithium ion cell nano anode material | |
CN104409734A (en) | Lithium iron phosphate battery positive material prepared by using microwave-assisted sol-gel method | |
CN104051731A (en) | Pollution-free and zero-discharge lithium iron phosphate preparation method | |
CN105810943A (en) | Method for preparing zinc-doped lithium iron phosphate from phosphated residue | |
CN104269530A (en) | Method for hydro-thermal synthesis of lithium iron phosphate-lithium vanadium phosphate composite material | |
CN102476793B (en) | Sol method for preparing electronic-grade ferric phosphate | |
CN103762361B (en) | The method of LiFePO4 is prepared in a kind of low energy consumption |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder | ||
CP02 | Change in the address of a patent holder |
Address after: 550500 Guizhou Province, Qiannan Buyei and Miao Autonomous Prefecture Fuquan Racecourse town Yingbin Road No. 1 Wengfu group Co-patentee after: Guizhou University Patentee after: WENGFU GROUP Co.,Ltd. Address before: 23, 550002 floor, International Building, No. 57, South City Road, Nanming District, Guiyang, Guizhou Co-patentee before: Guizhou University Patentee before: WENGFU GROUP Co.,Ltd. |