[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103697863B - A kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint - Google Patents

A kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint Download PDF

Info

Publication number
CN103697863B
CN103697863B CN201310697880.8A CN201310697880A CN103697863B CN 103697863 B CN103697863 B CN 103697863B CN 201310697880 A CN201310697880 A CN 201310697880A CN 103697863 B CN103697863 B CN 103697863B
Authority
CN
China
Prior art keywords
msub
mtd
mrow
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310697880.8A
Other languages
Chinese (zh)
Other versions
CN103697863A (en
Inventor
陈德华
杨振华
易凡
唐立新
何岭松
唐亮
陈海峰
陈俊明
毛代勇
高川
杜宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Original Assignee
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center filed Critical High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority to CN201310697880.8A priority Critical patent/CN103697863B/en
Publication of CN103697863A publication Critical patent/CN103697863A/en
Application granted granted Critical
Publication of CN103697863B publication Critical patent/CN103697863B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Fluid Mechanics (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

The invention discloses a kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint, comprise the steps: to arrange video observation camera; Set up picture point projection observation equation; Set up rigid body and epipolar-line constraint equation; Build iterative equation; Iteration asks for system of equations optimum solution; Reconstruct Current camera attitude and model attitude.Good effect of the present invention is: not only make use of the Rigid Constraints condition of test model fuselage features point, but also make use of the Rigid Constraints condition of test chamber wallboard unique point, further increase test model wing unique point and look the conllinear constraint condition in measure geometry more, creatively all constraint condition is become the iterative equation of Unified Form, have and solve that iteration convergence is fast, solving precision is high, the advantage such as position and attitude obtaining test model can be solved simultaneously.

Description

Multi-constraint wind tunnel test model deformation video measurement vibration correction method
Technical Field
The invention relates to the field of computer vision and photogrammetry, in particular to a multi-constraint wind tunnel test model deformation video measurement vibration correction method, which is an engineering application of a machine vision measurement technology in a high-speed wind tunnel test.
Background
In the wind tunnel test process, the test model wing is elastically deformed under the action of aerodynamic load. For a wing with a large aspect ratio, the deformation seriously affects the aerodynamic characteristics of the aircraft, deviates from the design requirement, and must be corrected, so that the deformation of a test model needs to be accurately measured in the wind tunnel test process. The non-contact optical measurement method has the advantages of small interference on a wind tunnel flow field, high measurement precision and no change of the geometric shape of a test model, and is the most widely applied wind tunnel test model deformation measurement method internationally at present.
The method is characterized in that an optical measurement technology is applied to a wind tunnel, particularly a video measurement technology is applied to a high-speed wind tunnel, and a key technical problem which needs to be solved is how to deal with the problem that the measurement precision is seriously reduced due to the change of the attitude of a camera caused by the field vibration of the wind tunnel. In order to ensure the accuracy and reliability of the measured data in the whole wind tunnel test process, vibration correction must be carried out on each frame of image in the test process. In The document "monitoring of Optical Wing formation Measurements at The imaging Development Center" (WimRuyten, Marvin transmitters.47th AIAA interference science measuring and calculating The Deformation of The wind tunnel test model, in order to correct The attitude change of The wind tunnel caused by The vibration of The test section, The method uses The stereoscopic vision measurement technique to measure The Deformation of The wind tunnel test model, and The method regards The fuselage of The test model as an ideal rigid body during The blowing process, so that when The attitude of The test model changes, The relative position of The feature mark points on The fuselage of The model should be kept constant, and The attitude change deviation between cameras caused by The vibration can be calculated by using The constant constraint relationship and The initial value of The relative position of The index points of The model in The static state. However, only by using the rigid body constraint condition of the model body, only the relative position posture between the two cameras can be corrected, and the overall offset of the camera coordinate system in the world coordinate system of the test segment cannot be corrected, so that the current posture and position of the test model cannot be obtained. Meanwhile, as the body of the test model only occupies a small part of the effective measurement area, the method does not fully utilize all measurement characteristics, and the method is very sensitive to the internal parameters of the camera, and any small deviation of the internal parameters of the camera can cause a correction result to generate a large difference. The literature, "determination of camera position coordinates and attitude angles by model deformation video measurement" (rocha, zhangxue, sunstone, etc.. experimental hydrodynamics 2010, (6): 88-91) states that the offset of a single camera relative to the world coordinate system of a wind tunnel test segment is corrected by using a pyramid method, the method independently corrects the vibration deviation of each camera by using the image coordinates of characteristic mark points on a wall plate of the test segment, but the method does not effectively use the implicit constraint relationship between each camera and the test model, so that an additional step is needed to reconstruct the position and the attitude of the test model after correcting the vibration deviation of the camera attitude.
Disclosure of Invention
In order to overcome the defects in the prior art, the invention provides a multi-constraint wind tunnel test model deformation video measurement vibration correction method, which utilizes rigid constraint conditions of the fuselage characteristic points of the test model and rigid constraint conditions of the wall plate characteristic points of the wind tunnel test section, further increases collinear constraint conditions of wing characteristic points of the test model in multi-view measurement geometry, creatively changes all constraint conditions into an iterative equation in a unified form, and has the advantages of fast iterative convergence of solution, high solution precision, capability of simultaneously solving and obtaining the position and the posture of the test model and the like.
The technical scheme adopted by the invention for solving the technical problems is as follows: a multi-constraint wind tunnel test model deformation video measurement vibration correction method comprises the following steps:
step one, arranging a video observation camera:
the method comprises the following steps that two observation cameras are used for carrying out intersection imaging on measurement components of a test model, the two cameras synchronously trigger acquisition during testing, and the two cameras can simultaneously observe all characteristic mark points which are pre-arranged on a wind tunnel test section wallboard and on the test model;
establishing an image point projection observation equation;
step three, establishing a rigid body and polar line constraint equation:
step four, constructing an iterative equation;
step five, iteratively solving the optimal solution of the equation set;
and step six, reconstructing the current camera posture and the model posture.
Compared with the prior art, the invention has the following positive effects:
(1) and simultaneously, three constraint conditions of rigid body constraint of a machine body point of the test model, polar line constraint of a wing point of the test model and rigid body constraint of a wallboard point of the test section are utilized and are creatively transformed into a multivariable equation in a unified form, so that the subsequent iterative optimization solution calculation process is facilitated. Various implicit constraint conditions of a wind tunnel test section and a test model can be fully utilized, and a constraint equation and solution parameters can be flexibly selected according to the field condition; in the practical engineering application process, constraint conditions can be flexibly selected according to the wind tunnel field condition and the geometric shape of the test model, and an iterative equation and a calculation process are simplified.
(2) The method can be used for correcting the vibration deviation of the camera coordinate system in the wind tunnel test section coordinate system and the vibration deviation of the two cameras, and can calculate the real-time posture and position of the test model in the test section coordinate system at the same time.
Drawings
The invention will now be described, by way of example, with reference to the accompanying drawings, in which:
FIG. 1 is a schematic diagram of the pose arrangement of an observation camera on a test segment;
fig. 2 is a schematic diagram of the vibration situation of the observation camera in the test section when the wind tunnel blows, and the symbol in fig. 2: c1 and C2 are observation camera coordinate systems, C1 is defined to be coincident with the camera coordinate system, W is a test section coordinate system, and M is a test model coordinate system.
Detailed Description
The technical scheme of the invention is as follows:
firstly, carrying out intersection imaging on a wind tunnel test model according to a stereoscopic vision measurement principle; calibrating the system before testing; in the test process, the focal length, distortion, image principal point and other internal parameters of the camera are assumed to be kept fixed; meanwhile, the postures of the observation camera and the test model are assumed to be influenced by field airflow and vibration and have offset changes relative to a test section coordinate system.
Secondly, taking the three-dimensional initial coordinates of all the characteristic mark points in the zero state of the test model in a static state as reference, regarding a test model body and a test section wall plate as two independent rigid bodies, and keeping the three-dimensional relative position coordinates of the characteristic mark points in the test process fixed and unchanged; the wing of the test model is regarded as an elastic body, and the image coordinates of the characteristic points of the wing meet the epipolar constraint condition all the time in the test process according to the stereoscopic vision measurement principle.
And thirdly, solving the optimal solution of the equation by using a beam adjustment method by taking a photogrammetric collinear equation as an observation equation, taking rigid body constraint of a model fuselage, rigid body constraint of a test section wallboard and polar line constraint of a model wing as constraint conditions, taking the real-time attitude of the camera and the real-time attitude of the model as unknown variables, taking three-dimensional coordinates of all mark points in a zero state and the initial attitude of the camera as initial values for each frame of image in the test process.
As shown in fig. 1 and fig. 2, a multi-constraint wind tunnel test model deformation video measurement vibration correction method specifically includes the following steps:
step one, arranging a video observation camera:
the method comprises the following steps that two observation cameras (marked as a 1# camera and a 2# camera) are used for carrying out intersection imaging on measurement parts of a test model, the two cameras synchronously trigger acquisition during testing, and all characteristic mark points which are arranged on a wind tunnel test section wallboard and the test model in advance can be observed by the two cameras simultaneously. The arrangement method of the characteristic mark points comprises the following steps:
using the circular characteristic mark points, regarding the body of the test model as a rigid body, arranging more than 3 characteristic mark points on the rigid body, wherein the position distribution of the mark points can not be all on the same straight line; regarding the wing of the test model as an elastic body, and arranging more than 2 characteristic mark points on each measuring section in a straight line; the bottom of the wall plate of the test section is also regarded as a rigid body, more than 3 characteristic mark points are arranged on the rigid body, and the position distribution positions of the mark points cannot be all on the same straight line.
Step two, establishing an image point projection observation equation:
in the zero state of the wind tunnel test model, the initial value image coordinates and three-dimensional coordinates of all characteristic points are collected and calculated, and the initial value of the three-dimensional coordinates of the characteristic points corresponding to the test section coordinate system is set asThe relative pose relationship matrix between the two cameras isDefining a camera coordinate system as a No. 1 camera coordinate system, and defining the initial value of the three-dimensional coordinate of the feature point in the camera coordinate system asIn the wind tunnel test process, due to the influence of field vibration, the position of the camera in the test section deviates from the initial value, and a new pose relationship between the n frame image cameras is set asThe three-dimensional coordinates of the feature points in the camera coordinate system areCorresponding to the three-dimensional coordinates under the coordinate system of the test section as
Setting the three-dimensional coordinates of any feature point P in the coordinate systems of the 1# camera and the 2# camera as P1=[X1 Y1 Z1]TAnd P2=[X2 Y2 Z2]TWhich satisfy the relationshipThe normalized image point coordinates after corresponding distortion correction are(normalized formula isWherein x and y are characteristic point image coordinates, u and v are image principal points, and fx、fyEquivalent focal length).
From the above definitions and the camera aperture imaging principle, the collinearity equation for the feature points P is simplified as follows:
<math><mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>X</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>X</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mn>2</mn> </msub> <mo>/</mo> <msub> <mi>Z</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced></math>
rewriting is in matrix form:
M 1 P 1 = 0 M 2 ( R c n P 1 + T c n ) = 0 - - - ( 0.1 )
in the formula <math><mrow> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow></math> <math><mrow> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msub> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow></math>
The above equation holds for all feature points at all times:
in the zero state, the voltage of the power supply is zero,
M 1 i P 1 0 = 0 M 2 i ( R c 0 P 1 0 + T c 0 ) = 0
the image of the n-th frame is processed,
M 1 i P 1 n = 0 M 2 i ( R c n P 1 n + T c n ) = 0 - - - ( 0.2 )
wherein, <math><mrow> <msubsup> <mi>M</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msubsup> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> <mi>i</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <msubsup> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> <mi>i</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow></math> <math><mrow> <msubsup> <mi>M</mi> <mn>2</mn> <mi>i</mi> </msubsup> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <msubsup> <mover> <mi>x</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> <mi>i</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>-</mo> <msubsup> <mover> <mi>y</mi> <mo>&OverBar;</mo> </mover> <mn>2</mn> <mi>i</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow></math>
step three, establishing a rigid body and polar line constraint equation:
(1) for the three-dimensional coordinates of the feature mark points on the test model body, the three-dimensional coordinates meet rigid body constraint conditions, and for a rigid body, the rotation and translation are only 6 degrees of freedom in total. When the wind tunnel blows, the observed position and posture of the model body under the camera coordinate system change intoThe following rigid body can be obtainedConstraint equation:
P ic n = R mc n P ic 0 + T mc n - - - ( 0.3 )
wherein i represents the characteristic points of the model fuselage,and representing the three-dimensional coordinate values of all the feature points in the camera coordinate system in the zero state of the model.
The position and attitude change of the lower camera coordinate system of the test segment coordinate system is represented as Rn、TnThe position and posture change of the test model is expressed asThe following relationship holds:
R m n = R n R mc n T m n = R n T mc n + T n - - - ( 0.4 )
(2) for the characteristic mark points of the wall plate of the test section, the three-dimensional coordinates under the coordinate system of the test section are kept fixed, and the three-dimensional coordinates under the corresponding camera coordinate system also meet the rigid body constraint condition:
R n P jc 0 + T n = P jc n - - - ( 0.5 )
where j represents a wallboard feature point.
(3) For a test model wing, the rigidity is relatively weak, elastic deformation occurs due to the action of aerodynamic load, and the image point coordinates meet the epipolar constraint condition:
( P k 2 n ) T EP k 1 n = 0 - - - ( 0.6 )
in the formula, k represents the characteristic point of the model wing,homogeneous coordinates of normalized image points for 1# camera and 2# cameraAnd
order to T c n = t 1 t 2 t 3 , Then E = R c n 0 - t 3 t 2 t 3 0 - t 1 - t 2 t 1 0
Step four, constructing an iterative equation:
substituting the constraint (0.3) into the observation equation (0.2) yields:
M 1 i ( R mc n P ic 0 + T mc n ) = 0 M 2 i ( R c n ( R mc n P ic 0 + T mc n ) + T c n ) = 0
setting function F 1 = M 1 i ( R mc n P ic 0 + T mc n ) = 0 F 2 = M 2 i ( R c n ( R mc n P ic 0 + T mc n ) + T c n ) = 0
Definition vector w = [ a b c =]TOperator of <math><mrow> <msub> <mrow> <mo>|</mo> <mi>w</mi> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>c</mi> </mtd> <mtd> <mi>b</mi> </mtd> </mtr> <mtr> <mtd> <mi>c</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mi>a</mi> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>b</mi> </mtd> <mtd> <mi>a</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow></math> Using the formula of Rodrigues transformation R = (I + | w×)(I-|w|×)-1Representing a rotation matrix, definingCorresponding parameters are w mc = a mc b mc c mc , Corresponding parameters are w c = a c b c c c . Will function F1And F2To perform a first order TaylorAnd expanding to obtain an error formula:
<math><mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>&Delta;</mi> <msub> <mi>F</mi> <mn>1</mn> </msub> <mo>+</mo> <msubsup> <mi>M</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>ic</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <msub> <mi>&Delta;w</mi> <mi>mc</mi> </msub> <mo>+</mo> <msub> <mi>&Delta;T</mi> <mi>mc</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;F</mi> <mn>2</mn> </msub> <mo>+</mo> <msubsup> <mi>M</mi> <mn>2</mn> <mi>i</mi> </msubsup> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>ic</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <msub> <mi>&Delta;w</mi> <mi>mc</mi> </msub> <mo>+</mo> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mi>&Delta;T</mi> <mi>mc</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msubsup> <mi>R</mi> <mi>mc</mi> <mi>n</mi> </msubsup> <msubsup> <mi>P</mi> <mi>ic</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mi>mc</mi> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>&Delta;T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced></math>
let the objective function L1And L2The mode of (2) is minimum, a normal equation set can be obtained, and the method is rewritten into a matrix form:
<math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>M</mi> <mn>1</mn> <mi>i</mi> </msubsup> <msub> <mi>J</mi> <mn>1</mn> </msub> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>1</mn> <mi>i</mi> </msubsup> <mi>I</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>i</mi> </msubsup> <msub> <mi>J</mi> <mn>2</mn> </msub> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>i</mi> </msubsup> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>i</mi> </msubsup> <msub> <mi>J</mi> <mn>3</mn> </msub> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>i</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>mc</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;T</mi> <mi>mc</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;T</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>&Delta;F</mi> </mrow> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&Delta;</mi> <msub> <mi>F</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>0.7</mn> <mo>)</mo> </mrow> </mrow></math>
the above formula holds for all fuselage points i, where <math><mrow> <msub> <mi>J</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msubsup> <mi>R</mi> <mi>mc</mi> <mi>n</mi> </msubsup> <msubsup> <mi>P</mi> <mi>ic</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mi>mc</mi> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>.</mo> </mrow></math>
Similarly, the coordinates of the characteristic points of the wallboard satisfy the formula:
F 3 = M 1 j ( R n P jc 0 + T n ) = 0 F 4 = M 2 j ( R c n ( R n P jc 0 + T n ) + T c n ) = 0 . definition of RnHas a mean difference parameter of w n = a 3 b 3 c 3 , ΔTn=ΔTnAnd performing first-order Taylor expansion on the above formula to obtain an error formula:
<math><mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&Delta;F</mi> <mn>3</mn> </msub> <mo>+</mo> <msubsup> <mi>M</mi> <mn>1</mn> <mi>j</mi> </msubsup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>jc</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mi>&Delta;</mi> <msub> <mi>w</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>&Delta;T</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;F</mi> <mn>4</mn> </msub> <mo>+</mo> <msubsup> <mi>M</mi> <mn>2</mn> <mi>j</mi> </msubsup> <mrow> <mo>(</mo> <mo>-</mo> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>jc</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <msub> <mi>&Delta;w</mi> <mi>n</mi> </msub> <mo>+</mo> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mi>&Delta;T</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msup> <mi>R</mi> <mi>n</mi> </msup> <msubsup> <mi>P</mi> <mi>jc</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msup> <mi>T</mi> <mi>n</mi> </msup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>&Delta;T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>L</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced></math>
to make the objective function L3And L4Is minimized, can be obtainedThe system of normal equations:
<math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>j</mi> </msubsup> <msub> <mi>J</mi> <mn>5</mn> </msub> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>j</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>j</mi> </msubsup> <msub> <mi>J</mi> <mn>6</mn> </msub> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>2</mn> <mi>j</mi> </msubsup> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>1</mn> <mi>j</mi> </msubsup> <msub> <mi>J</mi> <mn>4</mn> </msub> </mtd> <mtd> <msubsup> <mi>M</mi> <mn>1</mn> <mi>j</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;T</mi> <mi>c</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>n</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;T</mi> <mi>n</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mi>&Delta;</mi> <msub> <mi>F</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>&Delta;</mi> <msub> <mi>F</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>0.8</mn> <mo>)</mo> </mrow> </mrow></math>
the above formula holds true for all the feature points j of the wall plate, wherein <math><mrow> <msub> <mi>J</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>-</mo> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>jc</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>.</mo> </mrow></math>
Defining function for model wing feature pointsWhereinDefinition of P k 1 n = x 1 y 1 1 T , <math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>t</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>t</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mrow> <mo>|</mo> <msubsup> <mi>T</mi> <mi>c</mi> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>t</mi> </mrow> <mn>3</mn> </msub> </mtd> <mtd> <msub> <mi>t</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>t</mi> <mn>3</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mrow> <mo>-</mo> <mi>t</mi> </mrow> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow></math> Function f5Is deformed into f 5 = ( P k 2 n ) T [ x 1 R c n t 1 + y 1 R c n t 2 + R c n t 3 ] = 0
For function f5To carry outFirst order taylor expansion, resulting in an error equation:
<math><mrow> <msub> <mi>&Delta;f</mi> <mn>5</mn> </msub> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>2</mn> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>J</mi> <mn>7</mn> </msub> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> <mo>-</mo> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <msub> <mi>&Delta;T</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow></math>
in the formula,
<math><mrow> <msub> <mi>J</mi> <mn>7</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mrow> <mo>|</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mrow> <mo>|</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>x</mi> </mrow> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>x</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> </msub> <mo>,</mo> </mrow></math>
rewriting is in matrix form:
<math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>2</mn> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msub> <mi>J</mi> <mn>7</mn> </msub> </mtd> <mtd> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>2</mn> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;T</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mo>[</mo> <msub> <mrow> <mo>-</mo> <mi>&Delta;f</mi> </mrow> <mn>5</mn> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>0.9</mn> <mo>)</mo> </mrow> </mrow></math>
the above equation holds for all the wing feature points k, so that the objective function is <math><mrow> <msub> <mi>L</mi> <mn>5</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>l</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow></math> The norm is the minimum, and a system of normal equations can be obtained:
<math><mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mn>12</mn> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <msub> <mi>J</mi> <mn>7</mn> </msub> <mn>1</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mn>12</mn> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mn>11</mn> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>2</mn> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <msub> <mi>J</mi> <mn>7</mn> </msub> <mi>k</mi> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>2</mn> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>R</mi> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mrow> <mi>k</mi> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;T</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&Delta;</mi> </mrow> <msup> <msub> <mi>f</mi> <mn>5</mn> </msub> <mn>1</mn> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>&Delta;</mi> <msup> <msub> <mi>f</mi> <mn>5</mn> </msub> <mi>k</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mi>k</mi> <mo>&times;</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>0.10</mn> <mo>)</mo> </mrow> </mrow></math>
assuming that the system has i model fuselage feature points, j test segment wall plate points and k model wing feature points, combining the formulas (0.7), (0.8) and (0.10), and assuming that all the formulas have the same weight, an iterative equation containing 18 adjustment variables can be obtained:
in the above formula <math><mrow> <msup> <msub> <mi>J</mi> <mn>1</mn> </msub> <mi>i</mi> </msup> <mo>=</mo> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>ic</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>,</mo> </mrow></math> <math><mrow> <msup> <msub> <mi>J</mi> <mn>2</mn> </msub> <mi>i</mi> </msup> <mo>=</mo> <msubsup> <mrow> <mo>-</mo> <mi>R</mi> </mrow> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>ic</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>,</mo> </mrow></math> <math><mrow> <msup> <msub> <mi>J</mi> <mn>3</mn> </msub> <mi>i</mi> </msup> <mo>=</mo> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msubsup> <mi>R</mi> <mi>mc</mi> <mi>n</mi> </msubsup> <msubsup> <mi>P</mi> <mi>ic</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mi>mc</mi> <mi>n</mi> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>,</mo> </mrow></math> <math><mrow> <msup> <msub> <mi>J</mi> <mn>4</mn> </msub> <mi>j</mi> </msup> <mo>=</mo> <mo>-</mo> <msub> <mrow> <msubsup> <mrow> <mo>|</mo> <mi>P</mi> </mrow> <mi>jc</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>,</mo> </mrow></math> <math><mrow> <msup> <msub> <mi>J</mi> <mn>5</mn> </msub> <mi>j</mi> </msup> <mo>=</mo> <mo>-</mo> <msub> <mrow> <mo>|</mo> <msup> <mi>R</mi> <mi>n</mi> </msup> <msubsup> <mi>P</mi> <mi>jc</mi> <mn>0</mn> </msubsup> <mo>+</mo> <msup> <mi>T</mi> <mi>n</mi> </msup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>,</mo> </mrow></math> <math><mrow> <msup> <msub> <mi>J</mi> <mn>6</mn> </msub> <mi>j</mi> </msup> <mo>=</mo> <msubsup> <mrow> <mo>-</mo> <mi>R</mi> </mrow> <mi>c</mi> <mi>n</mi> </msubsup> <msub> <mrow> <mo>|</mo> <msubsup> <mi>P</mi> <mi>jc</mi> <mn>0</mn> </msubsup> <mo>|</mo> </mrow> <mo>&times;</mo> </msub> <mo>,</mo> </mrow></math> <math><mrow> <msup> <msub> <mi>J</mi> <mn>7</mn> </msub> <mi>k</mi> </msup> <mo>=</mo> <msub> <mfenced open='|' close='|'> <mtable> <mtr> <mtd> <msup> <msub> <mi>y</mi> <mn>1</mn> </msub> <mi>k</mi> </msup> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mrow> <mo>-</mo> <mi>x</mi> </mrow> <mn>1</mn> </msub> <mi>k</mi> </msup> <msub> <mi>t</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <msub> <mi>x</mi> <mn>1</mn> </msub> <mi>k</mi> </msup> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>-</mo> <msup> <msub> <mi>y</mi> <mn>1</mn> </msub> <mi>k</mi> </msup> <msub> <mi>t</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> </msub> <mo>.</mo> </mrow></math>
In the process of actual engineering application, the equation can be simplified according to the actual test conditions of the wind tunnel site. For example, for missile-type test models without elastomeric components, all of the equations above may be eliminatedAndthe iterative equation can also hold; for another example, without considering the constraints of the panel points of the test segment, the coefficient matrix of the above iterative equation removes the last 4j rows and modifies the adjustment parameter to <math><mrow> <msub> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>mc</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;T</mi> <mi>mc</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&Delta;w</mi> <mi>c</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&Delta;</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>12</mn> <mo>&times;</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> </mrow></math> The vibration deviation of the camera can be solved, but the current posture of the model cannot be solved at the moment.
The above iterative equation is abbreviated below as:
JΔD=ΔF (0.11)
step five, iteratively solving the optimal solution of the equation set:
relative attitude between cameras at system zero state(derived from system calibration) decomposition constitutes the initial value of the iteration D 0 = 0 0 w c T c 0 0 , Taking the three-dimensional coordinates and image coordinates of all characteristic points in the zero state of the model asAnd the normalized coordinates of the image points of the wing feature points at the moment of the image frame nA deviation matrix deltaf is constructed. The correction Δ D = (J) of the current adjustment parameter D is obtained by using equation (0.11)T J)-1JTΔ F, update iteration parameter D = D0+ΔD。
Recalculating matrices J and delta F by using the new iteration parameter as an initial value, calculating the correction delta D of the new adjustment parameter D, and repeating the iteration calculation until delta FTAnd when the delta F is smaller than a given threshold value, the iterative calculation process is ended, and the obtained iterative parameter D is the optimal solution meeting all constraint conditions of the system.
And step six, reconstructing the current camera posture and the model posture. Including new pose relationships for the camera at the current timeCamera coordinate system vibration correction Rn、TnAnd model pose
And expressing the optimal solution D obtained by the calculation in the steps as follows: d = [ a ]1 b1 c1 t11 t12 t13 a2 b2 c2 t21 t22 t23 a3 b3 c3 t31 t32 t33]TAnd if so, the pose relationship between the 1# camera and the 2# camera at the current moment of the system is as follows:
R c n = ( I + S 2 ) ( I - S 2 ) - 1 T c n = t 21 t 22 t 23 T , wherein S 2 = 0 - c 2 b 2 c 2 0 - a 2 - b 2 a 2 0
The vibration correction quantity of the camera coordinate system is as follows:
R n = ( I + S 3 ) ( I - S 3 ) - 1 T n = t 31 t 32 t 33 T , wherein S 3 = 0 - c 3 b 3 c 3 0 - a 3 - b 3 a 3 0
The attitude of the test model in the test section coordinate system is as follows:
R m n = R n ( I + S 1 ) ( I - S 1 ) - 1 T m n = R n t 11 t 12 t 13 + T n , wherein S 1 = 0 - c 1 b 1 c 1 0 - a 1 - b 1 a 1 0

Claims (3)

1. A multi-constraint wind tunnel test model deformation video measurement vibration correction method is characterized by comprising the following steps: the method comprises the following steps:
step one, arranging a video observation camera:
the method comprises the following steps that two observation cameras are used for carrying out intersection imaging on measurement components of a test model, the two cameras synchronously trigger acquisition during testing, and the two cameras can simultaneously observe all characteristic mark points which are pre-arranged on a wind tunnel test section wallboard and on the test model;
establishing an image point projection observation equation;
step three, establishing rigid body and polar line constraint equations;
step four, constructing an iterative equation;
step five, iteratively solving the optimal solution of the equation set;
and step six, reconstructing the current camera posture and the model posture.
2. The multi-constraint wind tunnel test model deformation video measurement vibration correction method according to claim 1, characterized in that: the arrangement method of the characteristic mark points comprises the following steps: using circular characteristic mark points, arranging more than 3 characteristic mark points on a machine body of the test model, wherein the position distribution of the mark points can not be all on the same straight line; more than 2 characteristic mark points are arranged on each measuring section of the wing of the test model in a straight line; more than 3 characteristic mark points are arranged at the bottom of the wallboard of the test section, and the distribution positions of the mark points cannot be all on the same straight line.
3. The multi-constraint wind tunnel test model deformation video measurement vibration correction method according to claim 1, characterized in that: and step three, the constraint equations comprise a test model fuselage rigid constraint equation, a test section wallboard rigid constraint equation and a test model wing polar line constraint equation.
CN201310697880.8A 2013-12-18 2013-12-18 A kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint Active CN103697863B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310697880.8A CN103697863B (en) 2013-12-18 2013-12-18 A kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310697880.8A CN103697863B (en) 2013-12-18 2013-12-18 A kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint

Publications (2)

Publication Number Publication Date
CN103697863A CN103697863A (en) 2014-04-02
CN103697863B true CN103697863B (en) 2015-10-28

Family

ID=50359475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310697880.8A Active CN103697863B (en) 2013-12-18 2013-12-18 A kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint

Country Status (1)

Country Link
CN (1) CN103697863B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596037A (en) * 2016-12-16 2017-04-26 中国空气动力研究与发展中心高速空气动力研究所 Wind tunnel test model flow density projection field video measurement method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104008444A (en) * 2014-05-14 2014-08-27 昆明理工大学 Model and method applied to team construction under multi-constraint projects
CN106895952B (en) * 2017-03-24 2018-12-21 大连理工大学 The suppressing method of view-based access control model measuring technique wind tunnel model vibration
CN109100112B (en) * 2018-09-29 2020-01-17 浙江大学 Plane wind vibration response testing method for aeroelastic model wind tunnel test based on computer vision
CN109342008B (en) * 2018-11-09 2020-04-21 中国空气动力研究与发展中心高速空气动力研究所 Wind tunnel test model attack angle single-camera video measuring method based on homography matrix
CN110532618B (en) * 2019-07-29 2022-05-31 中国科学院长春光学精密机械与物理研究所 Large rigid body displacement parameter calculation method based on constraint optimization method
CN111462182B (en) * 2020-03-31 2021-08-06 南京航空航天大学 Trajectory missile three-dimensional trajectory estimation method based on infrared early warning image
CN116593121B (en) * 2023-07-12 2023-10-24 中国航空工业集团公司沈阳空气动力研究所 Aircraft model vibration measurement method based on monitoring camera
CN117272593B (en) * 2023-08-24 2024-04-05 无锡北微传感科技有限公司 Wind tunnel test data analysis processing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100575872C (en) * 2007-03-20 2009-12-30 中国空气动力研究与发展中心高速空气动力研究所 Wind tunnel model profile monitoring method based on stereoscopic vision
ES2339317B1 (en) * 2008-04-30 2011-03-11 Airbus Operations, S.L. AERODYNAMIC INTERFERENCE MINIMUM SUPPORT-MAQUETTE ASSEMBLY FOR TRIALS IN A TRANSONIC REGIME IN WIND TUNNEL.
JP2012078260A (en) * 2010-10-04 2012-04-19 Mitsubishi Heavy Ind Ltd Wind tunnel test model and method for wind tunnel test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596037A (en) * 2016-12-16 2017-04-26 中国空气动力研究与发展中心高速空气动力研究所 Wind tunnel test model flow density projection field video measurement method
CN106596037B (en) * 2016-12-16 2018-10-02 中国空气动力研究与发展中心高速空气动力研究所 Model in wind tunnel streams the video measuring method of Intensity Projection field

Also Published As

Publication number Publication date
CN103697863A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
CN103697863B (en) A kind of model in wind tunnel anamorphic video measuring vibrations modification method of multiple constraint
CN102944183B (en) A kind of high-aspect ratio elastic wing measuring method
CN108896047B (en) Distributed sensor network collaborative fusion and sensor position correction method
CN114578777B (en) Method for automation of a work cell and factory level
CN102778224B (en) Method for aerophotogrammetric bundle adjustment based on parameterization of polar coordinates
CN110757504B (en) Positioning error compensation method of high-precision movable robot
CN110470304B (en) High-precision target positioning and speed measuring method based on unmanned aerial vehicle photoelectric platform
Rao et al. Fringe-projection-based normal direction measurement and adjustment for robotic drilling
CN111737822B (en) Point cloud data-based three-dimensional morphology evaluation method for fitting clearance of aviation component
CN110849331B (en) Monocular vision measurement and ground test method based on three-dimensional point cloud database model
CN103591949A (en) Orthogonal compensation method for triaxial attitude measurement system non-orthogonal error
CN106405581A (en) Evaluation method for coupling direction precision, caused by satellite structure deformation, of multiple types of loads
CN109342008B (en) Wind tunnel test model attack angle single-camera video measuring method based on homography matrix
CN113513999B (en) Large-view-field real-time deformation measurement system and method for static test of spacecraft structure
CN110796710A (en) Method and module for rapidly calibrating external parameters of camera on line based on manifold space
CN106225671B (en) A kind of field calibration method of large size aerostat capsule volume measuring device
Artz et al. NASA Orion flush air data sensing system feasibility determination and development
CN107421476A (en) A kind of spatial hole position Measuring datum error compensation method
CN106695796A (en) Portable laser scanning measuring arm hand-eye calibration method based on RANSAC
CN112307561B (en) Pose coordination method and system for assembling multi-body complex structure on large equipment
CN117232419A (en) Method and system for measuring thermal deformation of complex antenna structure
Padmal et al. Elevated lidar based sensing for 6g-3d maps with cm level accuracy
CN112307562B (en) Method for assembling complex parts on large-scale airplane by combining thermal deformation and gravity deformation
CN112484751B (en) Method for measuring position and attitude of spacecraft verifier in relatively large space test field coordinate system
CN114413893A (en) Dynamic position and attitude synchronization measuring method integrating inertial measurement information

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
CB03 Change of inventor or designer information

Inventor after: Chen Dehua

Inventor after: Gao Chuan

Inventor after: Du Ning

Inventor after: Yang Zhenhua

Inventor after: Yi Fan

Inventor after: Tang Lixin

Inventor after: He Lingsong

Inventor after: Tang Liang

Inventor after: Chen Haifeng

Inventor after: Chen Junming

Inventor after: Mao Daiyong

Inventor before: Chen Dehua

Inventor before: Gao Chuan

Inventor before: Du Lin

Inventor before: Yang Zhenhua

Inventor before: Yi Fan

Inventor before: Tang Lixin

Inventor before: He Lingsong

Inventor before: Tang Liang

Inventor before: Chen Haifeng

Inventor before: Chen Junming

Inventor before: Mao Daiyong

COR Change of bibliographic data
GR01 Patent grant