CN103575148A - Heat exchanger tube, heat exchanger tube assembly, and methods of making the same - Google Patents
Heat exchanger tube, heat exchanger tube assembly, and methods of making the same Download PDFInfo
- Publication number
- CN103575148A CN103575148A CN201210483521.8A CN201210483521A CN103575148A CN 103575148 A CN103575148 A CN 103575148A CN 201210483521 A CN201210483521 A CN 201210483521A CN 103575148 A CN103575148 A CN 103575148A
- Authority
- CN
- China
- Prior art keywords
- pipe
- cylindrical section
- section
- flat
- flat tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title description 16
- 230000007704 transition Effects 0.000 claims abstract description 34
- 229910000838 Al alloy Inorganic materials 0.000 claims description 6
- 238000012797 qualification Methods 0.000 claims description 4
- 238000005452 bending Methods 0.000 abstract description 8
- 239000012530 fluid Substances 0.000 description 23
- 238000005219 brazing Methods 0.000 description 19
- 238000003475 lamination Methods 0.000 description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 18
- 229910052782 aluminium Inorganic materials 0.000 description 18
- 239000000463 material Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000004411 aluminium Substances 0.000 description 14
- 230000005484 gravity Effects 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 229910000679 solder Inorganic materials 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000005476 soldering Methods 0.000 description 11
- 238000012546 transfer Methods 0.000 description 8
- 239000002826 coolant Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004320 controlled atmosphere Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000013000 roll bending Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
- F28F9/16—Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/025—Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/082—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
- F28F21/083—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/084—Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/04—Arrangements for sealing elements into header boxes or end plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2225/00—Reinforcing means
- F28F2225/06—Reinforcing means for fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/26—Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/02—Fastening; Joining by using bonding materials; by embedding elements in particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2275/00—Fastening; Joining
- F28F2275/04—Fastening; Joining by brazing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A tube for use in a tube assembly for a heat exchanger includes a flat section located away from a tube end. The flat section includes broad, flat, parallel tube sides joined by narrow sides so that the tube is relatively thin in one direction. A cylindrical section extends from the end of the tube, and a transition section connects the cylindrical section and the flat tube section. The geometry of the transition section provides resistance to bending at the intersection between the flat tube section and the transition section.
Description
Technical field
Generally speaking, the present invention relates to the pipe for heat exchanger, and fin and pipe assembly, and the method for manufacturing them.
Background technology
As everyone knows, the pipe assembly that large heat exchanger includes independently, can be replaced separately, wherein said pipe assembly has the pipe for delivery of first fluid, and conducts heat or the secondary heat-transfer area region from the heat of described first fluid for second fluid transmission to described first fluid for second fluid.For example, Murray is at U.S. Patent number 3,391,732 and Neudeck at U.S. Patent number 4,236, described for the used heat of engine coolant being passed to the such heat exchanger that serves as jumbo radiator of air in 577.The pipe assembly using in these heat exchangers has for the central fin section of heat exchange with for inserting the cylinder tip section of the non-finned of sealing grommet.
The Tube Sheet of Heat Exchanger assembly of the above-mentioned type consists of copper conventionally, is soldered to the air side surface in the fin region on described pipe with extension.Copper has advantages of thermal conductivity high, easy to manufacture and intensity and good endurance.Yet the lasting rising of the price of copper has caused needs material alternative, that cost is lower.
For example, in other heat exchangers (automobile and business radiator), aluminium instead of copper becomes preferred structure material, but aluminium not yet successfully substitutes the copper in the heavy heat exchanger of this class.The strength ratio copper of aluminium is much lower, has caused the worry to its durability.Working as in the art need to be by being especially a problem in the situation of individual other pipe assembly removal and insertion, because may be damaged in such operating process.In addition, the combination of aluminium parts needs much higher temperature than the welding of copper, and this has caused the difficulty of manufacturing.Therefore, still there is improved space.
Summary of the invention
According to one embodiment of the present invention, for the pipe assembly of heat exchanger, comprise the pipe with flat part, described flat part has the wide pipe side being spaced being connected by relative narrow pipe side.Described pipe assembly also comprises the side plate of two fin structure bodies and two substantially flats, and described in each, fin structure body has crest and the trough being connected along (flanks) by side.The trough of a fin structure body is connected with one of described wide pipe side, and the crest of this fin structure body and the side of one of described side plate are connected.The trough of another fin structure body is connected with another wide pipe side, and the crest of this fin structure body and the side of another side plate are connected.
In some embodiments, described pipe comprises the cylindrical section at the longitudinal ends place that is positioned at described pipe, and described flat part is arranged between described cylindrical section.In some embodiments, described pipe, described fin structure body and described side plate are connect and are combined by solder brazing, and in some embodiments, described pipe, fin structure body and side plate are made by one or more aluminium alloys.According to some embodiments, the thickness of described wide pipe side is at least twice of described side plate thickness.
According to another embodiment of the invention, for the pipe assembly of heat exchanger, comprise the fluid flow conduit of extending along longitudinally at least a portion of described pipe assembly.Described fluid flow conduit has large scale and small size, and the two is all perpendicular to described longitudinally, and described small size is significantly less than described large scale.Described flow channel by continuous tube wall around.In described small size direction, the side plate of two substantially flats equidistantly separates from described continuous tube wall, and the side plate of described substantially flat is connected with described tube wall by thin web plate (web).
In some such embodiment, described continuous tube wall defines the tube wall center of gravity the moment of inertia with respect to the axis in described large scale direction.In some embodiments, described pipe assembly is at least five times of described tube wall center of gravity the moment of inertia with respect to the center of gravity the moment of inertia of this axis, and is in some embodiments at least ten times.
In some embodiments, the first cylinder pipeline section is connected with first end of described continuous tube wall in described flow duct, and the second cylinder pipeline section is connected with second end of described continuous tube wall in described flow duct.In some embodiments, the outer perimeter being limited by described continuous tube wall is greater than the outer perimeter of at least one the cylinder pipeline section in described cylinder pipeline section.
According to another embodiment of the invention, the method for manufacturing Tube Sheet of Heat Exchanger assembly comprises provides pipe, the first wavy fin structure body and the second wavy fin structure body and the side plate of the first substantially flat and the side plate of the second substantially flat.Described the first wavy fin structure body is arranged between the first wide flat side of described the first side plate and described pipe, and described the second wavy fin structure body is arranged between the second wide flat side of described the second side plate and described pipe.Exert pressure in relative side to described side plate, so that the crest of described fin structure body and trough and described side plate and described wide flat contacts side surfaces, and between described the first fin structure body and described the first side plate, between described the first fin structure body and described the first wide flat side, between described the second fin structure body and described the second side plate and form solder brazing between described the second fin structure body and described the second wide flat side and connect.
In some such embodiment, the temperature of raise in vacuum environment described pipe, fin structure body and side plate, connects to form solder brazing.In other environment, the temperature of raise in controlled inert gas environment described pipe, fin structure body and side plate.In some embodiments, provide described pipe, fin structure body and side plate to comprise the material with the braze metal of being coated with is provided.
In some embodiments, described pressure is to transmit by the first dividing plate adjacent with described the first side plate with by the second partition adjacent with described the second side plate.In some such embodiment, the thermal coefficient of expansion of described dividing plate is basic to match with the thermal coefficient of expansion of described pipe, side plate and fin structure body.In some embodiments, described the first dividing plate is one of several dividing plates adjacent with described the first side plate.
According to another embodiment of the invention, the method for manufacturing Tube Sheet of Heat Exchanger assembly comprises the side plate that several pipes, several corrugated fin structures and several substantially flats are provided.Described in each, pipe is arranged between a pair of described corrugated fin structure, and described in each, corrugated fin structure is arranged between the pipe and a side plate in described side plate in described pipe.Described pipe, corrugated fin structure and side plate are assembled into lamination.Dividing plate is arranged between a pair of adjacent side plate, and it is adjacent with described side plate in the outermost end place of described lamination, to state dividing plate.In stacking direction to the described lamination load of exerting pressure.Contact point place between described corrugated fin structure and described pipe, and the contact point place between described corrugated fin structure and described side plate forms solder brazing and connects, and the pipe assembly by soldering is removed from described dividing plate.
In some such embodiment, the temperature of raise in vacuum environment described pipe, fin structure body and side plate connects to form solder brazing.In other environment, the temperature of raise in controlled inert gas environment described pipe, fin structure body and side plate.In some embodiments, provide described pipe, fin structure body and side plate to comprise the material that is coated with braze metal is provided.
According to another embodiment of the invention, pipe for heat exchanger comprises the first cylindrical section extending from the first end of described pipe, the second cylindrical section extending from the second end of described pipe, and the flat part between described two ends, described flat part has two wide parallel side flat, that separate that connected by two relatively short sides.Described in each, between cylindrical section and described flat part, there is transition region.Junction between each wide flat side of described transition region and described pipe defines curvilinear path.
In some such embodiment, the profile of described two relatively short sides is arcs.In some embodiments, described in each, curvilinear path comprises the summit of the central plane that is positioned at described pipe, and in some such embodiment, is provided with arching trajectory section on described summit.
In some embodiments, the described transition region extend through adjacent with one of described cylindrical section at least equals the length of the diameter of this section.In some embodiments, the outer perimeter of the flat part of described pipe is greater than the outer perimeter of at least one cylindrical section in described cylindrical section, and in some embodiments at least large 25%.
In some embodiments, described flat tube paragraph qualification the large scale of pipe between the outermost point of two relatively short sides, and every described curvilinear path is longer than the large scale of described pipe.In some embodiments, described pipe is made by aluminium alloy.
According to another embodiment of the invention, Tube Sheet of Heat Exchanger is made by following manner by pipe: the first paragraph at described pipe reduces the diameter of described pipe, make the second segment adjacent with described first paragraph become flat, to limit two wide flat sides that separate in described second segment.In some embodiments, described first paragraph stops at an end of described pipe.In some embodiments, after reducing, the diameter of described first paragraph make described second segment become flat.
In some embodiments, by swaged forging, operate the diameter of described first paragraph is reduced.In some embodiments, by impact described second segment in stamping die, make this section of change flat.In some embodiments, described effective aluminium alloy is made.
In some embodiments, before described second segment change is flat, in described pipe, insert mandrel, and from described pipe, remove described mandrel after described second segment change is flat.
In some embodiments, the diameter of the 3rd section of described pipe reduces, described the 3rd section adjacent with described second segment.In some such embodiment, described the 3rd section of the second end termination at described pipe.In some embodiments, after reducing, the diameter of described the 3rd section make described second segment become flat.
Accompanying drawing explanation
Fig. 1 is according to the stereogram of the Tube Sheet of Heat Exchanger assembly of one embodiment of the present invention.
Fig. 2 is the front view of the Tube Sheet of Heat Exchanger assembly of Fig. 1.
Fig. 3 is the detail view of the part that limited by line III-III in Fig. 2.
Fig. 4 is the plane of the Tube Sheet of Heat Exchanger assembly of Fig. 1.
Fig. 5 is the exploded perspective view of the Tube Sheet of Heat Exchanger assembly of Fig. 1.
Fig. 6 is according to the front view of the lamination of the Tube Sheet of Heat Exchanger assembly of one embodiment of the present invention manufacture.
Fig. 7 is the plane of specific features of the lamination of Fig. 6.
Fig. 8 is according to the stereogram of the Tube Sheet of Heat Exchanger of one embodiment of the present invention.
Fig. 9 is the partial perspective view of the Tube Sheet of Heat Exchanger of prior art.
Figure 10 is the partial sectional view along Fig. 8 center line X-X.
Figure 11 is the cutaway view along Fig. 8 center line XI-XI.
Figure 12 is the partial perspective view of pipe of Fig. 8 of part moulding.
Figure 13 A and Figure 13 B are the simplified schematic diagram of the forming operation of the pipe of production Fig. 8.
The specific embodiment
Before describing any embodiment of the present invention in detail, should be appreciated that enforcement of the present invention is not limited to illustrated CONSTRUCTED SPECIFICATION and the assembly going out of described or accompanying drawing below and arranges.The present invention can have other embodiments and implemented or realized by diverse ways.Should also be understood that wording used herein and term are for purposes of illustration, and should not be considered as restrictive." comprise " herein, " comprising " or " having " and deformable body thereof refer to and comprise project and the equivalent thereof of listing thereafter, and other project.Unless otherwise specified or limit, term " installations ", " connection ", " support " and " combination " and deformable body thereof be broad sense use and comprise directly with indirectly install, be connected, support and combination.In addition, " connection " and " combination " be not limited to physics or machinery connection or combination.
Fig. 1-5 show the Tube Sheet of Heat Exchanger assembly 1 according to one embodiment of the present invention.Many independently one of pipes that such pipe assembly 1 can be used as heat exchanger, described heat exchanger is such as being that large-scale jumbo is such as the radiator in excavator, mining vehicle, generating set etc.Yet, should be appreciated that described pipe assembly 1 can the heat exchanger for all kinds and size.
Continuation is with reference to Figure 11, manages the small size d that 2 flat part 3 has pipe
1, be defined as the distance between the outside surface of described two wide flat sides 12, the large scale d of pipe
2, be defined as the distance between the outermost point of two narrow pipe sides 15.In some highly preferred embodiment, described large scale d
2than described small size d
1large several times.In one embodiment, the large scale described in illustrative embodiments is than described small size large nine times.
Described side for fluid provides flow channel, makes described fluid and the fluid of the described pipe 2 of flowing through produce heat transfer relation along the space between 16, can between described two kinds of fluids, carry out heat exchange like this.For example, surrounding air can flow through described flow channel, so that the engine sheath cooling fluid of the described pipe 2 of flowing through is cooling.Yet, should be appreciated that by using described pipe assembly 1 can make various other fluids produce heat transfer relation.Described side is along in crest 17 and trough 18 also of each flow channel between 16, and one of the wide flat side 12 of described pipe 2 limits with the side plate 11 of described substantially flat.By by this way by described flow channel Complete Bind together, stoped the fluid of these passages of flowing through to flow out prematurely described passage, therefore improved heat-transfer capability.
Preferably, described pipe 2, fin structure body 10 and side plate 11 are combined together to form to overall structure, so that good heating power contact point to be provided between the fluid in heat transfer relation, and provide good structural integrity.Although can use described in various material construction and manage assembly 1, in particularly preferred embodiments, described pipe 2, fin structure body 10 and side plate 11 are by high metal of thermal conductivity, such as aluminium, copper etc.Can be by various technique, comprise soldering, soldering, gluing etc., described member is combined together to form to described pipe assembly 1.
In order to obtain heat-transfer effect good between described fluid, make described fin structure body 10 and described side plate 11 at whole large scale d of described flat part 3
2upper extension is favourable.In some cases, can preferably described fin structure body 10 and described side plate 11 be extended to the outer rim that exceeds a little described narrow pipe side 15, to protect described fluid flow conduit to avoid damaging because of the collision of stone or other fragments.
Even have been found that and comprise very thin side plate 11, also can make described pipe assembly 1 greatly harden, especially with respect to the large scale d of described pipe
2the bending of the mass axis in direction.Described fin structure body 10 is due to the character of its ripple, and the rigidity in this direction is very little, and like this, when there is no described side plate 11, described continuous tube wall 25 provides the only resistance to this mass axis bending.Small size d due to described flat part 3
1relatively little, described continuous tube wall 25 is very little to the crooked resistance of described mass axis separately, thereby described side plate 11 is moved to and is obviously greater than described small size d from described mass axis
1distance be very favorable.
The large scale d of pipe described in 11 pairs of described pipe assemblies 1 of described side plate
2the impact of the bending stiffness of the mass axis in direction, can quantize by described pipe assembly 1 is contrasted with respect to the center of gravity the moment of inertia of this axis separately with respect to the center of gravity the moment of inertia of this axis and described pipe 2 (can suppose described fin structure body 10 except by keeping described lateral plate 11 affects described center of gravity the moment of inertia from the side-play amount of the planar side 12 of described pipe 2, on the not impact of described center of gravity the moment of inertia).For pipe thickness, be 0.8mm, side plate thickness is 0.25mm, fin structure height is 6.55mm, small size is 3.7mm, large scale is the illustrative embodiments of 23.27mm, and the center of gravity the moment of inertia with respect to the axis in the large scale direction of described pipe and the described pipe of described pipe assembly are respectively 925mm with respect to the center of gravity the moment of inertia of the axis in the large scale direction of described pipe separately
4and 76mm
4.In other words, described pipe assembly is that described pipe itself is with respect to approximate 12 times of the center of gravity the moment of inertia in the large scale direction of described pipe with respect to the center of gravity the moment of inertia in the large scale direction of described pipe.A kind of preferred embodiment in, described pipe assembly is that described pipe itself is with respect at least 5 times of the center of gravity the moment of inertia in the large scale direction of described pipe with respect to the center of gravity the moment of inertia in the large scale direction of described pipe, in particularly preferred embodiments, be at least 10 times.When described pipe 2 is by the material with relatively low elastic modelling quantity, for example, while being built by aluminium alloy, this is particularly preferred.
The pipe 2 of described illustrative embodiments also comprises first cylindrical section 4 adjacent with the first end 7 and second cylindrical section 5 adjacent with the second end 8, and described flat part 3 is located between described the first cylindrical section and the second cylindrical section.Described these cylindrical sections 4,5 can make described pipe assembly 1 reliably and not reveal and be inserted into the (not shown) in orifice ring of accepting that is arranged at collector relative in heat exchanger.In order to make in described pipe the available quantity for effectively conducting heat maximize, it is minimum that the length of described cylinder tip section preferably keeps, and the length of described flat part 3 be preferably described pipe 2 total length 90% or more.In order to limit described pipe assembly 1, in heat exchanger, move down during vertical arrangement, in the cylindrical section 5 of described illustrative embodiments, be provided with bulge loop (circumferential bead) 9.
Although the embodiment in the accompanying drawings all has cylinder tip section in two ends of described pipe, should be appreciated that in some instances, pipe assembly 1 can not have one or two cylinder tip section 4,5.When not thering is such cylinder tip section, accept accordingly orifice ring can have meet the continuous tube wall 25 in flat part 3 profile accept opening.
The present invention some preferred embodiment in, Tube Sheet of Heat Exchanger assembly 1 is made by form soldered joint between aluminum pipe 2, the first aluminium matter corrugated fin structure and the second aluminium matter corrugated fin structure 10 and the first aluminium matter side plate and the second aluminium matter side plate 11.Described the first wavy fin structure body 10 is arranged between the first wide flat side 12 of described the first side plate 11 and described pipe 2, and described the second wavy fin structure body 10 is arranged between the second wide flat side 12 of described the second side plate 11 and described pipe 2.By described parts compression, so that the crest 18 of described fin structure body and trough 17 contact with the parts that are adjacent, thereby can form solder brazing on contact point, connect.
Use melt temperature to connect to form solder brazing lower than the braze metal of the melt temperature of described pipe 2, fin structure body 10 and side plate 11.Such braze metal is generally aluminium, has added a small amount of other elements (for example silicon, copper, magnesium and zinc) to reduce melt temperature in described aluminium.Described braze metal can advantageously be coated on one or more parts to be brazed.In some embodiments, two sides that are used to form the sheet material of described corrugated fin structure 10 are coated with described braze metal, the braze metal needing in had point of contact place is provided whereby, at described contact point place, need to carry out solder brazing and connect, avoid not needing or not wishing that the position engaging arranges braze metal simultaneously.
Although can make to raise in many ways, the temperature of described pipe 2, fin structure 10 and side plate 11 is with by described braze metal melting and form solder brazing and connect, and two particularly preferred methods are vacuum brazing and controlled atmosphere soldering.In vacuum brazing, the parts that assemble are placed in to sealing smelting furnace, substantially remove all air simultaneously to create vacuum environment.In such technique, when heating is during described parts, the magnesium containing in alloy is released and for destroying the oxide layer on the outer surface of described parts, the braze metal of melting is attached on the aluminium of exposure.By extract oxygen out under vacuum environment, prevent the regeneration of described oxide layer and disturb metallurgical binding.
In controlled atmosphere soldering, before the described parts of heating, brazing flux is coated on described parts.In inert gas environment, described parts are heated, to prevent the regeneration of the oxide layer after brazing flux reacts and substitutes the oxide layer on the composition surface of described assembly.By substituting described oxide layer, the braze metal of melting is attached on the aluminium of exposure, to form solder brazing, connect.
Particularly preferably, a plurality of described pipe assemblies 1 are carried out to soldering, to increase treating capacity in production and manufacturing environment simultaneously.Fig. 6 shows the method according to one embodiment of the present invention, wherein manufactures four pipe assemblies 1 simultaneously.Should be appreciated that and can manufacture more than four simultaneously or be less than the pipe assembly of four by identical method.
In the embodiment of Fig. 6, provide and managed 2, the side plate 11 of corrugated fin structure 10 and substantially flat.Each pipe 2 is arranged between a pair of corrugated fin structure 10, and each corrugated fin structure 10 is arranged between a side plate in the side plate 11 of a pipe in described pipe 2 and described substantially flat.Dividing plate 19 is arranged between the side plate 11 of a pair of adjacent substantially flat.The side plate 11 of described pipe 2, corrugated fin structure 10 and substantially flat is assembled into lamination 26.At the outermost end setting of the described lamination 26 other dividing plate 19 adjacent with the side plate 11 of described substantially flat, on stacking direction to described lamination 26 load of exerting pressure, to the crest 18 of described corrugated fin structure 10 and trough 17 are contacted with the side plate 11 being adjacent and the wide flat side 12 of described pipe 2.
For the load of exerting pressure equably to lamination 26, can be by the channel-section steel bar of structure steel for example of the stick 21(with high rigidity) be arranged on the outermost end of described lamination 26.By using in a plurality of positions around the metal tape 22 of described lamination 26, after described lamination is exerted pressure load, can maintain described pressure loading.In the described compressed while of lamination 26, be describedly with 22 on described stick 21, to tie tight, thereby make describedly with the tension force on 22, maintaining described pressure loading.After so assembling, described lamination 26 is placed in to soldering smelting furnace, to form, independently manage assembly 1.Described lamination 26 is heated to the temperature being suitable for braze metal melting in smelting furnace, then that described lamination 26 is cooling, so that the braze metal of melting is solidified again, forms thus solder brazing connect at described contact point place.After cooling, by soldering, become independent integrally-built individual tubes assembly 1, can remove from described dividing plate 19.Described dividing plate 19 can have coating, to prevent, between described dividing plate 19 and described side plate 11, any metallurgical binding occurs, even otherwise do not have solder under under brazing temperature, will there is this less desirable combination.
When described lamination 26 is heated to brazing temperature, can there is thermal expansion in the metal material in lamination 26.In aluminium soldering, conventionally parts are heated to the brazing temperature of 550 ℃ to 650 ℃.Described temperature range is significantly higher than the temperature for soldering copper member made, therefore when the parts of described pipe assembly 1 are aluminum, the thermal expansion that described parts experience in cohesive process be obviously greater than when the parts of described pipe assembly 1 are copper described in the thermal expansion experienced of parts.
Inventor finds, must be careful in the technical process of soldering, and to guarantee that fin structure body 10 can not be out of shape because being heated to brazing temperature and being cooled to environment temperature.From relate to by multi coil and fin structure combine become traditional brazed aluminum radiator of integral braze-welded core produce different, the shear stress that the side of described fin structure 10 causes along managing the parts of assembly 1 and the thermal dilation difference between described dividing plate 19 described in 16 easy reasons and being out of shape.In some embodiments of the present invention, this problem is conventionally by making the thermal coefficient of expansion of described dividing plate 19 and the thermal coefficient of expansion of described pipe 2, the thermal coefficient of expansion of fin structure body 10 and the thermal coefficient of expansion of side plate 11 adapt to make up.This can make described dividing plate 19 by the aluminium alloy by similar or the other material with similar coefficient of thermal expansion and realize.
Alternatively, or in addition, as shown in Figure 7, between each adjacent pipe assembly 1, can use a plurality of independently dividing plates 19.Between adjacent independent spacers 19, there is gap 20.In the situation that it is significantly different from the thermal coefficient of expansion of the material of formation described pipe, fin structure body 10 and side plate 11 to form the material of described dividing plate 19, described gap 20 can increase or reduce during the heating and cooling of lamination 26, significantly alleviates thus the distortion of the fin structure body 10 that may cause due to the difference of thermal coefficient of expansion.Described hole 20 plays the effect of isolation, with the accumulation of the thermal expansion avoiding causing due to distortion, thereby makes any such distortion be limited in being positioned at the discontinuous contact area under each independent spacers 19.When described dividing plate 19 is used the material of heatproof more such as stainless steel, and the parts of described pipe assembly 1 are when made of aluminum, and the illustrated assembling mode of Fig. 7 is particularly advantageous.
Now, concrete with reference to figure 8-13, described pipe 2 is carried out to more detailed discussion.As previously mentioned, the embodiment of the pipe shown in Fig. 82 comprises the flat tube section 3 between the first cylinder pipeline section 4 and the second cylinder pipeline section 5.Described the first cylinder pipeline section 4 extends from the first end 7 of described pipe 2, and the second cylinder pipeline section 5 extends from the second end 8 of described pipe 2.Transition region 6 is between described flat part 3 and each cylindrical section 4 and 5.Described transition region 6 provides for fluid passes through the level and smooth continuous flow path of described pipe 2, has avoided occurring the position of mechanical stress concentration in described tube material simultaneously.
As being shown specifically in the Figure 10 of partial cross section, transition region 6 is extended in length L, from approaching the position 27 of the end 7 of described pipe 2, crosses the position 14 away from end 7.Preferably, described length L at least equals the diameter of described cylinder tip section 4, although in some optional embodiment, the size of described length L can be less than the diameter of corresponding end segment.As shown in Figure 8, wide flat side 12 extends past the position 14 that is positioned at described two ends, therefore at least a portion of described wide flat side 12 is along described pipe 2 between 27Yu position, position 14, and 27He position, described position 14 defines the initial sum end of transition region 6.
In a preferred embodiment, transition region 6 defines curvilinear path 13 with the junction of the wide flat side 12 in flat tube region 3.The bending moment of flat part 3 axis in large scale direction with respect to described pipe that these curvilinear paths 13 are described pipe 2 provides favourable hardness.In order to compare, the pipe 102 of prior art is shown in Figure 9, and described pipe comprises the flat part 103 being connected with cylindrical section 104 by changeover portion 106.Described transition region 106 limits straight track 113 with described flat part 103 on the wide flat side 112 of flat part 103.The described straight track 113 large scale sides at described pipe extend upward, and the axis bending in described large scale direction is very easy.This between the installation period of the pipe assembly that contains described pipe 102 and/or from heat exchanger remove described pipe assembly during be disadvantageous especially, this is because this installation and this removing often can be applied to such bending moment on described pipe.When described pipe consists of the low-down material of intensity (such as annealed aluminium), this problem can especially worsen.
The present inventor has been found that, described curvilinear path 13 provides significant hardening effect to resist above-mentioned such bending moment, and prevent installation at described pipe 2 or the pipe assembly 1 that contains described pipe 2, remove make to manage during processing with other 2 crooked or damaged by other.Although any nonlinear loci is all favourable, for track 13, it is particularly advantageous by a series of connected arching trajectory sections, limiting track 13.
In the exemplary embodiment, described in each, curvilinear path 13 comprises the summit in the approximate centre plane that is positioned at described pipe, thereby described summit is positioned at apart from end 7 (when described transition region is between described flat part 3 and the first cylinder tip 4) or apart from end 8 point 14 of (when described transition region is between described flat part 3 and the second cylinder tip 5) farthest farthest along track 13.Preferably, at place, described summit, described track 13 has arching trajectory section, thereby has avoided the stress on described summit to concentrate.
Some preferred embodiment in, the outer perimeter (being circumference) of at least one in described two cylindrical sections 4,5 is less than the outer perimeter of the continuous tube wall 25 of flat part 3.One or two end in 7,8 is all without in corresponding large diameter situation so endways, is conducive to make the heat transfer sheet area of flat part 3 of per unit length relatively large.For example, it is preferred that described end has less diameter, because it is nearer to make so adjacent pipe assembly be set to, and needs less sealing surfaces at described end.Some preferred embodiment in, the outer perimeter of described flat part 3 surpasses at least one the outer perimeter at least 25% in described two cylinder tip sections.
It is well known in the art containing the heat exchanger that is the fluid delivery tube of flat appearance in the total length of pipe, and they have used many decades as radiator etc.Such flat tube is a kind of structure in following two kinds of methods conventionally.Described flat tube both can extrude and/or be drawn into flat shape by material blank, then cut out discontinuous length, also can be in tube mill by roll bending by described plate is made to circle, by seam weld, roll compaction becomes flat tube shape, be then cut into discontinuous length of tube and form.
The situation of the pipe 102 with flat part 103 and cylinder tip section 104 of prior art of take is example, and the end of described flat tube is made into cylindrical, to form cylinder tip section 104 and changeover portion 106.When described pipe consists of highly ductile material (such as copper), and while only needing to form the end of described pipe 2, described operation can be implemented quickly and easily.Yet, adopt and can not obtain in this way aforesaid changeover portion 6.
Described transition region 6 can form with the round tube 2 that the outer perimeter of continuous tube wall 25 in required described flat part 3 equates by first making outer perimeter.Next, specifically with reference to Figure 12, make the reduced of the end of pipe 2, to form cylinder tip 4 and 5, and the tapered transition region between described end 4,56 ' and the initial round-shaped interlude 3 ' of maintenance.Dwindling of this diameter can complete by for example described pipe end being carried out to swaged forging.Some preferred embodiment in, the reduced of described end at least 20% so that the ratio between the outer perimeter of described flat part 3 and the outer perimeter of described cylinder tip section 4,5 suits the requirements.
As shown in Figure 13 A and 13B, the profile of the flat part 3 of described pipe 2 can limit by form the part 3 ' of described pipe 2 between the first moulding half module 22 and the second moulding half module 23.As shown in FIG. 13A, when described two moulds are during in open state,, when described two half modules are separated from one another, described pipe 2 is inserted between described two half modules 22,23.After described pipe 2 is so positioned, matched moulds is so that described mould in the closure state shown in Figure 13 B, makes the flat part 3 of described pipe 2 form small size d thus
1with large scale d
2.Alternatively, before carrying out forming operation, mandrel 24 can be placed in to the inside of described pipe 2, with described wide flat tube wall 12 during preventing forming operation, bend or other less desirable distortion.When using mandrel, after forming operation completes, described mandrel 24 can be removed from described pipe 2.The supporting former that the geometry of described transition region 6 can have by arranging on the contact-making surface in described two half modules 22 and 23 this geometry makes, thus the geometry of the transition region 6 needing in the interior formation of described pipe 2 during forming operation.
By in conjunction with the specific embodiment of the present invention, the various alternative of specific features of the present invention and key element have been described.Except with above-mentioned each embodiment mutually independently or with mutual exclusive those features of above-mentioned each embodiment, key element and method of operating, it should be noted that the embodiment concrete with combines optional feature, key element and the method for operating of describing also can be with in other embodiments.
Above-described and those embodiments accompanying drawing example just provide by way of example, and not as the restriction to ideals and principles of the present invention.Therefore, it will be understood by those skilled in the art that in the situation that not deviating from aim of the present invention and scope, can carry out various distortion to each key element and structure thereof and layout.
Claims (20)
1. for a pipe for heat exchanger, comprising:
The first cylindrical section, described the first cylindrical section extends from the first pipe end;
The second cylindrical section, described the second cylindrical section extends from the second pipe end relative with described the first pipe end;
Flat tube section, described flat tube section is positioned between described the first pipe end and the second pipe end, and described flat tube section comprises two wide parallel side flat, that separate that connected by two relatively short sides;
First Transition district, described First Transition district is positioned between described the first cylindrical section and the first pipe end near the flat tube section of described the first cylindrical section; With
The second transition region, described the second transition region between described the second cylindrical section and the second pipe end near the flat tube section of described the second cylindrical section, described in each the first and second transition regions and described in each the junction between wide flat side define curvilinear path.
2. pipe according to claim 1, is characterized in that, the profile of described two relatively short sides is arc.
3. pipe according to claim 1, is characterized in that, described in each, curvilinear path comprises the summit on the central plane that is positioned at described pipe.
4. pipe according to claim 3, is characterized in that, described in each, curvilinear path comprises the arching trajectory section that is positioned at described summit.
5. pipe according to claim 1, is characterized in that, described the first cylindrical section defines the diameter of described pipe, and described First Transition district is along the length that extended axially the diameter that at least equals described pipe of described pipe.
6. pipe according to claim 5, is characterized in that, the diameter of described pipe is the first pipe diameter, and described the second cylindrical section defines the second pipe diameter, and described the second transition region at least equaled the length of described the second pipe diameter along extending axially of described pipe.
7. pipe according to claim 1, is characterized in that, described the first cylindrical section defines the first pipe outer perimeter, and described flat tube paragraph qualification be greater than described first pipe outer perimeter second pipe outer perimeter.
8. pipe according to claim 7, is characterized in that, described the second pipe outer perimeter surpasses described the first pipe outer perimeter more than 25%.
9. pipe according to claim 1, it is characterized in that, described flat tube paragraph qualification the large scale of pipe, between the first outermost point on the side of the large scale of described pipe in described relatively short side and the second outermost point on another side in described relative short side, and every described curvilinear path is all longer than the large scale of described pipe.
10. pipe according to claim 1, is characterized in that, at least one in described the first cylindrical section and the second cylindrical section comprises bulge loop.
11. pipes according to claim 1, is characterized in that, described pipe comprises aluminium alloy.
12. 1 kinds of pipes for heat exchanger, comprising:
Pipe end;
Flat tube section, described flat tube section is away from described pipe end, and described flat tube section comprises two wide parallel side flat, that separate that connected by two relatively short sides;
Cylindrical section, described cylindrical section extends to the first position near described pipe end from described pipe end; With
Transition region, described transition region is connecting described cylindrical section and described flat tube section, and pipe axially on from described the first position to the second position away from described pipe end, extend, at least a portion of wherein said flat tube section is between described the first position and described the second position.
13. pipes according to claim 12, is characterized in that, described transition region is tapered to the summit at described the second position.
14. pipes according to claim 12, is characterized in that, the junction of described transition region and a described wide flat side defines curvilinear path.
15. pipes according to claim 12, is characterized in that, described cylindrical section defines the diameter of pipe, and along the axial distance of described pipe, at least equal the diameter of described pipe between described the first position and the second position.
16. pipes according to claim 12, is characterized in that, described cylindrical section defines the first pipe outer perimeter, and described flat tube paragraph qualification than described first pipe outer perimeter larger second pipe outer perimeter.
17. pipes according to claim 16, is characterized in that, described the second pipe outer perimeter surpasses described the first pipe outer perimeter more than 25%.
18. pipes according to claim 12, is characterized in that, described pipe end is the first pipe end, and described cylindrical section is the first cylindrical section, and described transition region is First Transition district, and described pipe also comprises:
The second pipe end, described the second pipe end is relative with described the first pipe end;
The second cylindrical section, described the second cylindrical section is from described the second pipe end to extending near the 3rd position of described the second pipe end; With
The second transition region, described the second transition region is connecting described the second cylindrical section and described flat tube section, and described pipe axially on from described the 3rd position to extending away from the 4th position of described the second pipe end, at least a portion of wherein said flat tube section is between described the 3rd position and the 4th position.
19. pipes according to claim 12, is characterized in that, described in each, the first and second transition regions define curvilinear path with the junction of wide flat side described in each.
20. pipes according to claim 19, is characterized in that, described in each, curvilinear path comprises the summit on the central plane that is positioned at described pipe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/570,798 | 2012-08-09 | ||
US13/570,798 US20140041843A1 (en) | 2012-08-09 | 2012-08-09 | Heat Exchanger Tube, Heat Exchanger Tube Assembly, And Methods Of Making The Same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103575148A true CN103575148A (en) | 2014-02-12 |
CN103575148B CN103575148B (en) | 2017-07-28 |
Family
ID=50047453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210483521.8A Expired - Fee Related CN103575148B (en) | 2012-08-09 | 2012-11-23 | Tube Sheet of Heat Exchanger, Tube Sheet of Heat Exchanger component and the method for manufacturing them |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140041843A1 (en) |
JP (1) | JP2014035180A (en) |
KR (1) | KR101560035B1 (en) |
CN (1) | CN103575148B (en) |
BR (1) | BR102012029871A2 (en) |
DE (1) | DE102012024179A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7203097B2 (en) * | 2017-09-26 | 2023-01-12 | ケサダ サボリオ カルロス | tube joint |
CN215766688U (en) * | 2021-05-31 | 2022-02-08 | 浙江盾安热工科技有限公司 | Connecting pipe and heat exchanger with same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1232414A (en) * | 1915-06-29 | 1917-07-03 | Walter C Wallis | Transportation device. |
US2262158A (en) * | 1937-01-05 | 1941-11-11 | Bryant Heater Co | Heat exchanger |
FR1378716A (en) * | 1964-01-03 | 1964-11-13 | Von Roll Ag | heat exchanger |
JP2009024967A (en) * | 2007-07-23 | 2009-02-05 | Tabata Radiator Co Ltd | Radiating part of cooling device and cooling device including the radiating part |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1992795A (en) * | 1933-07-07 | 1935-02-26 | Fred M Young | Heat transfer unit |
US2181927A (en) * | 1936-04-03 | 1939-12-05 | Albert J Townsend | Heat exchanger and method of making same |
US3391732A (en) | 1966-07-29 | 1968-07-09 | Mesabi Cores Inc | Radiator construction |
GB1232414A (en) * | 1968-02-02 | 1971-05-19 | ||
US3857151A (en) * | 1973-10-15 | 1974-12-31 | Young Radiation Co | Method of making a radiator core |
US4159034A (en) * | 1977-05-12 | 1979-06-26 | Modine Manufacturing Company | Weldment heat exchanger |
US4236577A (en) * | 1978-06-16 | 1980-12-02 | Mcquay-Perfex, Inc. | Separately removable tubes in heavy duty heat exchanger assemblies |
EP0112366A1 (en) * | 1982-06-29 | 1984-07-04 | AB Zander & Ingestrom | Tube heat exchanger |
US4458749A (en) * | 1983-04-18 | 1984-07-10 | Ex-Cell-O Corporation | Radiator having reinforced tubes |
US4546824A (en) * | 1984-03-19 | 1985-10-15 | Mccord Heat Transfer Corporation | Heat exchanger |
US4580324A (en) * | 1984-06-22 | 1986-04-08 | Wynn-Kiki, Inc. | Method for rounding flat-oval tubing |
JPS6281876U (en) * | 1985-10-31 | 1987-05-25 | ||
JPH01131891A (en) * | 1987-11-17 | 1989-05-24 | Nippon Denso Co Ltd | Heat exchanger |
US5099576A (en) * | 1989-08-29 | 1992-03-31 | Sanden Corporation | Heat exchanger and method for manufacturing the heat exchanger |
FR2690515A1 (en) * | 1992-04-24 | 1993-10-29 | Valeo Thermique Moteur Sa | Heat exchanger with oblong section tubes, in particular for motor vehicles. |
FR2693546B1 (en) * | 1992-07-09 | 1994-09-30 | Valeo Thermique Moteur Sa | Heat exchanger with a parallel tube bundle, in particular for a motor vehicle. |
US5251693A (en) * | 1992-10-19 | 1993-10-12 | Zifferer Lothar R | Tube-in-shell heat exchanger with linearly corrugated tubing |
US5433268A (en) * | 1993-12-03 | 1995-07-18 | L & M Radiator, Inc. | Radiator construction |
FR2715216B1 (en) * | 1994-01-20 | 1996-02-16 | Valeo Thermique Moteur Sa | Heat exchanger tube, process for its conformation and heat exchanger comprising such tubes. |
JP5257102B2 (en) * | 2009-01-30 | 2013-08-07 | 三菱電機株式会社 | Heat exchanger and refrigeration air conditioner |
-
2012
- 2012-08-09 US US13/570,798 patent/US20140041843A1/en not_active Abandoned
- 2012-11-20 JP JP2012254210A patent/JP2014035180A/en active Pending
- 2012-11-22 KR KR1020120133288A patent/KR101560035B1/en not_active Expired - Fee Related
- 2012-11-23 CN CN201210483521.8A patent/CN103575148B/en not_active Expired - Fee Related
- 2012-11-23 BR BRBR102012029871-6A patent/BR102012029871A2/en not_active Application Discontinuation
- 2012-12-11 DE DE102012024179.8A patent/DE102012024179A1/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1232414A (en) * | 1915-06-29 | 1917-07-03 | Walter C Wallis | Transportation device. |
US2262158A (en) * | 1937-01-05 | 1941-11-11 | Bryant Heater Co | Heat exchanger |
FR1378716A (en) * | 1964-01-03 | 1964-11-13 | Von Roll Ag | heat exchanger |
JP2009024967A (en) * | 2007-07-23 | 2009-02-05 | Tabata Radiator Co Ltd | Radiating part of cooling device and cooling device including the radiating part |
Also Published As
Publication number | Publication date |
---|---|
KR20140020701A (en) | 2014-02-19 |
BR102012029871A2 (en) | 2015-02-10 |
DE102012024179A1 (en) | 2014-03-06 |
JP2014035180A (en) | 2014-02-24 |
KR101560035B1 (en) | 2015-10-13 |
US20140041843A1 (en) | 2014-02-13 |
CN103575148B (en) | 2017-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103567585A (en) | Heat exchanger tube, heat exchanger tube assembly, and methods of making the same | |
CN103575147A (en) | Heat exchanger tube, heat exchanger tube assembly, and methods of making the same | |
CN102564176B (en) | Heat exchanger | |
EP2929269B1 (en) | Heat exchanger and method of manufacturing the same | |
US8776874B2 (en) | Heat exchanger tubes and methods for enhancing thermal performance and reducing flow passage plugging | |
EP3355020B1 (en) | Heat exchange tube for heat exchanger, heat exchanger and assembly method thereof | |
CN203595444U (en) | Heat exchanger | |
EP2738506A2 (en) | Heat exchanger and method of manufacturing the same | |
US20140182829A1 (en) | Heat Exchanger Tube Assembly and Method of Making the Same | |
CN103567732A (en) | Heat exchanger tube, heat exchanger tube assembly, and methods of making same | |
CN103575148A (en) | Heat exchanger tube, heat exchanger tube assembly, and methods of making the same | |
CN101776413B (en) | Heat exchanger and manufacturing method thereof | |
KR20160128993A (en) | Heat exchanger tube assembly and method of making the same | |
US11340027B2 (en) | Tube for a heat exchanger, and method of making the same | |
JPS63187097A (en) | Layered type heat exchanger | |
US20190247942A1 (en) | Method for producing a plate heat exchanger block with targeted application of the solder material to fins and sidebars in particular | |
CN216523335U (en) | Copper alloy micro-channel tube of air-conditioning refrigeration heat exchanger | |
KR101538346B1 (en) | Method for fabricating heat exchanger | |
JPH0712771U (en) | Perforated flat tube | |
WO2021186766A1 (en) | Heat exchanger header, heat exchanger, method for producing heat exchanger header and method for producing heat exchanger | |
JP2020143863A (en) | Heat exchanger | |
JP2002181467A (en) | Multitube heat exchanger | |
KR20100053992A (en) | Combination structure and method of flange and header-pipe for condenser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170728 |
|
CF01 | Termination of patent right due to non-payment of annual fee |