CN103558047B - Multi-frequency ultrasonic cleaning effect experimental platform - Google Patents
Multi-frequency ultrasonic cleaning effect experimental platform Download PDFInfo
- Publication number
- CN103558047B CN103558047B CN201310556615.8A CN201310556615A CN103558047B CN 103558047 B CN103558047 B CN 103558047B CN 201310556615 A CN201310556615 A CN 201310556615A CN 103558047 B CN103558047 B CN 103558047B
- Authority
- CN
- China
- Prior art keywords
- module
- matching
- ultrasonic
- ultrasonic signal
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000000694 effects Effects 0.000 title claims abstract description 23
- 238000004506 ultrasonic cleaning Methods 0.000 title claims abstract description 18
- 238000002955 isolation Methods 0.000 claims abstract description 25
- 230000003321 amplification Effects 0.000 claims abstract description 19
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 19
- 238000003491 array Methods 0.000 claims abstract description 10
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 23
- 238000002474 experimental method Methods 0.000 claims description 5
- 239000000919 ceramic Substances 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
本发明公开了一种多频率超声清洗效果实验平台,它包括核心控制模块、第一继电器模块、第二继电器模块、第三继电器模块、输入隔离模块、功率放大模块、第一匹配变压器、第二匹配变压器、五个超声信号产生模块、五个匹配电感和五个换能器阵;其中,核心控制模块,其信号输出端分别与超声信号产生模块、第一继电器模块、第二继电器模块、第三继电器模块的控制信号输入端相连接,用于根据输入的工作频率选择信号产生相应的切换控制信号分别传递给第一继电器模块、第二继电器模块和第三继电器模块。本发明能够采用多组频率进行水下构建物清洗污垢效果研究,突出了清洗效果的有效性和对比性,实时找出最适合该水下构建物污垢清洗的最佳频率。
The invention discloses a multi-frequency ultrasonic cleaning effect experimental platform, which includes a core control module, a first relay module, a second relay module, a third relay module, an input isolation module, a power amplification module, a first matching transformer, a second Matching transformers, five ultrasonic signal generating modules, five matching inductances and five transducer arrays; among them, the core control module, its signal output terminal is respectively connected with the ultrasonic signal generating module, the first relay module, the second relay module, the second The control signal input terminals of the three relay modules are connected to each other, and are used to generate corresponding switching control signals according to the input working frequency selection signal and transmit them to the first relay module, the second relay module and the third relay module respectively. The invention can use multiple groups of frequencies to study the cleaning effect of the underwater structure, highlights the effectiveness and contrast of the cleaning effect, and finds out in real time the optimum frequency most suitable for cleaning the underwater structure.
Description
技术领域technical field
本发明涉及一种多频率超声清洗效果实验平台,属于超声波清洗技术领域。The invention relates to a multi-frequency ultrasonic cleaning effect experimental platform, which belongs to the technical field of ultrasonic cleaning.
背景技术Background technique
目前,大坝闸门或坝体等各处被水长期浸没的地方,其表面将会沉积一定的污垢而影响其正常功能甚至损坏设备。目前把超声技术应用于水下构建物的清洗作业的经验比较匮乏,虽然已经有人提出水下大型设备的超声清洗方法,但是大都是在某种特定环境下,采用单一的超声清洗频率。而污垢的物理特性、厚度、坚硬度等与水质的情况和水中的杂质特性息息相关,采用单一频率的超声波换能器对水下构建物进行清洗,难以达到工程需求。一方面,由于信号频率选择不合适,其清洗效果将会被大打折扣,需要延长超声换能器的工作时间,从而将增加能耗,不利于节能减排。另一方面,如果采用单一频率的超声波换能器去清洗有些易碎、易伤的表面污垢时,将会使得清洗的表面受损或损坏。所以,根据不同的清洗物表面情况,污垢的物理特性、厚度和坚硬度等情况,选择合适表面清洗的信号频率进行清洗,将会对提高水下构建物清洗效果,保护坝体,延长超声波换能器的使用时间,减少CO2排放产生积极意义。At present, where the dam gate or the dam body is immersed in water for a long time, certain dirt will be deposited on the surface, which will affect its normal function and even damage the equipment. At present, the experience of applying ultrasonic technology to the cleaning of underwater structures is relatively scarce. Although ultrasonic cleaning methods for large underwater equipment have been proposed, most of them use a single ultrasonic cleaning frequency in a specific environment. The physical characteristics, thickness, and hardness of dirt are closely related to the water quality and the characteristics of impurities in the water. It is difficult to meet the engineering requirements for cleaning underwater structures with a single-frequency ultrasonic transducer. On the one hand, due to the inappropriate selection of signal frequency, its cleaning effect will be greatly reduced, and the working time of the ultrasonic transducer needs to be extended, which will increase energy consumption and is not conducive to energy saving and emission reduction. On the other hand, if a single-frequency ultrasonic transducer is used to clean some fragile and easily damaged surface dirt, the cleaned surface will be damaged or damaged. Therefore, according to the surface conditions of different cleaning objects, the physical characteristics, thickness and hardness of dirt, etc., choosing a suitable signal frequency for surface cleaning will improve the cleaning effect of underwater structures, protect the dam body, and prolong the ultrasonic exchange rate. The use time of the energy generator can reduce CO 2 emissions to have positive significance.
因此,研制出一种具有自适应特征的、能够应用于清洗不同表面和去除不同污垢的水下构建物表面清洗装置对水利设施的保养与维护意义重大。Therefore, it is of great significance for the maintenance and maintenance of water conservancy facilities to develop a surface cleaning device for underwater structures with adaptive features that can be applied to cleaning different surfaces and removing different dirt.
发明内容Contents of the invention
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种多频率超声清洗效果实验平台,它能够采用多组频率进行水下构建物清洗污垢效果研究,突出了清洗效果的有效性和对比性,实时找出最适合该水下构建物污垢清洗的最佳频率。The technical problem to be solved by the present invention is to overcome the defects of the prior art and provide a multi-frequency ultrasonic cleaning effect experimental platform, which can use multiple groups of frequencies to carry out research on the effect of cleaning dirt on underwater structures, highlighting the effectiveness and effectiveness of the cleaning effect and By comparison, find out in real time the optimum frequency that is most suitable for cleaning the dirt of the underwater structure.
为了解决上述技术问题,本发明的技术方案是:一种多频率超声清洗效果实验平台,它包括核心控制模块、第一继电器模块、第二继电器模块、第三继电器模块、输入隔离模块、功率放大模块、第一匹配变压器、第二匹配变压器、五个超声信号产生模块、五个匹配电感和五个换能器阵;其中,In order to solve the above technical problems, the technical solution of the present invention is: a multi-frequency ultrasonic cleaning effect experimental platform, which includes a core control module, a first relay module, a second relay module, a third relay module, an input isolation module, a power amplifier module, a first matching transformer, a second matching transformer, five ultrasonic signal generating modules, five matching inductors and five transducer arrays; wherein,
核心控制模块,其信号输出端分别与超声信号产生模块、第一继电器模块、第二继电器模块、第三继电器模块的控制信号输入端相连接,用于根据输入的工作频率选择信号产生相应的切换控制信号分别传递给第一继电器模块、第二继电器模块和第三继电器模块;The core control module, whose signal output terminals are respectively connected to the control signal input terminals of the ultrasonic signal generation module, the first relay module, the second relay module, and the third relay module, are used to select signals according to the input working frequency to generate corresponding switching The control signals are respectively transmitted to the first relay module, the second relay module and the third relay module;
五个超声信号产生模块,其输出端分别通过第一继电器模块与输入隔离模块选择性连接,用于分别输出不同频率的超声驱动信号;Five ultrasonic signal generating modules, the output ends of which are selectively connected to the input isolation module through the first relay module, respectively, and are used to respectively output ultrasonic driving signals of different frequencies;
第一继电器模块,用于接收相应的切换控制信号并选择接通相应的超声信号产生模块和输入隔离模块;The first relay module is used to receive the corresponding switch control signal and selectively connect the corresponding ultrasonic signal generation module and input isolation module;
输入隔离模块,其输出端与功率放大模块相连接,用于驱动功率放大模块正常工作;The input isolation module, the output end of which is connected with the power amplifier module, is used to drive the power amplifier module to work normally;
功率放大模块,其输出端通过第二继电器模块分别与第一匹配变压器和第二匹配变压器选择性连接;A power amplification module, the output end of which is selectively connected to the first matching transformer and the second matching transformer through the second relay module;
第二继电器模块,用于接收相应的切换控制信号并选择接通功率放大模块和相应的第一匹配变压器或第二匹配变压器;The second relay module is used to receive the corresponding switching control signal and selectively connect the power amplification module and the corresponding first matching transformer or the second matching transformer;
五个匹配电感,其分别与五个超声信号产生模块一一对应,并且其中三个匹配电感的输入端分别通过第三继电器模块与第一匹配变压器选择性连接,另外两个匹配电感的输入端分别通过第三继电器模块与第二匹配变压器选择性连接,五个匹配电感的输出端分别与相应的换能器阵相连接,用于对相对应的换能器阵进行调谐匹配;Five matching inductors, which correspond to the five ultrasonic signal generating modules, and the input ends of three matching inductors are selectively connected to the first matching transformer through the third relay module, and the input ends of the other two matching inductors The third relay module is selectively connected to the second matching transformer respectively, and the output terminals of the five matching inductors are respectively connected to the corresponding transducer arrays, so as to tune and match the corresponding transducer arrays;
第一匹配变压器和第二匹配变压器,用于改变相对应的换能器阵的阻抗,使其与信源阻抗相匹配,保证相对应的换能器阵获得最大的电功率;The first matching transformer and the second matching transformer are used to change the impedance of the corresponding transducer array to match the impedance of the signal source, so as to ensure that the corresponding transducer array obtains the maximum electric power;
第三继电器模块,用于接收相应的切换控制信号并选择接通相应的匹配电感和第一匹配变压器;还用于接收相应的切换控制信号并选择接通相应的匹配电感和第二匹配变压器。The third relay module is used for receiving the corresponding switching control signal and selectively connecting the corresponding matching inductor and the first matching transformer; it is also used for receiving the corresponding switching control signal and selectively connecting the corresponding matching inductor and the second matching transformer.
进一步,所述的五个超声信号产生模块分别为第一超声信号产生模块、第二超声信号产生模块、第三超声信号产生模块、第四超声信号产生模块和第五超声信号产生模块,所述的第一超声信号产生模块输出频率为20KHz的超声驱动信号,第二超声信号产生模块输出频率为40KHz的超声驱动信号,第三超声信号产生模块输出频率为80KHz的超声驱动信号,第四超声信号产生模块输出频率为160KHz的超声驱动信号,第五超声信号产生模块输出频率为200KHz的超声驱动信号。Further, the five ultrasonic signal generating modules are respectively the first ultrasonic signal generating module, the second ultrasonic signal generating module, the third ultrasonic signal generating module, the fourth ultrasonic signal generating module and the fifth ultrasonic signal generating module, the The output frequency of the first ultrasonic signal generating module is an ultrasonic driving signal of 20KHz, the output frequency of the second ultrasonic signal generating module is an ultrasonic driving signal of 40KHz, the output frequency of the third ultrasonic signal generating module is an ultrasonic driving signal of 80KHz, and the fourth ultrasonic signal The generating module outputs an ultrasonic driving signal with a frequency of 160KHz, and the fifth ultrasonic signal generating module outputs an ultrasonic driving signal with a frequency of 200KHz.
进一步,所述的五个匹配电感分别为第一匹配电感、第二匹配电感、第三匹配电感、第四匹配电感和第五匹配电感,第一匹配电感和第一超声信号产生模块相对应,并且其谐振频率为20KHz,第二匹配电感和第二超声信号产生模块相对应,并且其谐振频率为40KHz,第三匹配电感和第三超声信号产生模块相对应,并且其谐振频率为80KHz,第四匹配电感和第四超声信号产生模块相对应,并且其谐振频率为160KHz,第五匹配电感和第五超声信号产生模块相对应,并且其谐振频率为200KHz。Further, the five matching inductances are respectively the first matching inductance, the second matching inductance, the third matching inductance, the fourth matching inductance and the fifth matching inductance, the first matching inductance corresponds to the first ultrasonic signal generating module, And its resonant frequency is 20KHz, the second matching inductance corresponds to the second ultrasonic signal generating module, and its resonant frequency is 40KHz, the third matching inductance corresponds to the third ultrasonic signal generating module, and its resonant frequency is 80KHz, the first The four matching inductors correspond to the fourth ultrasonic signal generating module, and their resonance frequency is 160KHz, and the fifth matching inductor corresponds to the fifth ultrasonic signal generating module, and their resonance frequency is 200KHz.
进一步,所述的输入隔离模块由驱动电路和隔离变压器连接而成。Further, the input isolation module is formed by connecting a drive circuit and an isolation transformer.
进一步,功率放大模块采用半桥型超声功率放大电路。Further, the power amplifying module adopts a half-bridge ultrasonic power amplifying circuit.
更进一步,能器阵由多个换能器组成,并且每个换能器由多片压电陶瓷片并联而成。Furthermore, the energy array is composed of multiple transducers, and each transducer is formed by connecting multiple piezoelectric ceramic sheets in parallel.
采用了上述技术方案后,由于采用自适应技术对不同的水下构建物和不同状态可以利用不同频段下的五种频率(可以是20kHz、40kHz、80kHz、160kHz和200kHz)的换能器阵进行水下构建物清洗污垢效果研究,突出了清洗效果的有效性和对比性,且本发明的多频率超声清洗效果实验平台具有结构简单、成本低、节能、操作方便和清洗效果明显且易于对比等特点,在超声清洗技术研究方面具有重要意义。After adopting the above-mentioned technical scheme, due to the adoption of self-adaptive technology, five kinds of transducer arrays with different frequency bands (which can be 20kHz, 40kHz, 80kHz, 160kHz and 200kHz) can be used for different underwater structures and different states. The research on the cleaning effect of underwater structures highlights the effectiveness and contrast of the cleaning effect, and the multi-frequency ultrasonic cleaning effect experimental platform of the present invention has the advantages of simple structure, low cost, energy saving, convenient operation, obvious cleaning effect and easy comparison, etc. It is of great significance in the research of ultrasonic cleaning technology.
附图说明Description of drawings
图1为本发明的多频率超声清洗效果实验平台的原理框图。Fig. 1 is a functional block diagram of the multi-frequency ultrasonic cleaning effect experimental platform of the present invention.
具体实施方式detailed description
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明。In order to make the content of the present invention more clearly understood, the present invention will be further described in detail below based on specific embodiments and in conjunction with the accompanying drawings.
如图1所示,一种多频率超声清洗效果实验平台,它包括核心控制模块、第一继电器模块1、第二继电器模块2、第三继电器模块3、输入隔离模块、功率放大模块、第一匹配变压器、第二匹配变压器、五个超声信号产生模块、五个匹配电感和五个换能器阵4;其中,As shown in Figure 1, a multi-frequency ultrasonic cleaning effect experimental platform includes a core control module, a first relay module 1, a second relay module 2, a third relay module 3, an input isolation module, a power amplification module, a first A matching transformer, a second matching transformer, five ultrasonic signal generating modules, five matching inductors and five transducer arrays 4; wherein,
核心控制模块,其信号输出端分别与超声信号产生模块、第一继电器模块1、第二继电器模块2、第三继电器模块3的控制信号输入端相连接,用于根据输入的工作频率选择信号产生相应的切换控制信号分别传递给第一继电器模块1、第二继电器模块2和第三继电器模块3;The core control module, its signal output terminal is respectively connected with the control signal input terminal of the ultrasonic signal generation module, the first relay module 1, the second relay module 2, and the third relay module 3, and is used to select the signal generation according to the input working frequency Corresponding switching control signals are respectively transmitted to the first relay module 1, the second relay module 2 and the third relay module 3;
五个超声信号产生模块,其输出端分别通过第一继电器模块1与输入隔离模块选择性连接,用于分别输出不同频率的超声驱动信号;Five ultrasonic signal generating modules, the output ends of which are selectively connected to the input isolation module through the first relay module 1, respectively, and are used to respectively output ultrasonic driving signals of different frequencies;
第一继电器模块1,用于接收相应的切换控制信号并选择接通相应的超声信号产生模块和输入隔离模块,从而选择超声驱动信号的频率,第一继电器模块1的公共端口连接输入隔离模块,五个选择端口分别连接五个超声信号产生模块,其由核心控制模块控制。The first relay module 1 is used to receive the corresponding switch control signal and selectively connect the corresponding ultrasonic signal generation module and input isolation module, thereby selecting the frequency of the ultrasonic drive signal, the common port of the first relay module 1 is connected to the input isolation module, The five selection ports are respectively connected to five ultrasonic signal generating modules, which are controlled by the core control module.
输入隔离模块,其输出端与功率放大模块相连接,用于将超声驱动信号进行前级放大并将超声信号产生模块与功率放大模块隔离,从而驱动功率放大模块正常工作;The input isolation module, whose output terminal is connected with the power amplification module, is used for pre-amplifying the ultrasonic driving signal and isolating the ultrasonic signal generation module from the power amplification module, so as to drive the power amplification module to work normally;
功率放大模块,其输出端通过第二继电器模块2分别与第一匹配变压器和第二匹配变压器选择性连接,用于对超声驱动信号进行功率放大;A power amplification module, the output end of which is selectively connected to the first matching transformer and the second matching transformer through the second relay module 2, and is used to amplify the power of the ultrasonic driving signal;
第二继电器模块2,用于接收相应的切换控制信号并选择接通功率放大模块和相应的第一匹配变压器或第二匹配变压器;第二继电器模块2的公共端口连接功率放大模块,两个选择端口分别连接第一匹配变压器和第二匹配变压器,其由核心控制模块控制。The second relay module 2 is used to receive the corresponding switching control signal and select to connect the power amplification module and the corresponding first matching transformer or the second matching transformer; the common port of the second relay module 2 is connected to the power amplification module, two options The ports are respectively connected to the first matching transformer and the second matching transformer, which are controlled by the core control module.
五个匹配电感,其分别与五个超声信号产生模块一一对应,并且其中三个匹配电感的输入端分别通过第三继电器模块3与第一匹配变压器选择性连接,另外两个匹配电感的输入端分别通过第三继电器模块3与第二匹配变压器选择性连接,五个匹配电感的输出端分别与相应的换能器阵4相连接,用于对相对应的换能器阵4进行调谐匹配,使相对应的换能器阵4电路趋于纯阻性;Five matching inductors, which correspond to the five ultrasonic signal generating modules respectively, and the input ends of three matching inductors are selectively connected to the first matching transformer through the third relay module 3 respectively, and the input terminals of the other two matching inductors The terminals are selectively connected to the second matching transformer through the third relay module 3, and the output terminals of the five matching inductors are respectively connected to the corresponding transducer arrays 4 for tuning and matching the corresponding transducer arrays 4 , so that the corresponding transducer array 4 circuits tend to be purely resistive;
第一匹配变压器和第二匹配变压器,用于改变相对应的换能器阵4的阻抗,使其与信源阻抗相匹配,保证相对应的换能器阵4获得最大的电功率;The first matching transformer and the second matching transformer are used to change the impedance of the corresponding transducer array 4 to match the impedance of the signal source, so as to ensure that the corresponding transducer array 4 obtains the maximum electric power;
第三继电器模块3,用于接收相应的切换控制信号并选择接通相应的匹配电感和第一匹配变压器;还用于接收相应的切换控制信号并选择接通相应的匹配电感和第二匹配变压器。The third relay module 3 is used to receive the corresponding switching control signal and selectively connect the corresponding matching inductor and the first matching transformer; it is also used to receive the corresponding switching control signal and selectively connect the corresponding matching inductor and the second matching transformer .
核心控制模块以MSP430F149单片机为核心,根据按键输入的信息来控制三个继电器模块的通断方式,从而实现选择所需频率的超声信号驱动超声换能器工作的功能。The core control module uses the MSP430F149 microcontroller as the core, and controls the on-off mode of the three relay modules according to the information input by the buttons, so as to realize the function of selecting the required frequency ultrasonic signal to drive the ultrasonic transducer.
五个超声信号产生模块分别为第一超声信号产生模块、第二超声信号产生模块、第三超声信号产生模块、第四超声信号产生模块和第五超声信号产生模块,所述的第一超声信号产生模块输出频率为20KHz的超声驱动信号,第二超声信号产生模块输出频率为40KHz的超声驱动信号,第三超声信号产生模块输出频率为80KHz的超声驱动信号,第四超声信号产生模块输出频率为160KHz的超声驱动信号,第五超声信号产生模块输出频率为200KHz的超声驱动信号。The five ultrasonic signal generating modules are respectively the first ultrasonic signal generating module, the second ultrasonic signal generating module, the third ultrasonic signal generating module, the fourth ultrasonic signal generating module and the fifth ultrasonic signal generating module, the first ultrasonic signal generating module The output frequency of the generation module is an ultrasonic drive signal of 20KHz, the output frequency of the second ultrasonic signal generation module is an ultrasonic drive signal of 40KHz, the output frequency of the third ultrasonic signal generation module is an ultrasonic drive signal of 80KHz, and the output frequency of the fourth ultrasonic signal generation module is The ultrasonic driving signal is 160KHz, and the fifth ultrasonic signal generating module outputs an ultrasonic driving signal with a frequency of 200KHz.
五个匹配电感分别为第一匹配电感、第二匹配电感、第三匹配电感、第四匹配电感和第五匹配电感,第一匹配电感和第一超声信号产生模块相对应,并且其谐振频率为20KHz,第二匹配电感和第二超声信号产生模块相对应,并且其谐振频率为40KHz,第三匹配电感和第三超声信号产生模块相对应,并且其谐振频率为80KHz,第四匹配电感和第四超声信号产生模块相对应,并且其谐振频率为160KHz,第五匹配电感和第五超声信号产生模块相对应,并且其谐振频率为200KHz。五个匹配电感可以采用PQ-28型骨架、E-E型铁氧体、丝包线绕制而成。The five matching inductances are the first matching inductance, the second matching inductance, the third matching inductance, the fourth matching inductance and the fifth matching inductance, the first matching inductance corresponds to the first ultrasonic signal generating module, and its resonance frequency is 20KHz, the second matching inductance corresponds to the second ultrasonic signal generation module, and its resonance frequency is 40KHz, the third matching inductance corresponds to the third ultrasonic signal generation module, and its resonance frequency is 80KHz, the fourth matching inductance and the first The four ultrasonic signal generation modules correspond to each other, and their resonance frequency is 160KHz, and the fifth matching inductor corresponds to the fifth ultrasonic signal generation module, and their resonance frequency is 200KHz. The five matching inductors can be made of PQ-28 type bobbin, E-E type ferrite, and silk-covered wire.
五个超声信号产生模块均具有SG3525芯片,通过改变芯片第6脚的电阻值,产生20kHz、40kHz、80kHz、160kHz和200kHz五种频率的超声驱动信号。The five ultrasonic signal generating modules all have SG3525 chips, and by changing the resistance value of the chip's sixth pin, five kinds of ultrasonic driving signals of 20kHz, 40kHz, 80kHz, 160kHz and 200kHz are generated.
输入隔离模块由驱动电路和隔离变压器连接而成,输入隔离模块以TIP122芯片NPN达林顿功率晶体管和TIP127芯片PNP达林顿功率晶体管为核心的驱动电路构成,达到驱动MOSFET的目的,输入隔离模块中含有采用PQ-26型骨架、E-E型磁芯、0.27mm直径漆包线绕制、原副线圈匝数比为1:1的隔离变压器,来避免前、后级电路信号的干扰。The input isolation module is composed of a drive circuit and an isolation transformer. The input isolation module is composed of a drive circuit with TIP122 chip NPN Darlington power transistor and TIP127 chip PNP Darlington power transistor as the core to achieve the purpose of driving MOSFET. Input isolation module It contains an isolation transformer with PQ-26 type skeleton, E-E type magnetic core, 0.27mm diameter enameled wire winding, and the turn ratio of the primary and secondary coils is 1:1 to avoid the interference of the front and rear circuit signals.
功率放大模块采用半桥型超声功率放大电路,将五种不同频率的超声驱动信号功率放大到100W。The power amplifying module adopts half-bridge ultrasonic power amplifying circuit to amplify the power of ultrasonic driving signals of five different frequencies to 100W.
换能器阵4可以由多个换能器组成,并且每个换能器由多片压电陶瓷片并联而成。本实施例的换能器阵4由3×3换能器阵列组成,中心频率分别为20kHz、40kHz、80kHz、160kHz和200kHz,实现与相应的换能器阵4静态电容C0调谐匹配。用于将超声频率电信号转化为超声机械振动,并带动防水外壳振动,从而在水中产生超声空化作用,剥落构建物上的污垢,达到清洗的目的。The transducer array 4 may be composed of multiple transducers, and each transducer is composed of multiple piezoelectric ceramic sheets connected in parallel. The transducer array 4 of this embodiment is composed of 3×3 transducer arrays, and the center frequencies are 20kHz, 40kHz, 80kHz, 160kHz and 200kHz, respectively, to achieve tuning and matching with the static capacitance C 0 of the corresponding transducer array 4 . It is used to convert the ultrasonic frequency electrical signal into ultrasonic mechanical vibration, and drive the waterproof shell to vibrate, thereby generating ultrasonic cavitation in water, peeling off the dirt on the structure, and achieving the purpose of cleaning.
第一匹配变压器可以用PQ-28型骨架、E-E型铁氧体、丝包线绕制而成的变压器,在频率为20kHz、40kHz和80kHz时实现后端相应换能器阵4电路与前端电路的阻抗匹配。The first matching transformer can be a transformer made of PQ-28 type skeleton, E-E type ferrite, and wire-wrapped wire. When the frequency is 20kHz, 40kHz and 80kHz, the back-end corresponding transducer array 4 circuit and the front-end circuit can be realized. impedance matching.
第二匹配变压器可以采用PQ-28型骨架、E-E型铁氧体、丝包线绕制而成的变压器,在频率为160kHz和200kHz时实现后端相应换能器阵4电路与前端电路的阻抗匹配。The second matching transformer can be a transformer made of PQ-28 type skeleton, E-E type ferrite, and wire-wrapped wire. When the frequency is 160kHz and 200kHz, the impedance of the corresponding transducer array 4 circuit at the back end and the front-end circuit can be realized. match.
第三继电器模块3在频率为20kHz、40kHz和80kHz时,其上部公共端口连接第一匹配变压器,相应的三个选择端口分别连接第一匹配电感、第二匹配电感、第三匹配电感,其由核心控制模块控制,第三继电器模块3在频率为160kHz、和200kHz时,其下部公共端口连接第二匹配变压器,相应的两个选择端口分别连接第四匹配电感、第五匹配电感,其由核心控制模块控制。When the frequency of the third relay module 3 is 20kHz, 40kHz and 80kHz, its upper common port is connected to the first matching transformer, and the corresponding three selection ports are respectively connected to the first matching inductance, the second matching inductance, and the third matching inductance. Controlled by the core control module, when the frequency of the third relay module 3 is 160kHz and 200kHz, its lower common port is connected to the second matching transformer, and the corresponding two selection ports are respectively connected to the fourth matching inductor and the fifth matching inductor, which are controlled by the core Control module control.
本发明的工作原理如下:The working principle of the present invention is as follows:
在实验五频可切换超声清洗实验研究时,根据需要选择实验用超声信号频率。通过核心控制模块设置所选的超声驱动信号频率,核心控制模块控制相应的超声信号产生模块和第一继电器模块1协调工作,同时控制第二继电器模块2和第三继电器模块3连接相应的第一匹配变压器或第二匹配变压器,和相应的匹配电感。超声信号产生模块产生与所选频率相对应的两路同频反相峰值为5V的单极方波信号,经第一继电器模块1输出给输入隔离模块中的驱动电路,两路同频反相峰值为5V的单极方波信号经放大整形为一路峰值为12V的双极方波信号,信号经由匝数比为1:1的隔离变压器分成两路同频反相信号,驱动与其相连的功率放大模块。功率放大模块的输出端连接第二继电器模块2,第二继电器模块2的选择输出端选通第一匹配变压器或第二匹配变压器,功率放大模块的电源电压为310V,第一匹配变压器和第二匹配变压器用于实现与换能器阵4的阻抗匹配,第一匹配变压器的输出端连接第三继电器模块3的上公共端口,相应的选择端口连接第一匹配电感、第二匹配电感和第三匹配电感;第二匹配变压器的输出端连接第三继电器模块3的下公共端口,相应的选择端口连接第四匹配电感和第五匹配电感。核心控制模块将控制第二继电器模块2和第三继电器模块3选择设定的信号传输路径,第三继电器模块3的各选择端口与各匹配电感相连接,通过选通相应的匹配电感与相应的换能器阵4相连接,实现调谐匹配。相应的换能器阵4将输入的超声电信号转化为超声机械振动,从而使换能器阵4前后的水发生超声空化效应,对待清洗物的表面进行超声清洗。改变所选超声波的频率,重复以上过程,对污垢清洗效果进行针对性探究。In the experimental study of five-frequency switchable ultrasonic cleaning, the frequency of the ultrasonic signal for the experiment is selected according to the needs. The frequency of the selected ultrasonic drive signal is set through the core control module, and the core control module controls the corresponding ultrasonic signal generation module and the first relay module 1 to work in coordination, and at the same time controls the second relay module 2 and the third relay module 3 to connect to the corresponding first A matching transformer or a second matching transformer, and a corresponding matching inductance. The ultrasonic signal generation module generates two unipolar square wave signals corresponding to the selected frequency with the same frequency and anti-phase peak value of 5V, which are output to the drive circuit in the input isolation module through the first relay module 1, and the two channels with the same frequency and anti-phase The unipolar square wave signal with a peak value of 5V is amplified and shaped into a bipolar square wave signal with a peak value of 12V. The signal is divided into two channels of same-frequency and anti-phase signals through an isolation transformer with a turn ratio of 1:1 to drive the power connected to it. Zoom in on the module. The output end of the power amplification module is connected to the second relay module 2, and the selection output end of the second relay module 2 selects the first matching transformer or the second matching transformer. The power supply voltage of the power amplification module is 310V, and the first matching transformer and the second matching transformer The matching transformer is used to achieve impedance matching with the transducer array 4, the output end of the first matching transformer is connected to the upper common port of the third relay module 3, and the corresponding selection port is connected to the first matching inductance, the second matching inductance and the third Matching inductance: the output end of the second matching transformer is connected to the lower common port of the third relay module 3 , and the corresponding selection port is connected to the fourth matching inductance and the fifth matching inductance. The core control module will control the second relay module 2 and the third relay module 3 to select and set the signal transmission path, each selection port of the third relay module 3 is connected to each matching inductance, and the corresponding matching inductance and corresponding The transducer array is connected in 4 phases to achieve tuning and matching. The corresponding transducer array 4 converts the input ultrasonic electrical signal into ultrasonic mechanical vibration, so that ultrasonic cavitation effect occurs in the water before and after the transducer array 4, and ultrasonic cleaning is performed on the surface of the object to be cleaned. Change the frequency of the selected ultrasonic wave, repeat the above process, and conduct a targeted exploration of the dirt cleaning effect.
以上所述的具体实施例,对本发明解决的技术问题、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the technical problems, technical solutions and beneficial effects solved by the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Inventions, any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310556615.8A CN103558047B (en) | 2013-11-11 | 2013-11-11 | Multi-frequency ultrasonic cleaning effect experimental platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310556615.8A CN103558047B (en) | 2013-11-11 | 2013-11-11 | Multi-frequency ultrasonic cleaning effect experimental platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103558047A CN103558047A (en) | 2014-02-05 |
CN103558047B true CN103558047B (en) | 2016-07-06 |
Family
ID=50012357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310556615.8A Expired - Fee Related CN103558047B (en) | 2013-11-11 | 2013-11-11 | Multi-frequency ultrasonic cleaning effect experimental platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103558047B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103876655A (en) * | 2014-03-27 | 2014-06-25 | 河海大学常州校区 | Kitchen cleaning and disinfecting machine with sound-light and ozone combined and working method thereof |
CN106353118B (en) * | 2016-08-29 | 2019-11-22 | 南京巨鲨显示科技有限公司 | A cleaning efficiency monitoring device for an ultrasonic cleaning machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6538360B2 (en) * | 1996-08-05 | 2003-03-25 | William L. Puskas | Multiple frequency cleaning system |
CN2726745Y (en) * | 2004-06-28 | 2005-09-21 | 上海科导超声仪器有限公司 | Multi-frequency ultrasonic cleaning device |
CN201371144Y (en) * | 2009-03-05 | 2009-12-30 | 宁波新芝生物科技股份有限公司 | Multi-frequency ultrasonic cleaning machine |
KR100972085B1 (en) * | 2009-12-15 | 2010-07-22 | 김윤수 | Method for suppling maximum efficiency power of ultrasonic cleaner |
CN103341466A (en) * | 2013-07-29 | 2013-10-09 | 河海大学常州校区 | Multi-frequency switchable underwater construction cleaning and maintenance device |
-
2013
- 2013-11-11 CN CN201310556615.8A patent/CN103558047B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6538360B2 (en) * | 1996-08-05 | 2003-03-25 | William L. Puskas | Multiple frequency cleaning system |
CN2726745Y (en) * | 2004-06-28 | 2005-09-21 | 上海科导超声仪器有限公司 | Multi-frequency ultrasonic cleaning device |
CN201371144Y (en) * | 2009-03-05 | 2009-12-30 | 宁波新芝生物科技股份有限公司 | Multi-frequency ultrasonic cleaning machine |
KR100972085B1 (en) * | 2009-12-15 | 2010-07-22 | 김윤수 | Method for suppling maximum efficiency power of ultrasonic cleaner |
CN103341466A (en) * | 2013-07-29 | 2013-10-09 | 河海大学常州校区 | Multi-frequency switchable underwater construction cleaning and maintenance device |
Also Published As
Publication number | Publication date |
---|---|
CN103558047A (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103341466B (en) | Multi-frequency switchable underwater construction cleaning and maintenance device | |
CN102255606B (en) | Solid-state radio frequency power supply based on E-type power amplifying circuit | |
CN101642741B (en) | Ultrasonic wave atomization circuit and device | |
CN109687693A (en) | A kind of driver for isolating and high frequency switch power | |
CN103558047B (en) | Multi-frequency ultrasonic cleaning effect experimental platform | |
CN105871224A (en) | Ultrasonic power circuit and ultrasonic cleaning equipment | |
CN201364081Y (en) | Ultrasonic-pulse scale preventer | |
CN105186914A (en) | Novel H6 single-phase non-isolation grid-connected inverter | |
CN205029572U (en) | Novel single -phase non - isolation grid -connected inverter of H6 | |
CN210157099U (en) | Piezoelectric ceramic power driving device | |
CN103949437A (en) | Multi-frequency ultrasonic cleaner made of piezoelectric ceramic | |
CN204981357U (en) | Intelligent electron descaler | |
CN208675209U (en) | High-power high-efficiency sonar transmitter | |
CN115051731B (en) | Direct current power line carrier communication module | |
CN204074610U (en) | The Multi-frequency ultrasonic cleaning device that piezoelectric ceramics produces | |
TW201131952A (en) | Boost type converter | |
CN109861352A (en) | Wireless charging circuit, device and its control method | |
CN107666248A (en) | A kind of isolated LED switch power supply of monopole | |
CN218549760U (en) | High-frequency high-power ultrasonic driving device | |
CN108599729A (en) | Increase power amplifier output power to drive the circuit structure of transmitting transducer | |
CN201799431U (en) | Ultrasonic transduction scale prevention and removal device | |
CN202363429U (en) | Megasonic transduction device used in wet etching and cleaning technology | |
CN106656271B (en) | A carrier communication current loop signal coupling device | |
CN207301137U (en) | A kind of new transient electromagnetic method pulse current radiating circuit | |
CN206211852U (en) | Ultrasonic power circuit and ultrasonic cleaning apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160706 Termination date: 20181111 |