CN103540908A - 沉积二氧化硅薄膜的方法 - Google Patents
沉积二氧化硅薄膜的方法 Download PDFInfo
- Publication number
- CN103540908A CN103540908A CN201310150780.3A CN201310150780A CN103540908A CN 103540908 A CN103540908 A CN 103540908A CN 201310150780 A CN201310150780 A CN 201310150780A CN 103540908 A CN103540908 A CN 103540908A
- Authority
- CN
- China
- Prior art keywords
- deposition
- temperature
- frequency
- plasma
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/401—Oxides containing silicon
- C23C16/402—Silicon dioxide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
- H01L21/0234—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明涉及一种利用等离子体增强化学气相沉积(PECVD)沉积二氧化硅薄膜的方法,并且更具体地利用原硅酸四乙酯(TEOS)以等离子体增强化学气相沉积(PECVD)沉积二氧化硅薄膜的方法。该方法可在标准温度下进行,并且也可在用于制造穿透性硅通孔的晶片的低温下进行。
Description
技术领域
本发明涉及一种利用等离子体增强化学气相沉积(PECVD)沉积二氧化硅薄膜的方法,并且更具体地涉及使用原硅酸四乙酯(TEOS)以等离子体增强化学气相沉积(PECVD)沉积二氧化硅薄膜的方法。
背景技术
来自原硅酸四乙酯和氧气的二氧化硅的沉积是已知的,然而,当沉积温度为300℃或更低时,所得到的二氧化硅层易受水分再吸收影响。这就导致泄漏电流和绝缘性质随着时间推移而劣化。
随着对硅晶片中穿透性硅通孔(TSV)的需求增长,开始需要较低的沉积温度。对于穿透性硅通孔(TSV)存在许多可使用的潜在完整方案,这些完整方案中的一些需要将硅晶片非永久性粘合至载体晶片。胶粘剂将限制沉积二氧化硅的温度,因为目前用于沉积二氧化硅的温度会劣化粘合材料。
欧洲专利申请号10275131.0描述了在沉积的薄膜上进行氢等离子体处理以在薄膜的表面上改性(reform)Si-H键。该过程在200℃或更低的温度下进行。然而,制造具有TSV的晶片需要较低的沉积温度和等离子体处理温度。
因此,需要提供一种在低于之前的实施温度的温度下的二氧化硅沉积的方法,且该方法能够克服水分再吸收的相关问题。
发明内容
本发明提供一种在腔室内利用PECVD沉积二氧化硅薄膜的方法,包括:供给作为前驱物的TEOS、氧气或氧气源、以及氢气。
当与不包含氢气的沉积循环相比时,在沉积循环中并入作为活性气体的氢气使二氧化硅薄膜性质显著改善。
本发明可在任何合适的温度下,甚至在高温下进行。在实施方式中,腔室的温度在100℃和500℃之间。在进一步的实施方式中,腔室的温度在100℃和250℃之间。在又一进一步的实施方式中,腔室的温度在125℃和175℃之间。这些较低的温度适用于生产具有TSV的晶片。
纯氧气可被用作前驱物气体,或也可使用氧气源例如N2O来替代。氦气可被用作TEOS的载气。
同时,可以以任何合适量来使用前驱物,本发明人使用基于sccm的10~20∶1的O2与TEOS的比。
通过本文中公开的方法制得的薄膜可进一步经历如在欧洲专利申请号102751310中描述的氢等离子体后沉积处理步骤。该步骤进一步抑制水分的再吸收并且降低泄漏电流。
在实施方式中,等离子体为RF诱导等离子体。等离子体可由高频部件和低频部件产生。高频部件为13.56MHz,并且功率选自600W至1200W的范围;低频部件为375KHz,并且功率选自300W至500W的范围。
在实施方式中,利用喷淋头将前驱体供给到腔室中。喷淋头可为用于对等离子体供给RF功率的RF驱动喷淋头。优选地,RF驱动喷淋头利用高频部件和低频部件驱动。高频部件为13.56MHz,并且功率选自600W至1200W的范围;而低频部件为375KHz至2MHz,并且功率选自300W至500W的范围。
本发明可以以各种方式实施,并且现将参照附图通过实施例描述具体实施方式。
附图说明
图1a和图1b分别示出了由方法A和方法B生产的薄膜作为时间函数的FTIR光谱;
图2a示出了由方法A制得的薄膜的泄漏电流的曲线图;
图2b示出了已进行氢等离子体后沉积处理的方法B的泄漏电流的曲线图;
图2c示出了未进行氢等离子体后沉积处理的方法B制得的薄膜的泄漏电流的曲线图;
图3a示出了由方法C(即在沉积过程中带有氢气)制得的薄膜的泄漏电流作为外加场强(applied filed)的函数的曲线图;
图3b示出了与方法C相似但沉积过程中没有氢气的方法制得的薄膜的泄漏电流作为时间函数的曲线图;
图4示出了用于沉积的装置的示意图。
具体实施方式
使用装置,利用下列方法条件进行一系列实验。
方法A:腔室压力2000mT,1500sccm O2,0H2,在1000sccm He中的66sccmTEOS,高频666W,低频334W,温度125℃。
方法B:腔室压力3100mT,2300sccm O2,在2000sccm He中的155sccmTEOS,温度125℃,1000sccm H2,高频900W,低频400W。
方法C:腔室压力2500mT,2300sccm O2,750sccm H2,温度175℃,在500sccm He中的155sccm TEOS,高频1320W,低频495W。
方法A、B和C的沉积速度分别为298nm/min、709nm/min和702nm/min。
图1a示出了由方法A制得的薄膜在沉积时以及在沉积一周后获得的FTIR光谱。可以看到,在890cm-1和3400cm-1处的峰在一周后变宽。该变宽表示少量的水分吸收。图1b示出了由方法B得到的薄膜的FTIR光谱。可以看到,在890cm-1和3400cm-1处的峰没有任何移动,这表示没有可检测的水分吸收。方法A和方法B都在与沉积过程相同的温度下以氢等离子体后沉积步骤结束。
图2a示出了由带有氢等离子体后沉积处理的方法A制得的薄膜抵抗外加场强且暴露在大气中的泄漏电流的曲线图。可以看到约6MV/cm的较小上升,但在可实施的装置能够工作的数字2MV/cm处没有变化。图2b示出了利用方法B沉积且随后经历氢等离子体后沉积处理步骤的薄膜的泄漏电流的曲线图。可以看到泄漏电流在2MV/cm处无变化。图2c示出了由方法B制得且未随后经历氢等离子体后沉积处理步骤的薄膜的泄漏电流的曲线图。可以看到,尽管缺少该步骤,当与方法A相比时,其具有改善的泄漏性质。
表1
上述表1进一步证实了图2a、图2b和图2c中示出的方法的结果。同样,在表中示出了利用未进行氢等离子体后沉积步骤的方法A的实验。
图3a示出了由方法C制得的薄膜的泄漏电流作为外加场强的函数的曲线图。图3b示出了与方法C相似但沉积过程中没有氢气的方法制得的薄膜的泄漏电流作为时间函数的曲线图。从这两个曲线图可以看出:当沉积过程在高温下使用氢气时,改善了二氧化硅薄膜的泄漏性质。
图4示出了实施本发明的实施方式的示意性装置。装置10包括腔室11,喷淋头12、晶片支架13以及相应的高频源14和低频源15。喷淋头12布置用以接收三种前驱物(在氦气中的TEOS、氧气或氧气源、以及H2)。匹配单元16和17分别提供用于高频源14和低频源15,且泵吸出口18提供用于除去剩余的反应气体。
已经证实了在沉积循环中使用H2作为活性气体沉积二氧化硅(TEOS类)薄膜。此外,该方法得益于高沉积速率并且能够在低温以及更高、更标准的温度下进行。当与之前已知的方法A制备的薄膜相比时,在沉积阶段中加入氢气由于没有水分吸收而使薄膜的电学性质改善,并且确保薄膜随着时间推移而保持稳定。此外,本发明人认为,在沉积过程中的内含物氢气有助于薄膜的原位致密化。该致密化增加了折射率和抗压强度,如表1所示。
通过包括氢等离子体沉积步骤,进一步降低起始泄漏电流,并且抑制水分再吸收。
为避免疑问,应当理解的是,本文中提及“包括”一个或多个要素的特征的情况下,本说明书在其范围内还包括“包含所述要素”、“基本由所述要素组成”和“由所述要素组成”的此类特征。
Claims (14)
1.一种在基板上沉积二氧化硅薄膜的方法,包括:将前驱物供给到含有所述基板的腔室中,并利用等离子体增强化学气相沉积在所述基板上沉积所述二氧化硅薄膜的步骤,其中所述前驱物包括TEOS、氧气或氧气源、以及氢气。
2.根据权利要求1所述的方法,其中,在100℃和500℃之间的温度下沉积二氧化硅。
3.根据权利要求1或2所述的方法,其中,在100℃和250℃之间的温度下沉积所述二氧化硅。
4.根据权利要求1至3中任一项所述的方法,其中,在125℃和175℃之间的温度下沉积所述二氧化硅薄膜。
5.根据前述权利要求中任一项所述的方法,其中,沉积的二氧化硅薄膜经历氢等离子体后沉积处理步骤。
6.根据权利要求5所述的方法,其中,在真空破坏后,实施所述氢等离子体后沉积处理。
7.根据权利要求5或6所述的方法,其中,在与沉积所述二氧化硅相同的温度下进行氢等离子体处理。
8.根据权利要求5至7中任一项所述的方法,其中,由高频RF部件和低频RF部件产生等离子体。
9.根据前述权利要求中任一项所述的方法,其中,通过喷淋头将所述前驱物供给到所述腔室。
10.根据权利要求9所述的方法,其中,所述喷淋头对所述等离子体供给RF功率。
11.根据权利要求10所述的方法,其中,利用具有高频部件和低频部件的RF驱动喷淋头沉积所述前驱物。
12.根据权利要求11所述的方法,其中,所述高频部件为13.56MHz,且功率选自600W至1200W的范围,而所述低频部件为350KHz至2MHz,且功率选自300W至500W。
13.一种基本如本文中描述的且参照附图的方法。
14.一种根据前述权利要求中任一项所述的方法制得的二氧化硅薄膜。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261638598P | 2012-04-26 | 2012-04-26 | |
US61/638,598 | 2012-04-26 | ||
GB1207448.0 | 2012-04-26 | ||
GBGB1207448.0A GB201207448D0 (en) | 2012-04-26 | 2012-04-26 | Method of depositing silicon dioxide films |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103540908A true CN103540908A (zh) | 2014-01-29 |
Family
ID=46330494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310150780.3A Pending CN103540908A (zh) | 2012-04-26 | 2013-04-26 | 沉积二氧化硅薄膜的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9165762B2 (zh) |
EP (1) | EP2657363B1 (zh) |
JP (1) | JP6290544B2 (zh) |
KR (1) | KR102221064B1 (zh) |
CN (1) | CN103540908A (zh) |
GB (1) | GB201207448D0 (zh) |
TW (1) | TWI581334B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105063576A (zh) * | 2015-08-24 | 2015-11-18 | 沈阳拓荆科技有限公司 | 一种采用teos源的低温镀膜方法 |
CN109643654A (zh) * | 2016-09-09 | 2019-04-16 | 德克萨斯仪器股份有限公司 | 高性能超βNPN(SBNPN) |
CN112342531A (zh) * | 2020-10-19 | 2021-02-09 | 绍兴同芯成集成电路有限公司 | 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺 |
CN113621941A (zh) * | 2020-05-08 | 2021-11-09 | 韩松化学株式会社 | 硅前体和使用其制造含硅薄膜的方法 |
CN114000123A (zh) * | 2021-11-02 | 2022-02-01 | 浙江光特科技有限公司 | 一种制备SiO2薄膜的方法、芯片及装置 |
CN115020221A (zh) * | 2022-06-10 | 2022-09-06 | 广东越海集成技术有限公司 | 一种二氧化硅及其低温制备方法 |
CN116804270A (zh) * | 2023-08-29 | 2023-09-26 | 上海陛通半导体能源科技股份有限公司 | 二氧化硅薄膜的低温沉积方法及器件制备方法 |
CN117888080A (zh) * | 2024-03-14 | 2024-04-16 | 之江实验室 | 二氧化硅薄膜及其制备方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6579098B2 (ja) * | 2014-03-26 | 2019-09-25 | コニカミノルタ株式会社 | ガスバリア性フィルムの製造方法 |
JP6183965B2 (ja) * | 2014-03-27 | 2017-08-23 | Sppテクノロジーズ株式会社 | シリコン酸化膜及びその製造方法、並びにシリコン酸化膜の製造装置 |
US9460915B2 (en) * | 2014-09-12 | 2016-10-04 | Lam Research Corporation | Systems and methods for reducing backside deposition and mitigating thickness changes at substrate edges |
GB201522552D0 (en) * | 2015-12-21 | 2016-02-03 | Spts Technologies Ltd | Method of improving adhesion |
US10358717B2 (en) * | 2017-04-21 | 2019-07-23 | Lam Research Corporation | Method for depositing high deposition rate, thick tetraethyl orthosilicate film with low compressive stress, high film stability and low shrinkage |
CN113667964B (zh) * | 2021-08-31 | 2023-01-20 | 陛通半导体设备(苏州)有限公司 | Teos膜的制作方法 |
GB202213794D0 (en) * | 2022-09-21 | 2022-11-02 | Spts Technologies Ltd | Deposition of thick layers of silicon dioxide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5382550A (en) * | 1993-08-05 | 1995-01-17 | Micron Semiconductor, Inc. | Method of depositing SiO2 on a semiconductor substrate |
US5593741A (en) * | 1992-11-30 | 1997-01-14 | Nec Corporation | Method and apparatus for forming silicon oxide film by chemical vapor deposition |
US6028014A (en) * | 1997-11-10 | 2000-02-22 | Lsi Logic Corporation | Plasma-enhanced oxide process optimization and material and apparatus therefor |
US20060205202A1 (en) * | 2005-03-14 | 2006-09-14 | Hynix Semiconductor Inc. | Method for forming interlayer dielectric film in semiconductor device |
CN102108497A (zh) * | 2009-12-24 | 2011-06-29 | Spp处理技术系统英国有限公司 | 沉积SiO2膜的方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037274A (en) * | 1995-02-17 | 2000-03-14 | Fujitsu Limited | Method for forming insulating film |
JP4476984B2 (ja) * | 1995-09-08 | 2010-06-09 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
US6001728A (en) * | 1996-03-15 | 1999-12-14 | Applied Materials, Inc. | Method and apparatus for improving film stability of halogen-doped silicon oxide films |
US5939831A (en) * | 1996-11-13 | 1999-08-17 | Applied Materials, Inc. | Methods and apparatus for pre-stabilized plasma generation for microwave clean applications |
JP4101340B2 (ja) * | 1997-12-12 | 2008-06-18 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
JP3184177B2 (ja) * | 1999-03-26 | 2001-07-09 | キヤノン販売株式会社 | 層間絶縁膜の形成方法、半導体製造装置、及び半導体装置 |
US6565759B1 (en) * | 1999-08-16 | 2003-05-20 | Vanguard International Semiconductor Corporation | Etching process |
US6300219B1 (en) * | 1999-08-30 | 2001-10-09 | Micron Technology, Inc. | Method of forming trench isolation regions |
US7544625B2 (en) * | 2003-01-31 | 2009-06-09 | Sharp Laboratories Of America, Inc. | Silicon oxide thin-films with embedded nanocrystalline silicon |
US7807225B2 (en) * | 2003-01-31 | 2010-10-05 | Sharp Laboratories Of America, Inc. | High density plasma non-stoichiometric SiOxNy films |
US6867086B1 (en) | 2003-03-13 | 2005-03-15 | Novellus Systems, Inc. | Multi-step deposition and etch back gap fill process |
JP2004336019A (ja) * | 2003-04-18 | 2004-11-25 | Advanced Lcd Technologies Development Center Co Ltd | 成膜方法、半導体素子の形成方法、半導体素子、表示装置の形成方法及び表示装置 |
US7199061B2 (en) * | 2003-04-21 | 2007-04-03 | Applied Materials, Inc. | Pecvd silicon oxide thin film deposition |
US20110318502A1 (en) * | 2009-12-24 | 2011-12-29 | Spp Process Technology Systems Uk Limited | Methods of depositing sio2 films |
TWI448576B (zh) * | 2010-11-17 | 2014-08-11 | Nanmat Technology Co Ltd | 低介電材料及其薄膜之製備方法 |
-
2012
- 2012-04-26 GB GBGB1207448.0A patent/GB201207448D0/en not_active Ceased
-
2013
- 2013-04-24 US US13/869,369 patent/US9165762B2/en active Active
- 2013-04-24 EP EP13165092.1A patent/EP2657363B1/en active Active
- 2013-04-25 JP JP2013092954A patent/JP6290544B2/ja active Active
- 2013-04-25 TW TW102114803A patent/TWI581334B/zh active
- 2013-04-26 KR KR1020130046872A patent/KR102221064B1/ko active IP Right Grant
- 2013-04-26 CN CN201310150780.3A patent/CN103540908A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593741A (en) * | 1992-11-30 | 1997-01-14 | Nec Corporation | Method and apparatus for forming silicon oxide film by chemical vapor deposition |
US5382550A (en) * | 1993-08-05 | 1995-01-17 | Micron Semiconductor, Inc. | Method of depositing SiO2 on a semiconductor substrate |
US6028014A (en) * | 1997-11-10 | 2000-02-22 | Lsi Logic Corporation | Plasma-enhanced oxide process optimization and material and apparatus therefor |
US20060205202A1 (en) * | 2005-03-14 | 2006-09-14 | Hynix Semiconductor Inc. | Method for forming interlayer dielectric film in semiconductor device |
CN102108497A (zh) * | 2009-12-24 | 2011-06-29 | Spp处理技术系统英国有限公司 | 沉积SiO2膜的方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105063576A (zh) * | 2015-08-24 | 2015-11-18 | 沈阳拓荆科技有限公司 | 一种采用teos源的低温镀膜方法 |
CN109643654A (zh) * | 2016-09-09 | 2019-04-16 | 德克萨斯仪器股份有限公司 | 高性能超βNPN(SBNPN) |
CN113621941A (zh) * | 2020-05-08 | 2021-11-09 | 韩松化学株式会社 | 硅前体和使用其制造含硅薄膜的方法 |
CN113621941B (zh) * | 2020-05-08 | 2023-12-01 | 韩松化学株式会社 | 硅前体和使用其制造含硅薄膜的方法 |
CN112342531A (zh) * | 2020-10-19 | 2021-02-09 | 绍兴同芯成集成电路有限公司 | 一种利用低频射频电浆制备ild绝缘层的晶圆制造工艺 |
CN114000123A (zh) * | 2021-11-02 | 2022-02-01 | 浙江光特科技有限公司 | 一种制备SiO2薄膜的方法、芯片及装置 |
CN115020221A (zh) * | 2022-06-10 | 2022-09-06 | 广东越海集成技术有限公司 | 一种二氧化硅及其低温制备方法 |
CN116804270A (zh) * | 2023-08-29 | 2023-09-26 | 上海陛通半导体能源科技股份有限公司 | 二氧化硅薄膜的低温沉积方法及器件制备方法 |
CN116804270B (zh) * | 2023-08-29 | 2023-11-10 | 上海陛通半导体能源科技股份有限公司 | 二氧化硅薄膜的低温沉积方法及器件制备方法 |
CN117888080A (zh) * | 2024-03-14 | 2024-04-16 | 之江实验室 | 二氧化硅薄膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2657363B1 (en) | 2019-02-20 |
JP6290544B2 (ja) | 2018-03-07 |
TWI581334B (zh) | 2017-05-01 |
KR102221064B1 (ko) | 2021-02-25 |
EP2657363A1 (en) | 2013-10-30 |
GB201207448D0 (en) | 2012-06-13 |
JP2013229608A (ja) | 2013-11-07 |
TW201403714A (zh) | 2014-01-16 |
US20130288486A1 (en) | 2013-10-31 |
US9165762B2 (en) | 2015-10-20 |
KR20130121061A (ko) | 2013-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103540908A (zh) | 沉积二氧化硅薄膜的方法 | |
CN100594259C (zh) | 改善低k叠层之间粘附性的界面工程 | |
US9018108B2 (en) | Low shrinkage dielectric films | |
JP6781165B2 (ja) | ホウ素含有化合物、組成物、及びホウ素含有膜の堆積方法 | |
JP6845252B2 (ja) | ケイ素含有膜の堆積のための組成物及びそれを用いた方法 | |
TWI518201B (zh) | 沉積二氧化矽薄膜的方法 | |
US20190074176A1 (en) | Oxide with higher utilization and lower cost | |
US20100099271A1 (en) | Method for improving process control and film conformality of pecvd film | |
KR20090016403A (ko) | 실리콘 산화막 증착 방법 | |
TW201417179A (zh) | 低成本流動性介電質薄膜 | |
CN102113099B (zh) | 一种沉积低介电常数膜层的方法 | |
TW201128700A (en) | Novel gap fill integration with flowable oxide and cap oxide | |
TW201124553A (en) | Oxygen-doping for non-carbon radical-component CVD films | |
JP6490374B2 (ja) | 半導体装置の製造方法、基板処理装置およびプログラム | |
JP2018528610A (ja) | プラズマ原子層蒸着法を用いたシリコン窒化薄膜の製造方法 | |
CN110265298B (zh) | 半导体器件的制造方法、衬底处理装置 | |
JP4881153B2 (ja) | 水素化シリコンオキシカーバイド膜の生成方法。 | |
TW201520359A (zh) | 沉積具有高濕蝕刻抗性之低溫、無損壞高密度電漿的碳化矽類膜之方法 | |
US7122485B1 (en) | Deposition profile modification through process chemistry | |
US20110318502A1 (en) | Methods of depositing sio2 films | |
US12131899B2 (en) | Method of deposition | |
JP5069598B2 (ja) | ガスバリアフィルムの製造方法 | |
CN102820219A (zh) | 低温二氧化硅薄膜的形成方法 | |
JP2013008828A (ja) | シリコン絶縁膜の形成方法 | |
CN102820221A (zh) | 低温二氧化硅薄膜的形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140129 |
|
WD01 | Invention patent application deemed withdrawn after publication |