CN103476523A - 用于通过固体自由成型制造来构建金属物件的方法和装置 - Google Patents
用于通过固体自由成型制造来构建金属物件的方法和装置 Download PDFInfo
- Publication number
- CN103476523A CN103476523A CN2012800166716A CN201280016671A CN103476523A CN 103476523 A CN103476523 A CN 103476523A CN 2012800166716 A CN2012800166716 A CN 2012800166716A CN 201280016671 A CN201280016671 A CN 201280016671A CN 103476523 A CN103476523 A CN 103476523A
- Authority
- CN
- China
- Prior art keywords
- torch
- metal material
- pta
- plasma transferred
- arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 36
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000007787 solid Substances 0.000 title claims abstract description 23
- 239000000463 material Substances 0.000 claims abstract description 40
- 239000010936 titanium Substances 0.000 claims abstract description 21
- 230000008021 deposition Effects 0.000 claims abstract description 20
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 16
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 11
- 239000007769 metal material Substances 0.000 claims description 56
- 239000000758 substrate Substances 0.000 claims description 41
- 238000010891 electric arc Methods 0.000 claims description 38
- 238000003466 welding Methods 0.000 claims description 22
- 238000004062 sedimentation Methods 0.000 claims description 18
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 7
- 239000010937 tungsten Substances 0.000 claims description 7
- 229910052721 tungsten Inorganic materials 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 230000033001 locomotion Effects 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 238000005137 deposition process Methods 0.000 claims description 4
- 238000007499 fusion processing Methods 0.000 claims description 2
- 239000000155 melt Substances 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 2
- 238000002844 melting Methods 0.000 abstract description 14
- 230000008018 melting Effects 0.000 abstract description 14
- 238000010438 heat treatment Methods 0.000 abstract description 12
- 238000010100 freeform fabrication Methods 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 description 23
- 239000002184 metal Substances 0.000 description 23
- 238000000151 deposition Methods 0.000 description 19
- 239000010410 layer Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 7
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000011960 computer-aided design Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000012080 ambient air Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000013256 coordination polymer Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 229910052752 metalloid Inorganic materials 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000004877 mucosa Anatomy 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
- B23K10/027—Welding for purposes other than joining, e.g. build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
- B23K9/1675—Arc welding or cutting making use of shielding gas and of a non-consumable electrode making use of several electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/22—Direct deposition of molten metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/362—Process control of energy beam parameters for preheating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/10—Auxiliary heating means
- B22F12/17—Auxiliary heating means to heat the build chamber or platform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/30—Platforms or substrates
- B22F12/33—Platforms or substrates translatory in the deposition plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/46—Radiation means with translatory movement
- B22F12/47—Radiation means with translatory movement parallel to the deposition plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/46—Radiation means with translatory movement
- B22F12/48—Radiation means with translatory movement in height, e.g. perpendicular to the deposition plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/006—Control circuits therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K10/00—Welding or cutting by means of a plasma
- B23K10/02—Plasma welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0026—Auxiliary equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0033—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/0046—Welding
- B23K15/0086—Welding welding for purposes other than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K15/00—Electron-beam welding or cutting
- B23K15/10—Non-vacuum electron beam-welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
- B23K26/0608—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/346—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
- B23K26/348—Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding in combination with arc heating, e.g. TIG [tungsten inert gas], MIG [metal inert gas] or plasma welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/60—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/70—Auxiliary operations or equipment
- B23K26/702—Auxiliary equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K28/00—Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
- B23K28/02—Combined welding or cutting procedures or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
- B23K9/042—Built-up welding on planar surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
- B23K9/044—Built-up welding on three-dimensional surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/08—Arrangements or circuits for magnetic control of the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/10—Other electric circuits therefor; Protective circuits; Remote controls
- B23K9/1006—Power supply
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/124—Circuits or methods for feeding welding wire
- B23K9/125—Feeding of electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/133—Means for feeding electrodes, e.g. drums, rolls, motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/167—Arc welding or cutting making use of shielding gas and of a non-consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/52—Controlling or regulating the coating process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4097—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
- G05B19/4099—Surface or curve machining, making 3D objects, e.g. desktop manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/32—Process control of the atmosphere, e.g. composition or pressure in a building chamber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/80—Data acquisition or data processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/10—Auxiliary heating means
- B22F12/13—Auxiliary heating means to preheat the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F12/00—Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
- B22F12/40—Radiation means
- B22F12/41—Radiation means characterised by the type, e.g. laser or electron beam
- B22F12/43—Radiation means characterised by the type, e.g. laser or electron beam pulsed; frequency modulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/14—Titanium or alloys thereof
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35134—3-D cad-cam
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/45—Nc applications
- G05B2219/45135—Welding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Automation & Control Theory (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Arc Welding In General (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Coating By Spraying Or Casting (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Laser Beam Processing (AREA)
- Continuous Casting (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
本发明涉及通过固体自由成型制造来制造物件、尤其是钛及钛合金物件的方法和装置,其中通过供应丝形式的金属进料并采用两个气体转移电弧,一个等离子体转移电弧用于加热在基材上的沉积区以及一个等离子体转移电弧用于加热和熔化进料丝来提高沉积速率。
Description
技术领域
本发明涉及用于通过固体自由成型制造(solid freeform fabrication)来制造物件,尤其是钛及钛合金物件的方法和装置。
背景技术
通常由坯料开始通过浇铸、锻造或机械加工来制造由钛或钛合金制成的结构化金属部件。在制造中,这些技术具有昂贵钛金属的高材料使用以及较长的生产周期的缺点。
可以通过称为快速原型制造、快速制造、分层制造或添加制造的制造技术来制作完全致密的物理物件。这种技术采用计算机辅助设计软件(CAD)来首先构建待制作的物件的虚拟模型,然后将虚拟模型变换成通常是水平定向的薄平行片或层。然后可以通过放样(laying down)类似于虚拟层的形状的液体糊、粉末或片材形式的原材料的连续层直到形成整个物件制造物理物件。将各层融合在一起以形成固体致密物件。在沉积待融合或焊接在一起的固体材料的情况下,该技术也被称为固体自由成型。
固体自由成型是允许以相对较快的生产速度来制造几乎任何形状的物件的灵活的技术,对于每个物件通常为数小时至数天。因此,该技术适合于形成样机和小制作系列,但较不适合于大批量生产。
现有技术
可以将分层制造的技术扩展到包括沉积建筑材料的片的,即,将物件的虚拟模型的每个结构层分成一组片,当其并排放样时形成层。这允许通过以连续条的方式将焊丝焊接到基板上、按照物件的虚拟分层模型来形成每一层、并对于每一层重复上述过程,直到形成整个物理物件来形成金属物件。焊接技术的准确性通常太粗糙以至于不允许直接形成具有可接受的尺寸的物件。因此,形成的物件将通常被认为是生料物件或预成型件,其需要被机械加工至可接受的尺寸精度。
Taminger和Hafley[1]披露了直接由计算机辅助设计数据并结合电子束自由形状制造(EBF)来制造结构化金属件的方法和设备。通过在连续层上焊接金属焊接丝(其是通过由电子束提供的热能加以焊接)来制造结构化部件。该方法示意性地示于图1,其是[1]的图1的副本。EBF方法涉及将金属丝进料至在高真空环境下由聚焦电子束形成并维持的熔池。是通过具有沿着一个或多个轴(X、Y、Z、和旋转)可移动铰接的电子束枪和定位系统(支持基板)并且通过四轴运动控制系统来调节电子束枪和支持基板的位置来获得电子束和焊接丝的定位。声称上述方法在材料使用方面具有几乎100%的效率并且在功率消耗方面具有95%的效率。对于本体金属沉积(bulk metal deposition)和精细沉积(finer detailed depositions)均可使用上述方法,并且声称和机械加工金属部件的常规方法相比,上述方法可以获得生产周期缩短的显著效应并降低材料和加工成本。电子束技术具有依赖于在沉积室中10-1Pa以下的高真空的缺点。
已知的是,使用等离子体电弧来提供用于焊接金属材料的热量。可以在大气压或更高压力下使用此方法,从而允许更简单和更低成本的工艺设备。一种这样的方法称作气体保护钨极电弧焊(GTAW,还表示为TIG),其中,在非消耗的钨电极和焊接区之间形成等离子体转移电弧。通常通过等离子炬供给的气体形成围绕电弧的保护层来保护等离子体电弧。TIG焊接可以包括将金属丝或金属粉末供给到熔池或等离子体电弧作为填料。
由US2010/0193480已知的是,采用TIG焊炬通过固体自由成型制造(SFFF)来构建物件,其中将具有低延伸性的金属原料的连续层施加在基板上。通过使用电弧极激励流动气体来产生等离子流,其中上述电弧极具有施加于其的可变幅度电流。将等离子流定向至预定目标区域以在沉积以前预热预定目标区域。调节电流并将原料引入等离子流以在预定目标区域中沉积熔融原料。在冷却阶段中,调节电流并在高温下缓慢冷却熔融原料,通常高于原料材料的脆性-延性转变温度,以尽量减少材料应力的发生。
另一个例子是US2006/185473,其披露了使用TIG炬来代替在固体自由成型制造(SFFF)方法中通常使用的昂贵的激光器,其具有通过以一定方式结合钛进料和合金成分的相对较低成本的钛进料材料从而大大降低原材料的成本。更具体地,在一个方面,本发明采用其成本低于合金丝的纯钛丝(CP Ti),并在SFFF方法中通过在焊炬或其它高功率能量束的熔化物中使CP Ti丝和粉末状合金成分结合来原位结合CP Ti丝和粉末状合金成分。在另一种实施方式中,本发明采用与合金元素混合海绵状钛材料并形成其中它可以在SFFF方法中与等离子焊炬或其它高功率能量束结合使用的丝,以产生近终形状的钛部件。
在接触氧气以后被加热高于400℃的钛金属或钛合金可能会受到氧化。因此必须保护焊接和通过分层制造所形成的加热的物件以免受在环境大气中的氧气的影响。
由WO2011/0198287已知对于此问题的一种解决方案,其披露了在与环境大气封闭的反应室中通过进行固体自由成型制造来制造物件,尤其是钛及钛合金物件的用于提高沉积速率的方法。通过使沉积室足够没有氧气,不再需要采用保护措施来避免环境大气中的氧气氧化新焊接区,以使可以更高的速度进行焊接过程,这是因为焊接区可以被允许具有更高的温度而没有焊接点的过度氧化的风险。例如,在钛或钛合金物件的生产中,不再需要将焊接区冷却至低于400℃来避免氧化。
由US6268584已知用于提高沉积速率的另一种解决方案,其披露了由以下特征组成的沉积头组件(deposition head assembly):用于产生粉末到沉积区域的会聚流的输出粉末喷嘴阵列、其使得多个束能够聚焦到沉积基板上的中心孔、以及用于每个粉末喷嘴以集中来自这些喷嘴的粉末流从而提供在喷嘴和沉积头组件之间的更长的工作距离的同轴气流。在加工过程中,为了确保熔融金属颗粒不附着于沉积装置,更长的工作距离是至关重要的。尤其是,本发明包括设计在沉积头组件中的歧管系统,其可以同时将一个以上的激光束用于沉积过程。沉积头组件还结合有用于主动集中来自每个孔的粉末流以提高材料利用率的装置。
WO2006/133034披露了使用组合的气体金属电弧和激光焊接来解决与Ti的反应性和使得非常难以形成DMD产品的它的熔融特性有关的问题。气体金属电弧技术具有若干缺点,其严重限制它们应用于沉积Ti。这些缺点包括金属转移的不稳定性、过度飞溅、和沉积层形状的不良控制、以及在沉积期间引起薄截面的变形的高热量输入。另外,由于在沉积期间发生的阴极斑点的漂移,生产率的提高是不可能的。根据WO2006/133034针对这些问题的解决方案是包括提供基板和将来自金属原料的金属沉积到基板上的步骤的直接金属沉积过程。在金属原料和基板之间产生电弧并将电弧暴露于激光照射以在基板上形成金属熔池。冷却金属熔池以在基板上形成第一固体金属层。
本发明的目的
本发明的主要目的是提供用于通过固体自由成型制造来构建金属物件的装置。
本发明的另一个目的是提供用于快速分层制造钛或钛合金物件的方法。
发明内容
本发明是基于以下认识:可以通过供应丝形式的金属进料以及采用两个气体转移电弧,一个等离子体转移电弧用于加热在基材上的沉积区以及一个等离子体转移电弧用于加热和熔化进料丝来提高沉积速率。
因此,在第一方面,本发明涉及用于通过固体自由成型制造来制造金属材料的三维物件的方法,其中通过将金属材料的连续沉积物融合在一起到支持基板上来制作物件,
其特征在于上述方法包括:
-采用由与待制作物件类似的金属材料制成的支持基板,和
-获得每种连续沉积物,通过;
i)采用第一等离子体转移电弧(PTA)在基材中将要沉积金属材料的位置处预热并形成熔池,
ii)将待沉积的金属材料以丝的形式进料至在熔池上方的位置,
iii)采用第二等离子体转移电弧(PTA)来加热和熔化上述丝,以使熔融金属材料滴入熔池,以及
iv)相对于第一和第二PTA的位置以预定图案移动支持基板,以使熔融金属材料的连续沉积物凝固并形成三维物件。
在第二方面,本发明涉及用于通过固体自由成型制造来制造金属材料的三维物件的装置,其中该装置包括:
-具有供给金属材料的丝的集成丝进料机的焊炬,
-用于相对于焊炬来定位和移动支持基板的系统,以及
-控制系统,其能够读取待形成的物件的计算机辅助设计(CAD)模型并采用该CAD模型来调节用于使支持基板定位和移动的系统的位置和移动,以及能够操作具有集成丝进料机的焊炬从而通过将金属材料的连续沉积物融合到支持基板上来构建物理物件,
特征在于
-由与待制作的物件类似的金属材料制成支持基板,
-焊炬包括
i)电连接至基材的第一等离子体转移电弧(PTA)炬和
ii)电连接至金属材料的进料丝的第二等离子体转移电弧(PTA)炬,
-控制系统能够独立地操作和调节第一PTA炬以在基材中将要沉积金属材料的位置处形成并维持熔池,以及
-控制系统能够独立地操作和调节丝进料机和第二PTA炬以在一定位置处熔化金属材料进料,以使熔融金属材料滴入熔池。
如在本文中所使用的,术语“类似金属材料”是指,金属材料是和参照金属材料相同的金属或金属合金。
如在本文中所使用的,术语“基材”是指来自第一PTA炬的热量的目标材料以及由其形成熔池。当沉积金属材料的第一层时,这将是支持基板。当在支持基板上已沉积一层或多层金属材料时,基材将是沉积的金属材料的上层,其将沉积金属材料的新层。
如在本文中可互换使用的,术语“等离子体转移电弧炬”或“PTA炬”是指通过电弧放电能够将惰性气体流加热并激发为等离子体,然后通过孔(喷嘴)将包含电弧的等离子气体流转移出以形成收缩股流(constrictedplume)其延伸出孔并将电弧的强热转移到目标区域的任何装置。将电极和目标区域电连接至直流电源以使PTA炬的电极成为阴极而目标区域成为阳极。这将确保,包含电弧的等离子体柱流将高度集中的热流递送到目标区域的较小表面积,并极好地控制由PTA炬供给的热通量的面积的范围和大小。等离子体转移电弧具有提供了具有几乎无漂移并对于在阴极和阳极之间的长度偏差具有良好公差的稳定并且一致的电弧的优点。因此,PTA炬适用于形成在基材中的熔池并且适用于加热和熔化金属丝进料。PTA炬可以有利地具有由钨制成的电极和由铜制成的喷嘴。然而,本发明并不限于PTA炬的任何具体选择或类型。可以应用能够充当PTA炬的任何已知的或可设想的装置。
使用独立控制的第一PTA炬来预热基材并形成熔池并且使用独立地第二PTA炬来熔化金属材料的进料丝会提供以下优点:可以独立于对基板的供热来增加对金属丝的进料的供热,使得可以增加进入进料材料的热通量而没有产生“喷射电弧”(其产生飞溅)的风险。因此,可以提高熔融金属进料的沉积速率而没有同时过度加热基板以及没有飞溅或形成过度熔池并因而放松对沉积材料的凝固的控制的风险。通过连接直流电源以使第一PTA炬的电极成为负极性而使基材成为正极性来限定电路其中通过在第一PTA炬的电极和基材之间的电弧放电来转移电荷,以及通过将第二PTA炬的电极连接至直流电源的负极并将金属材料的进料丝连接至正极以形成电路其中通过在第二PTA炬的电极和金属材料的进料丝之间的电弧放电来转移电荷来获得此特征。
第一和第二PTA炬可以有利地具有独立的电源和用于调节到各自的炬的功率的装置。用于调节功率的装置可以有利地包括用于监测基材的沉积区的温度的装置和用于调节电弧的宽度和定位的装置,如即磁性电弧偏转装置。另外,用来在基材中形成熔池的第一PTA炬可以有利地形成宽弧,如即通过气体保护钨极电弧焊炬(GTAW炬,在文献中还表示为TIG炬)所形成的,以在基材表面的更宽区域中形成熔池。
如在本文中可互换使用的,术语“计算机辅助设计模型”或“CAD模型”是指待形成物件的任何已知的或可设想的虚拟三维图象,其可以在根据本发明的第二方面的装置的控制系统中使用以调节支持基板的位置和移动以及操作具有集成丝进料机的焊炬,以根据物件的虚拟三维模型产生构建物理物件的图案,通过将金属材料的连续沉积物融合在支持基板上构建物理物件。这可以例如通过形成三维模型的虚拟矢量化分层模型来获得:通过首先将虚拟三维模型分成一组虚拟平行层,然后将每个平行层分成一组虚拟的准一维片。然后,可以通过接合控制系统按照物件的虚拟矢量化分层模型的第一层的图案将金属材料进料的一系列准一维片沉积和融合在支持基板上而形成物理物件。然后,通过按照物件的虚拟矢量化分层模型的第二层的图案将可焊接材料的一系列的准一维片沉积和融合在先前沉积的层上重复此顺序用于物件的第二层。对于物件的虚拟矢量化分层模型的每个连续层继续逐层重复沉积和融合过程直到形成整个物件。然而,本发明并不限于用于运行按照本发明的装置的控制系统的任何具体的CAD模型和/或计算机软件,并且本发明也不限于任何特定类型的控制系统。可以使用能够通过固体自由成型制造来构建金属三维物件的任何已知的或可设想的控制系统(CAD模型、计算机软件、计算机硬件和传动装置等),只要可以调节控制系统以独立地操作第一PTA炬来形成熔池和第二PTA炬来将金属材料的进料丝熔化入熔池。
可以根据电源对第二PTA炬的影响来有利地控制和调节金属材料的进料丝的进料速率(丝速度)和定位,以确保当进料丝到达在基材中的熔池上方的预定位置时被连续加热和熔化。这可以通过使用常规气体金属电弧焊炬(GMAW炬,还表示为MIG炬)作为丝进料机而没有在MIG炬中形成电弧来获得。丝进料机的这种实施方式具有能够将进料丝电连接于第二PTA炬的DC电源以及非常精确地定位进料丝的优点。金属材料的进料丝可以具有任何实际上可实现的尺寸,如即1.0mm、1.6mm、2.4mm等。
如在本文中所使用的,术语“金属材料”是指任何已知的或可设想的金属或金属合金,其可以形成为丝并用于固体自由成型过程来形成三维物件。适合的材料的实例包括但不限于钛和钛合金如即Ti-6Al-4V合金。
对第一和第二PTA炬的供给效果将取决于使用的金属材料、进料丝的直径、基材的耐热性、沉积速率等。因此,本发明并不限于电源的任何具体窗口,而是可以使用任何实际上运作的电位差和电流,其导致功能操作第一和第二PTA炬。通过试验和试错测试技术人员将能够发现这些参数。由本申请人进行的实验已表明,当向第一PTA炬提供约150A而第二PTA炬提供约250A时,在3.7至3.8kg/小时的沉积速率下,通过采用由5级钛合金制成的具有1.6mm直径的丝,可以制造具有和钛的常规物件类似的机械性能的三维物件。据认为,在有效保护气氛中,如即在WO2011/0198287中披露的反应室中,通过根据本发明的第一和第二方面进行SFFF沉积可以获得高达10kg/小时的沉积速率。该结果得到由本申请人使用丝直径2.4mm、5级钛进行的另一个实验的证实,当向第一PTA炬供应约250A的电流并且向第二PTA炬供应约300A的电流时其给出9.7kg/h的沉积速率。
作为一种替代方法,本发明还可以包括用于在熔池中产生热脉冲以打破在熔池中生长晶体枝晶的倾向的装置。由于改善的晶粒结构,此特征使得能够形成具有增强的机械性能的金属物件。可以采用第三DC发电机来获得热脉冲,其中上述第三DC发电机传递脉冲式DC电位并将DC发电机的负极连接至第二PTA炬的电极而将正极连接至基材以形成电路,其中通过在第二PTA炬的电极和基材之间的脉动电弧放电来转移电荷。将根据施加的脉冲式DC电位来接通和关断在第二PTA炬的电极和基材之间的电弧放电从而形成进入基材中的熔池中的脉冲式热通量。脉冲的频率可以在从1Hz上达至数kHz以上的范围内,即10kHz。
附图说明
图1是Taminger和Hafley[1]的图1的副本,其示出固体自由成型制造的原理的示意图。
图2是US2006/0185473的图1的副本,其示出等离子体转移电弧固体自由成型制造的原理的示意图。
图3是示出根据本发明的第二方面的装置的截面观的示意图。
图4是示出包括热脉冲的本发明的第二实施方式的截面观的示意图。
具体实施方式
将通过示例性实施方式更详细地说明本发明。不应将这些实施例解释为限制本发明的想法的一般范围,上述本发明的想法是使用两个PTA炬:一个用来形成在基材中的熔池而一个用来熔化进料。
第一示例性实施方式
在图3中示意性地示出根据本发明的第二方面的装置的第一示例性实施方式。该图示出形状为长方体的由Ti-6Al-4V合金制成的支持基板1,通过固体自由成型制造在其上形成由相同Ti-6Al-4V合金制成的三维物件。该图示出沉积过程的起始部分,其中正在沉积Ti-6Al-4V合金的第一焊接条2。
通过丝进料机4来不断提供由Ti-6Al-4V合金制成的丝3,该丝进料机4定位丝3,以使它的远端位于支持基板1上的沉积区处的熔池5的上方。以由图中的上方箭头所示的速度(其对应于远端的加热和熔化速率)给予丝3,使得将熔融丝的小滴6不断提供到熔池5。
通过PTA炬8来形成第一等离子体转移电弧7,其中上述PTA炬8电连接至DC电源9,以使PTA炬的电极10成为阴极而支持基板1成为阳极。等离子体转移电弧7是连续的并且是定向的以在沉积点处加热和熔化基材(在SFFF方法的此阶段,其是支持基板)以使获得熔池5。通过控制系统(未示出)来调节DC电源9的作用以维持熔池5具有恒定的尺寸和范围。PTA炬8是气体保护钨极电弧焊(GTAW)炬,其装配有磁性弧偏转器(未示出)以控制电弧8的尺寸和位置。
通过PTA炬12来形成第二等离子体转移电弧11,该PTA炬电连接至DC电源13使得PTA炬12的电极14成为阴极而进料丝3成为阳极。等离子体转移电弧11是连续的并且是定向的以加热和熔化丝3的远端。根据丝的供给速度来调节DC电源13的作用以维持加热和熔化速率,使得定时形成小滴6以维持熔融丝的连续滴进入熔池5。通过控制系统来连续调节和控制由DC电源13提供的作用和离开丝进料机4的丝3的供给速度,使得以提供预期的沉积速率的Ti-6Al-4V合金的速率向熔池5提供熔融丝。控制系统同时接合至传动装置来操作和调节传动装置(未示出),传动装置不断地定位并移动支持基板1,使得将熔池定位于如由待形成的物件的CAD模型所给出的所预期的沉积点。在SFFF方法的此阶段,如由下方箭头所指的移动支持基板1。
第二示例性实施方式
本发明的第二示例性实施方式是包括用于在熔池5中形成热脉冲的另外的装置的上文给出的第一示例性实施方式。
用于形成热脉冲的装置是DC电源15,其电连接于第二PTA炬12使得电极14成为阴极而支持基板1成为阳极。另外,存在用于脉冲发送由DC电源15传送的功率的装置16,使得电弧11除加热和熔化丝3以外还将以和脉冲电源相同的频率进入熔池5从而将脉冲式热通量递送到熔池。可以通过控制系统调节装置16并以1kHz的频率将脉冲电弧放电提供到熔池。
参考文献
1.Taminger,K.M.and Hafley,R.A.,”Electron Beam FreeformFabrication for Cost Effective Near-Net Shape Manufacturing”,NATO/RTOAVT-139Specialists’Meeting on Cost Effective Manufacture viaNet Shape Processing(Amsterdam,the Netherlands,2006)(NATO).pp9–25,http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080013538_2008013396.pdf
Claims (10)
1.一种通过固体自由成型制造来制造金属材料的三维物件的方法,其中通过将所述金属材料的连续沉积物融合到支持基板上来制作所述物件,
其特征在于,所述方法包括:
-采用由与待制作的所述物件类似的金属材料制成的支持基板,和
-通过以下步骤获得每个连续沉积物:
i)采用第一等离子体转移电弧(PTA)以在所述基材中将要沉积所述金属材料的位置处预热并形成熔池,
ii)以金属材料的进料丝的形式将待沉积的所述金属材料进料至在所述熔池的上方的位置,
iii)采用第二等离子体转移电弧(PTA)来加热并熔化金属材料的进料丝以使熔融金属材料滴入所述熔池,以及
iv)相对于所述第一和第二PTA的位置以预定图案移动所述支持基板以使熔融金属材料的连续沉积物凝固并形成所述三维物件。
2.根据权利要求1所述的方法,其中,
-通过电连接至直流电源的气体保护钨极电弧焊炬(GTAW炬)形成所述第一等离子体转移电弧以使所述GTAW炬的电极成为阴极而所述基材成为阳极,和
-通过电连接至直流电源的任何常规等离子体转移电弧炬(PTA炬)形成所述第二等离子体转移电弧以使所述PTA炬的电极成为阴极而所述金属材料的进料丝成为阳极。
3.根据权利要求1或2所述的方法,其中,所述金属材料是钛或合金钛。
4.根据权利要求1或2所述的方法,其中,通过以下步骤由所述物件的特征尺寸获得所述物件的固体自由成型制造:
-采用计算机辅助设计(CAD)工具来形成所述物件的虚拟三维模型、将所述模型分成一组虚拟平行层并进一步分成对于每个平行层的一组虚拟准一维片以形成所述物件的虚拟矢量化分层模型,
-将所述物件的虚拟矢量化分层模型加载入能够调节所述支持基板的位置和移动、所述第一和第二等离子体转移电弧炬的激活、和供给所述金属材料的进料丝的丝供给系统的激活的控制系统,
-接合所述控制系统来按照根据所述物件的虚拟矢量化分层模型的第一层的图案来将所述金属材料的进料丝的一系列的准一维片沉积并融合在所述基材上,
-通过按照根据所述物件的虚拟矢量化分层模型的第二层的图案将所述金属材料的进料丝的一系列的准一维片沉积并融合在先前沉积层上形成所述物件的第二层,和
-对于所述物件的虚拟矢量化分层模型的每个连续层逐层重复所述沉积和融合过程直到形成整个所述物件。
5.根据权利要求2所述的方法,其中,使用所述第二等离子体转移电弧通过将所述等离子体转移电弧炬(PTA炬)的电极电连接至直流电源的负极并将所述基材电连接至所述直流电源的正极,来将热脉冲递送到所述熔池,以及用来以在从1Hz至10kHz范围内的频率脉冲发送所述直流功率。
6.一种通过固体自由成型制造来制造金属材料的三维物件的装置,其中,所述装置包括:
-具有集成丝进料机的焊炬,其中所述集成丝进料机供给所述金属材料的丝,
-用于相对于所述焊炬定位和移动所述支持基板的系统,以及
-控制系统,所述控制系统能够读取待形成的物件的计算机辅助设计(CAD)模型并采用所述CAD模型来调节用于定位和移动所述支持基板的系统的位置和移动,以及能够操作所述具有集成丝进料机的焊炬以使得通过将所述金属材料的连续沉积物融合在所述支持基板上来构建物理物件,
其特征在于,
-所述支持基板由和待制作的物件类似的金属材料制成,
-所述焊炬包括
i)电连接至所述基材的第一等离子体转移电弧(PTA)炬,和
ii)电连接至所述金属材料的进料丝的第二等离子体转移电弧(PTA)炬,
-所述控制系统能够独立地操作和调节所述第一PTA炬以在所述基材中在将要沉积所述金属材料的位置处形成并维持熔池,和
-所述控制系统能够独立地操作和调节所述丝进料机和所述第二PTA炬以使熔融金属材料滴入所述熔池的位置处熔化所述金属材料进料。
7.根据权利要求6所述的装置,
-所述第一等离子体转移电弧炬是气体保护钨极电弧焊炬(GTAW炬),其电连接至直流电源以使所述GTAW炬的电极成为阴极而所述基材成为阳极,和
-所述第二等离子体转移电弧是任何常规等离子体转移电弧炬(PTA炬),其电连接至直流电源以使所述PTA炬的电极成为阴极而金属材料的进料丝成为阳极。
8.根据权利要求6或7所述的装置,其中,所述GTAW炬和所述PTA炬的直流电源是两个独立调节的直流电源。
9.根据权利要求6或7所述的装置,其中
-所述丝进料机是MIG炬,并且
-金属材料的进料丝由钛或合金钛制成并具有以下一种的直径:1.0mm、1.6mm和2.4mm。
10.根据权利要求7所述的装置,其中
-所述第二等离子体转移电弧的电极电连接至直流电源的负极并且所述基材电连接至所述直流电源的正极,和
-以在1Hz至10kHz范围内的频率脉冲发送来自所述直流电源的电位。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1105433.5 | 2011-03-31 | ||
GB1105433.5A GB2489493B (en) | 2011-03-31 | 2011-03-31 | Method and arrangement for building metallic objects by solid freeform fabrication |
PCT/NO2012/000033 WO2012134299A2 (en) | 2011-03-31 | 2012-03-30 | Method and arrangement for building metallic objects by solid freedom fabrication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103476523A true CN103476523A (zh) | 2013-12-25 |
CN103476523B CN103476523B (zh) | 2016-04-20 |
Family
ID=44071711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280016671.6A Active CN103476523B (zh) | 2011-03-31 | 2012-03-30 | 用于通过固体自由成型制造来构建金属物件的方法和装置 |
Country Status (13)
Country | Link |
---|---|
US (3) | US9481931B2 (zh) |
EP (1) | EP2691197B1 (zh) |
JP (2) | JP5996627B2 (zh) |
KR (1) | KR101984142B1 (zh) |
CN (1) | CN103476523B (zh) |
AU (1) | AU2012233752B2 (zh) |
BR (1) | BR112013025043B8 (zh) |
CA (1) | CA2831221C (zh) |
EA (1) | EA024135B1 (zh) |
ES (1) | ES2564850T3 (zh) |
GB (1) | GB2489493B (zh) |
SG (1) | SG193965A1 (zh) |
WO (1) | WO2012134299A2 (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015180639A1 (zh) * | 2014-05-28 | 2015-12-03 | 赵晴堂 | 电阻式双熔层叠三维金属构件制造成形系统 |
CN105458470A (zh) * | 2016-01-04 | 2016-04-06 | 江苏科技大学 | 一种钛合金形件双电弧复合热源增材制造方法 |
CN106180710A (zh) * | 2016-07-14 | 2016-12-07 | 武汉鑫双易科技开发有限公司 | 基于等离子体电弧熔覆的3d金属增材制造装置及方法 |
CN106238731A (zh) * | 2016-09-28 | 2016-12-21 | 深圳市首熙机械设备有限公司 | 一种混合金属3d立体打印技术 |
CN108607992A (zh) * | 2018-05-23 | 2018-10-02 | 哈尔滨工业大学 | 基于预置金属粉末的微束电弧选择性熔凝增材制造方法 |
CN109070200A (zh) * | 2016-03-03 | 2018-12-21 | 德仕托金属有限公司 | 使用金属构建材料的增材制造 |
WO2018233202A1 (zh) * | 2017-06-22 | 2018-12-27 | 华南理工大学 | 反极性等离子弧机器人增材制造系统及其实现方法 |
CN109715338A (zh) * | 2016-07-08 | 2019-05-03 | 挪威钛公司 | 用于mig金属焊接的接触末端组件 |
CN110039156A (zh) * | 2019-06-03 | 2019-07-23 | 西南交通大学 | 辅丝作用下钨-丝电弧增材制造装置与方法 |
CN110446581A (zh) * | 2018-03-02 | 2019-11-12 | 三菱电机株式会社 | 附加制造装置及附加制造方法 |
CN111515501A (zh) * | 2020-04-21 | 2020-08-11 | 华北水利水电大学 | 一种低电阻率材料的tig熔丝焊装置及焊接方法 |
CN111673283A (zh) * | 2020-06-23 | 2020-09-18 | 华北水利水电大学 | 一种铝合金厚板多层激光-tig复合焊接装置及方法 |
CN111687414A (zh) * | 2020-06-15 | 2020-09-22 | 上海理工大学 | 多束流电子束成型方法 |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9776274B2 (en) | 2007-10-26 | 2017-10-03 | Ariel Andre Waitzman | Automated welding of moulds and stamping tools |
EP2477768B1 (en) | 2009-09-17 | 2019-04-17 | Sciaky Inc. | Electron beam layer manufacturing |
EP2555902B1 (en) | 2010-03-31 | 2018-04-25 | Sciaky Inc. | Raster methodology for electron beam layer manufacturing using closed loop control |
GB2489493B (en) | 2011-03-31 | 2013-03-13 | Norsk Titanium Components As | Method and arrangement for building metallic objects by solid freeform fabrication |
WO2013174449A1 (en) * | 2012-05-25 | 2013-11-28 | European Space Agency | Multi-wire feeder method and system for alloy sample formation and additive manufacturing |
US20140065320A1 (en) * | 2012-08-30 | 2014-03-06 | Dechao Lin | Hybrid coating systems and methods |
WO2014094882A1 (en) * | 2012-12-21 | 2014-06-26 | European Space Agency | Additive manufacturing method using focused light heating source |
US20150042017A1 (en) * | 2013-08-06 | 2015-02-12 | Applied Materials, Inc. | Three-dimensional (3d) processing and printing with plasma sources |
WO2015058182A1 (en) | 2013-10-18 | 2015-04-23 | +Mfg, LLC | Method and apparatus for fabrication of articles by molten and semi-molten deposition |
CN103567442B (zh) * | 2013-10-26 | 2015-06-17 | 山西平阳重工机械有限责任公司 | 重金属三维熔融快速成型方法 |
CN105980094A (zh) * | 2014-02-11 | 2016-09-28 | 麦格纳国际公司 | 结合异质材料的方法 |
WO2015127555A1 (en) * | 2014-02-26 | 2015-09-03 | Freespace Composites Inc. | Manufacturing system using topology optimization design software, three-dimensional printing mechanisms and structural composite materials |
US20170203363A1 (en) * | 2014-07-09 | 2017-07-20 | Applied Materials ,Inc. | Layerwise heating, linewise heating, plasma heating and multiple feed materials in additive manufacturing |
AP2017009793A0 (en) * | 2014-09-09 | 2017-03-31 | Aurora Labs Pty Ltd | 3d printing method and apparatus |
US20160096234A1 (en) * | 2014-10-07 | 2016-04-07 | Siemens Energy, Inc. | Laser deposition and repair of reactive metals |
EP3229997A4 (en) | 2014-12-12 | 2018-10-03 | Digital Alloys Incorporated | Additive manufacturing of metallic structures |
EP3034225B1 (en) * | 2014-12-17 | 2018-10-17 | Airbus Defence and Space GmbH | Method and apparatus for distortion control on additively manufactured parts using wire and magnetic pulses |
KR102306601B1 (ko) * | 2014-12-23 | 2021-09-29 | 주식회사 케이티 | 슬라이싱 단면의 복잡도에 따라 슬라이싱 두께를 변경하는 가변형 슬라이싱 방법, 슬라이서 및 컴퓨팅 장치 |
US9951405B2 (en) * | 2015-02-04 | 2018-04-24 | Spirit Aerosystems, Inc. | Localized heat treating of net shape titanium parts |
US20160271732A1 (en) * | 2015-03-19 | 2016-09-22 | Dm3D Technology, Llc | Method of high rate direct material deposition |
FR3034691A1 (fr) * | 2015-04-07 | 2016-10-14 | Soc Eder | Dispositif d'impression en trois dimensions utilisant des dispositifs inductifs et resistifs |
FR3036302B1 (fr) * | 2015-05-20 | 2017-06-02 | Commissariat A L`Energie Atomique Et Aux Energies Alternatives | Procede de soudage manuel teleopere et robot de soudage mettant en oeuvre un tel procede |
CN107848208A (zh) * | 2015-06-19 | 2018-03-27 | 应用材料公司 | 利用静电压实的增材制造 |
GB201515386D0 (en) * | 2015-08-28 | 2015-10-14 | Materials Solutions Ltd | Additive manufacturing |
DE102015117238A1 (de) | 2015-10-09 | 2017-04-13 | GEFERTEC GmbH | Bearbeitungsmodul für eine Vorrichtung zur additiven Fertigung |
KR101614860B1 (ko) * | 2015-10-26 | 2016-04-25 | 비즈 주식회사 | 아크 및 합금금속분말 코어 와이어를 이용한 ded 아크 3차원 합금금속분말 프린팅 방법 및 그 장치 |
EP3165314A1 (de) * | 2015-11-06 | 2017-05-10 | Siegfried Plasch | Auftragsschweissverfahren |
US10471543B2 (en) * | 2015-12-15 | 2019-11-12 | Lawrence Livermore National Security, Llc | Laser-assisted additive manufacturing |
EP3389982A4 (en) | 2015-12-16 | 2019-05-22 | Desktop Metal, Inc. | METHODS AND SYSTEMS FOR ADDITIVE MANUFACTURING |
JP6887755B2 (ja) * | 2016-02-16 | 2021-06-16 | 株式会社神戸製鋼所 | 積層制御装置、積層制御方法及びプログラム |
CN108778573B (zh) * | 2016-03-03 | 2021-11-16 | H.C.施塔克公司 | 通过增材制造制备金属部件 |
US10995406B2 (en) * | 2016-04-01 | 2021-05-04 | Universities Space Research Association | In situ tailoring of material properties in 3D printed electronics |
US10328637B2 (en) * | 2016-05-17 | 2019-06-25 | Xerox Corporation | Interlayer adhesion in a part printed by additive manufacturing |
DE102016209094A1 (de) * | 2016-05-25 | 2017-11-30 | Robert Bosch Gmbh | Schichtweise erzeugter Formkörper |
US9821399B1 (en) | 2016-07-08 | 2017-11-21 | Norsk Titanium As | Wire arc accuracy adjustment system |
US10709006B2 (en) | 2016-07-08 | 2020-07-07 | Norsk Titanium As | Fluid-cooled contact tip assembly for metal welding |
US10549375B2 (en) | 2016-07-08 | 2020-02-04 | Norsk Titanium As | Metal wire feeding system |
WO2018007042A1 (en) * | 2016-07-08 | 2018-01-11 | Norsk Titanium As | Method and arrangement for building metallic objects by solid freeform fabrication with two welding guns |
CN106271411B (zh) * | 2016-08-19 | 2018-08-14 | 赵晴堂 | 金属材料三维成形系统复合铣削方法 |
EP3579997A1 (en) * | 2017-02-13 | 2019-12-18 | Oerlikon Surface Solutions AG, Pfäffikon | Insitu metal matrix nanocomposite synthesis by additive manufacturing route |
CN106925787B (zh) * | 2017-03-30 | 2019-04-16 | 西安交通大学 | 一种铝合金电弧辅助涂覆增材制造系统及方法 |
US11181886B2 (en) * | 2017-04-24 | 2021-11-23 | Autodesk, Inc. | Closed-loop robotic deposition of material |
US10898968B2 (en) * | 2017-04-28 | 2021-01-26 | Divergent Technologies, Inc. | Scatter reduction in additive manufacturing |
US10234848B2 (en) | 2017-05-24 | 2019-03-19 | Relativity Space, Inc. | Real-time adaptive control of additive manufacturing processes using machine learning |
CN111032254B (zh) * | 2017-06-30 | 2022-08-16 | 挪威钛公司 | 通过在金属增材制造中应用原位气体射流撞击的凝固细化和一般相变控制 |
WO2019002493A1 (en) | 2017-06-30 | 2019-01-03 | Norsk Titanium As | PROGRAMMING TECHNOLOGIES OF MANUFACTURING AND CONTROL MACHINES FOR ADDITIONAL MANUFACTURING SYSTEMS |
US11134559B2 (en) | 2017-07-04 | 2021-09-28 | Norsk Titanium As | Plasma torch system |
US20190039191A1 (en) * | 2017-08-07 | 2019-02-07 | United Technologies Corporation | Laser deposition weld repair |
CN107442941A (zh) * | 2017-09-04 | 2017-12-08 | 南京理工大学 | 一种铝合金双丝激光增材制造方法 |
CZ307844B6 (cs) * | 2017-09-05 | 2019-06-19 | ARMEX Technologies, s. r. o. | Způsob lokálního legování výrobků svařovacím 3D tiskem pomocí elektrického oblouku |
JP2021501710A (ja) | 2017-10-01 | 2021-01-21 | スペース ファウンドリー インコーポレイテッド | プラズマジェット印刷用のモジュール式プリントヘッドアセンブリ |
US11383316B2 (en) * | 2017-10-16 | 2022-07-12 | Karl F. HRANKA | Wire arc hybrid manufacturing |
DE102017124124A1 (de) * | 2017-10-17 | 2019-04-18 | Hochschule Für Technik Und Wirtschaft Berlin | Verfahren zur additiven Fertigung eines Bauteils sowie Vorrichtung zur Durchführung des Verfahrens |
EP3854592A1 (en) * | 2017-11-15 | 2021-07-28 | Granat Research Ltd. | Metal droplet jetting system |
US11980968B2 (en) * | 2017-11-29 | 2024-05-14 | Lincoln Global, Inc. | Methods and systems for additive tool manufacturing |
US10814428B2 (en) | 2018-01-10 | 2020-10-27 | General Electric Company | Direct print additive wall |
DE102018202203B4 (de) | 2018-02-13 | 2022-06-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Anordnung zur Justierung einer Pulverströmung in Bezug zur mittleren Längsachse eines Energiestrahls |
EP3533537A1 (en) | 2018-02-28 | 2019-09-04 | Valcun bvba | Metal 3d printing with local pre-heating |
US10793943B2 (en) | 2018-03-15 | 2020-10-06 | Raytheon Technologies Corporation | Method of producing a gas turbine engine component |
KR102143880B1 (ko) * | 2018-05-30 | 2020-08-12 | 비즈 주식회사 | 이형 용가재를 사용하는 고적층율 금속 3d 아크 프린터 |
CA3101061A1 (en) * | 2018-06-20 | 2019-12-26 | Digital Alloys Incorporated | Multi-diameter wire feeder |
PL3586954T3 (pl) * | 2018-06-22 | 2023-12-27 | Molecular Plasma Group Sa | Ulepszony sposób i urządzenie do osadzania powłok na podłożu za pomocą strumienia plazmy pod ciśnieniem atmosferycznym |
CN108856966A (zh) * | 2018-07-20 | 2018-11-23 | 北京星航机电装备有限公司 | 一种1.5mm钛合金不加丝自动TIG焊接方法 |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
US11504801B2 (en) * | 2018-08-24 | 2022-11-22 | Phoenix Laser Solutions | Bimetallic joining with powdered metal fillers |
GB2569673B (en) * | 2018-08-24 | 2020-01-08 | Univ Cranfield | Additive Manufacture |
WO2020046160A1 (en) * | 2018-08-31 | 2020-03-05 | The Boeing Company | High-strength titanium alloy for additive manufacturing |
EP3626381A1 (de) * | 2018-09-20 | 2020-03-25 | FRONIUS INTERNATIONAL GmbH | Verfahren zum herstellen metallischer strukturen |
CN108994459B (zh) * | 2018-09-21 | 2020-10-20 | 盐城工学院 | 齿轮油泵激光-电弧复合异质增材制造系统及方法 |
KR102024119B1 (ko) * | 2018-11-27 | 2019-09-24 | 부경대학교 산학협력단 | 직렬 배치 방식의 티그 용접 장치 및 방법 |
CN109483022B (zh) * | 2018-11-28 | 2021-04-23 | 江苏科技大学 | 一种气-磁联合调控双钨极toptig焊焊接方法 |
JP7357138B2 (ja) | 2019-03-22 | 2023-10-05 | ディーエムシー グローバル インコーポレイテッド | 厚さの異なるクラッド層を持つクラッド材 |
WO2020213051A1 (ja) * | 2019-04-16 | 2020-10-22 | 三菱電機株式会社 | 金属造形用シールドガスノズル、及びレーザ金属造形装置 |
WO2020254145A1 (fr) * | 2019-06-19 | 2020-12-24 | The Swatch Group Research And Development Ltd | Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative |
JP2022540056A (ja) * | 2019-07-03 | 2022-09-14 | ノルスク・チタニウム・アーエス | 指向性エネルギー堆積付加製造システムのスタンドオフ距離監視及び制御 |
WO2021005690A1 (ja) * | 2019-07-08 | 2021-01-14 | 三菱電機株式会社 | 付加製造装置 |
CN110434498A (zh) * | 2019-07-24 | 2019-11-12 | 昆山华恒焊接股份有限公司 | 旁轴式复合焊炬 |
US11853033B1 (en) | 2019-07-26 | 2023-12-26 | Relativity Space, Inc. | Systems and methods for using wire printing process data to predict material properties and part quality |
US10730239B1 (en) * | 2019-11-10 | 2020-08-04 | Yuri Glukhoy | 3D printing apparatus using a beam of an atmospheric pressure inductively coupled plasma generator |
US20210162493A1 (en) * | 2019-12-02 | 2021-06-03 | Xerox Corporation | Method of three-dimensional printing and a conductive liquid three-dimensional printing system |
CN113276409A (zh) | 2020-02-18 | 2021-08-20 | 空客(北京)工程技术中心有限公司 | 增材制造方法、增材制造设备和计算机可读介质 |
CN113275754A (zh) * | 2020-02-18 | 2021-08-20 | 空客(北京)工程技术中心有限公司 | 增材制造系统和增材制造方法 |
TWI845820B (zh) * | 2020-04-10 | 2024-06-21 | 大陸商東莞東陽光科研發有限公司 | 電極結構材料及製備電極結構材料的方法、電解電容器 |
CN111482608A (zh) * | 2020-04-20 | 2020-08-04 | 武汉理工大学 | 提高增材制造钛合金薄壁件硬度的实验方法 |
WO2021222695A1 (en) * | 2020-05-01 | 2021-11-04 | Essentium, Inc. | Emitter and method for plasma fusing of materials |
US20210362264A1 (en) * | 2020-05-20 | 2021-11-25 | The Boeing Company | Fabrication with regulated grain formation |
CN111843215B (zh) * | 2020-07-03 | 2021-11-09 | 武汉大学 | 一种高强铝合金构件的电弧增材制造方法、设备及产品 |
US11731366B2 (en) * | 2020-07-31 | 2023-08-22 | Xerox Corporation | Method and system for operating a metal drop ejecting three-dimensional (3D) object printer to form electrical circuits on substrates |
RU2763703C1 (ru) * | 2020-08-17 | 2021-12-30 | Общество с ограниченной ответственностью «Термолазер» | Устройство для лазерной сварки |
US20220143730A1 (en) * | 2020-11-10 | 2022-05-12 | Illinois Tool Works Inc. | Systems and Methods to Control Welding Processes Using Weld Pool Attributes |
US11518086B2 (en) | 2020-12-08 | 2022-12-06 | Palo Alto Research Center Incorporated | Additive manufacturing systems and methods for the same |
US11679556B2 (en) | 2020-12-08 | 2023-06-20 | Palo Alto Research Center Incorporated | Additive manufacturing systems and methods for the same |
JP7376466B2 (ja) * | 2020-12-23 | 2023-11-08 | 株式会社神戸製鋼所 | 積層造形物の製造方法及び製造装置 |
US11737216B2 (en) * | 2021-01-22 | 2023-08-22 | Xerox Corporation | Metal drop ejecting three-dimensional (3D) object printer |
US20220288779A1 (en) * | 2021-03-09 | 2022-09-15 | Hypertherm, Inc. | Integration of plasma processing and robotic path planning |
CN113118603B (zh) * | 2021-04-07 | 2022-09-20 | 南京理工大学 | 一种利用丝材多热源加热制造高硬抗冲击结构的方法 |
KR102477652B1 (ko) | 2021-08-25 | 2022-12-14 | 창원대학교 산학협력단 | 아크 플라즈마 기반의 금속 연속 적층 제조방법 및 그것에 의해 제조된 금속 연속 적층물 |
CN114714016A (zh) * | 2022-04-26 | 2022-07-08 | 唐山松下产业机器有限公司 | 等离子复合焊接装置 |
WO2023225057A1 (en) * | 2022-05-20 | 2023-11-23 | American Lightweight Materials Manufacturing Innovation Institute dba LIFT | Additive manufacturing system and method |
CN115156551B (zh) * | 2022-06-25 | 2024-05-07 | 北京航空航天大学 | 一种颗粒增强铝基复合材料电弧增材制造方法及系统 |
CN115958299A (zh) * | 2022-12-26 | 2023-04-14 | 哈尔滨工业大学 | 一种点环激光-mag复合焊接超高强钢的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296976A (ja) * | 1985-06-24 | 1986-12-27 | Toyota Motor Corp | 炭化物系セラミツク粒子分散金属複合層の形成方法 |
EP0221752A2 (en) * | 1985-10-29 | 1987-05-13 | Toyota Jidosha Kabushiki Kaisha | High energy padding method utilizing coating containing copper |
CN101024482A (zh) * | 2007-03-27 | 2007-08-29 | 吉林大学 | 一种构筑三维微结构的方法 |
CN101163638A (zh) * | 2004-12-23 | 2008-04-16 | 内诺克塞斯公司 | 装置及其用途 |
GB2452600A (en) * | 2007-09-05 | 2009-03-11 | Fraunhofer Ges Forschung | Machining head with integrated powder supply for deposition welding using laser radiation |
Family Cites Families (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3187216A (en) | 1961-05-12 | 1965-06-01 | Welding Research Inc | Electron gun having a releasably clamped electron emitting element |
NL290719A (zh) | 1962-03-28 | |||
US3535489A (en) | 1968-05-03 | 1970-10-20 | Smith Corp A O | Electron beam welding apparatus |
US3592995A (en) | 1968-11-18 | 1971-07-13 | Smith Corp A O | Automated electron beam welding |
US3766355A (en) | 1971-08-23 | 1973-10-16 | E Kottkamp | Apparatus for use with electron beam welding machines |
AT312121B (de) | 1972-10-09 | 1973-12-27 | Boris Grigorievich Sokolov | Elektronenstrahlanlage zur Warmbehandlung von Objekten durch Elektronenbeschuß |
US4104505A (en) | 1976-10-28 | 1978-08-01 | Eaton Corporation | Method of hard surfacing by plasma torch |
JPS551939A (en) * | 1978-06-19 | 1980-01-09 | Mitsubishi Electric Corp | Steel material surface repair device |
US4327273A (en) | 1979-03-23 | 1982-04-27 | Hitachi, Ltd. | Method of treating a workpiece with electron beams and apparatus therefor |
US5149940A (en) * | 1983-02-24 | 1992-09-22 | Beckworth Davis International Inc. | Method for controlling and synchronizing a welding power supply |
JPS6075792A (ja) | 1983-10-03 | 1985-04-30 | Hitachi Ltd | スクロ−ル圧縮機 |
EP0146383B1 (en) | 1983-12-20 | 1992-08-26 | Eev Limited | Apparatus for forming electron beams |
JPS6186075A (ja) | 1984-10-03 | 1986-05-01 | Tokushu Denkyoku Kk | 複合合金の肉盛溶接方法および溶接ト−チ |
US4677273A (en) | 1986-02-12 | 1987-06-30 | Leybold-Heraeus Gmbh | Electron beam welding apparatus |
CA2025254A1 (en) | 1989-12-18 | 1991-06-19 | Sudhir D. Savkar | Method and apparatus for producing tape superconductors |
CA2037660C (en) * | 1990-03-07 | 1997-08-19 | Tadashi Kamimura | Methods of modifying surface qualities of metallic articles and apparatuses therefor |
JP2943245B2 (ja) | 1990-03-07 | 1999-08-30 | いすゞ自動車株式会社 | 金属系部品の表面改質方法及びその装置 |
JP2729247B2 (ja) * | 1990-06-26 | 1998-03-18 | フジオーゼックス株式会社 | エンジンバルブ等への盛金材料の肉盛溶接方法 |
JPH0675792B2 (ja) | 1990-06-29 | 1994-09-28 | 特殊電極株式会社 | プラズマアーク溶接法 |
US5207371A (en) | 1991-07-29 | 1993-05-04 | Prinz Fritz B | Method and apparatus for fabrication of three-dimensional metal articles by weld deposition |
JPH0675792A (ja) | 1992-08-27 | 1994-03-18 | Hudson Soft Co Ltd | コンピュータゲーム装置における管理システム |
US5278390A (en) * | 1993-03-18 | 1994-01-11 | The Lincoln Electric Company | System and method for controlling a welding process for an arc welder |
US5486676A (en) | 1994-11-14 | 1996-01-23 | General Electric Company | Coaxial single point powder feed nozzle |
US5714735A (en) * | 1996-06-20 | 1998-02-03 | General Electric Company | Method and apparatus for joining components with multiple filler materials |
US6046426A (en) | 1996-07-08 | 2000-04-04 | Sandia Corporation | Method and system for producing complex-shape objects |
US5808270A (en) * | 1997-02-14 | 1998-09-15 | Ford Global Technologies, Inc. | Plasma transferred wire arc thermal spray apparatus and method |
US5993554A (en) | 1998-01-22 | 1999-11-30 | Optemec Design Company | Multiple beams and nozzles to increase deposition rate |
US6545398B1 (en) | 1998-12-10 | 2003-04-08 | Advanced Electron Beams, Inc. | Electron accelerator having a wide electron beam that extends further out and is wider than the outer periphery of the device |
US6215092B1 (en) * | 1999-06-08 | 2001-04-10 | Alcatel | Plasma overcladding process and apparatus having multiple plasma torches |
JP3686317B2 (ja) | 2000-08-10 | 2005-08-24 | 三菱重工業株式会社 | レーザ加工ヘッド及びこれを備えたレーザ加工装置 |
US6593540B1 (en) | 2002-02-08 | 2003-07-15 | Honeywell International, Inc. | Hand held powder-fed laser fusion welding torch |
US6693252B2 (en) | 2002-04-01 | 2004-02-17 | Illinois Tool Works Inc. | Plasma MIG welding with plasma torch and MIG torch |
US7168935B1 (en) * | 2002-08-02 | 2007-01-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Solid freeform fabrication apparatus and methods |
US6914210B2 (en) * | 2002-10-30 | 2005-07-05 | General Electric Company | Method of repairing a stationary shroud of a gas turbine engine using plasma transferred arc welding |
US6706993B1 (en) * | 2002-12-19 | 2004-03-16 | Ford Motor Company | Small bore PTWA thermal spraygun |
US20050056628A1 (en) | 2003-09-16 | 2005-03-17 | Yiping Hu | Coaxial nozzle design for laser cladding/welding process |
US20050173380A1 (en) * | 2004-02-09 | 2005-08-11 | Carbone Frank L. | Directed energy net shape method and apparatus |
GB0402951D0 (en) | 2004-02-11 | 2004-03-17 | Rolls Royce Plc | A welding torch and shield |
US6972390B2 (en) | 2004-03-04 | 2005-12-06 | Honeywell International, Inc. | Multi-laser beam welding high strength superalloys |
CN1298486C (zh) | 2004-07-15 | 2007-02-07 | 北京航空航天大学 | 旋转双焦点激光-mig电弧复合焊接头 |
GB0420578D0 (en) | 2004-09-16 | 2004-10-20 | Rolls Royce Plc | Forming structures by laser deposition |
US7259353B2 (en) | 2004-09-30 | 2007-08-21 | Honeywell International, Inc. | Compact coaxial nozzle for laser cladding |
JP3687677B1 (ja) * | 2004-10-26 | 2005-08-24 | 松下電工株式会社 | 光造形方法と光造形システム並びに光造形用プログラム |
US7073561B1 (en) * | 2004-11-15 | 2006-07-11 | Henn David S | Solid freeform fabrication system and method |
CA2600864C (en) * | 2005-01-31 | 2014-08-19 | Materials & Electrochemical Research Corp. | A low cost process for the manufacture of near net shape titanium bodies |
US7339712B2 (en) * | 2005-03-22 | 2008-03-04 | 3D Systems, Inc. | Laser scanning and power control in a rapid prototyping system |
WO2006133034A1 (en) | 2005-06-06 | 2006-12-14 | Mts Systems Corporation | Direct metal deposition using laser radiation and electric arc |
JP2009530112A (ja) | 2006-03-21 | 2009-08-27 | ビーオーシー リミテッド | 溶接のための装置及び方法 |
US8203095B2 (en) | 2006-04-20 | 2012-06-19 | Materials & Electrochemical Research Corp. | Method of using a thermal plasma to produce a functionally graded composite surface layer on metals |
US7777155B2 (en) * | 2007-02-21 | 2010-08-17 | United Technologies Corporation | System and method for an integrated additive manufacturing cell for complex components |
US9662733B2 (en) | 2007-08-03 | 2017-05-30 | Baker Hughes Incorporated | Methods for reparing particle-matrix composite bodies |
US20090283501A1 (en) | 2008-05-15 | 2009-11-19 | General Electric Company | Preheating using a laser beam |
DE102008031925B4 (de) * | 2008-07-08 | 2018-01-18 | Bego Medical Gmbh | Duales Herstellungsverfahren für Kleinserienprodukte |
US8653417B2 (en) * | 2009-01-13 | 2014-02-18 | Lincoln Global, Inc. | Method and system to start and use a combination filler wire feed and high intensity energy source |
US20100193480A1 (en) | 2009-01-30 | 2010-08-05 | Honeywell International Inc. | Deposition of materials with low ductility using solid free-form fabrication |
US8452073B2 (en) | 2009-04-08 | 2013-05-28 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Closed-loop process control for electron beam freeform fabrication and deposition processes |
US8344281B2 (en) | 2009-04-28 | 2013-01-01 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Use of beam deflection to control an electron beam wire deposition process |
JP5322859B2 (ja) * | 2009-09-01 | 2013-10-23 | 日鐵住金溶接工業株式会社 | プラズマトーチのインサートチップ,プラズマトーチおよびプラズマ溶接装置 |
US8008176B2 (en) | 2009-08-11 | 2011-08-30 | Varian Semiconductor Equipment Associates, Inc. | Masked ion implant with fast-slow scan |
GB2472783B (en) * | 2009-08-14 | 2012-05-23 | Norsk Titanium Components As | Device for manufacturing titanium objects |
FR2963899B1 (fr) | 2010-08-17 | 2013-05-03 | Air Liquide | Procede et dispositif de soudage a l'arc avec une torche mig /mag associee a une torche tig |
JP5611757B2 (ja) | 2010-10-18 | 2014-10-22 | 株式会社東芝 | 加熱補修装置および加熱補修方法 |
DE102011050832B4 (de) | 2010-11-09 | 2015-06-25 | Scansonic Mi Gmbh | Vorrichtung und Verfahren zum Fügen von Werkstücken mittels Laserstrahls |
FR2970900B1 (fr) | 2011-01-31 | 2013-10-18 | Aircelle Sa | Procede de reparation d'un panneau d'attenuation acoustique |
GB2489493B (en) | 2011-03-31 | 2013-03-13 | Norsk Titanium Components As | Method and arrangement for building metallic objects by solid freeform fabrication |
CN202344111U (zh) * | 2011-10-28 | 2012-07-25 | 安徽伟宏钢结构有限公司 | 埋弧焊预热焊接装置 |
WO2014025432A2 (en) | 2012-05-11 | 2014-02-13 | Siemens Energy, Inc. | Laser additive repairing of nickel base superalloy components |
US20170008126A1 (en) | 2014-02-06 | 2017-01-12 | United Technologies Corporation | An additive manufacturing system with a multi-energy beam gun and method of operation |
JP6075792B2 (ja) * | 2014-03-19 | 2017-02-08 | Necプラットフォームズ株式会社 | 無線通信装置、無線通信方法、及びプログラム |
JP6015709B2 (ja) | 2014-05-14 | 2016-10-26 | トヨタ自動車株式会社 | 肉盛加工における粉体供給方法 |
CN104400188B (zh) | 2014-10-27 | 2017-04-12 | 南京理工大学泰州科技学院 | 一种三维自动焊接系统及其焊接控制方法 |
CN104625412B (zh) | 2014-12-24 | 2017-02-01 | 江苏科技大学 | 一种铜合金激光‑冷金属过渡复合热源增材制造的方法 |
CN105414764B (zh) | 2015-12-30 | 2017-07-28 | 哈尔滨工业大学 | 一种tig电弧同步预热辅助的基于激光増材制造的连接方法 |
CN105458470A (zh) | 2016-01-04 | 2016-04-06 | 江苏科技大学 | 一种钛合金形件双电弧复合热源增材制造方法 |
-
2011
- 2011-03-31 GB GB1105433.5A patent/GB2489493B/en active Active
-
2012
- 2012-03-30 JP JP2014502502A patent/JP5996627B2/ja active Active
- 2012-03-30 EA EA201391415A patent/EA024135B1/ru unknown
- 2012-03-30 CN CN201280016671.6A patent/CN103476523B/zh active Active
- 2012-03-30 EP EP12719468.6A patent/EP2691197B1/en active Active
- 2012-03-30 US US14/008,307 patent/US9481931B2/en active Active
- 2012-03-30 SG SG2013072442A patent/SG193965A1/en unknown
- 2012-03-30 ES ES12719468.6T patent/ES2564850T3/es active Active
- 2012-03-30 KR KR1020137028946A patent/KR101984142B1/ko active IP Right Grant
- 2012-03-30 BR BR112013025043A patent/BR112013025043B8/pt active IP Right Grant
- 2012-03-30 CA CA2831221A patent/CA2831221C/en active Active
- 2012-03-30 AU AU2012233752A patent/AU2012233752B2/en active Active
- 2012-03-30 WO PCT/NO2012/000033 patent/WO2012134299A2/en active Application Filing
-
2016
- 2016-07-08 US US15/206,154 patent/US11213920B2/en active Active
- 2016-08-24 JP JP2016163421A patent/JP6211156B2/ja active Active
- 2016-09-15 US US15/267,027 patent/US10421142B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61296976A (ja) * | 1985-06-24 | 1986-12-27 | Toyota Motor Corp | 炭化物系セラミツク粒子分散金属複合層の形成方法 |
EP0221752A2 (en) * | 1985-10-29 | 1987-05-13 | Toyota Jidosha Kabushiki Kaisha | High energy padding method utilizing coating containing copper |
CN101163638A (zh) * | 2004-12-23 | 2008-04-16 | 内诺克塞斯公司 | 装置及其用途 |
CN101024482A (zh) * | 2007-03-27 | 2007-08-29 | 吉林大学 | 一种构筑三维微结构的方法 |
GB2452600A (en) * | 2007-09-05 | 2009-03-11 | Fraunhofer Ges Forschung | Machining head with integrated powder supply for deposition welding using laser radiation |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015180639A1 (zh) * | 2014-05-28 | 2015-12-03 | 赵晴堂 | 电阻式双熔层叠三维金属构件制造成形系统 |
CN105458470A (zh) * | 2016-01-04 | 2016-04-06 | 江苏科技大学 | 一种钛合金形件双电弧复合热源增材制造方法 |
CN109070200A (zh) * | 2016-03-03 | 2018-12-21 | 德仕托金属有限公司 | 使用金属构建材料的增材制造 |
US11241753B2 (en) | 2016-07-08 | 2022-02-08 | Norsk Titanium As | Contact tip contact arrangement for metal welding |
CN109715338A (zh) * | 2016-07-08 | 2019-05-03 | 挪威钛公司 | 用于mig金属焊接的接触末端组件 |
CN106180710A (zh) * | 2016-07-14 | 2016-12-07 | 武汉鑫双易科技开发有限公司 | 基于等离子体电弧熔覆的3d金属增材制造装置及方法 |
CN106238731B (zh) * | 2016-09-28 | 2018-07-13 | 深圳市首熙机械设备有限公司 | 一种混合金属3d立体打印装置 |
CN106238731A (zh) * | 2016-09-28 | 2016-12-21 | 深圳市首熙机械设备有限公司 | 一种混合金属3d立体打印技术 |
WO2018233202A1 (zh) * | 2017-06-22 | 2018-12-27 | 华南理工大学 | 反极性等离子弧机器人增材制造系统及其实现方法 |
CN110446581A (zh) * | 2018-03-02 | 2019-11-12 | 三菱电机株式会社 | 附加制造装置及附加制造方法 |
CN110446581B (zh) * | 2018-03-02 | 2020-11-20 | 三菱电机株式会社 | 附加制造装置及附加制造方法 |
CN108607992A (zh) * | 2018-05-23 | 2018-10-02 | 哈尔滨工业大学 | 基于预置金属粉末的微束电弧选择性熔凝增材制造方法 |
CN110039156A (zh) * | 2019-06-03 | 2019-07-23 | 西南交通大学 | 辅丝作用下钨-丝电弧增材制造装置与方法 |
CN111515501A (zh) * | 2020-04-21 | 2020-08-11 | 华北水利水电大学 | 一种低电阻率材料的tig熔丝焊装置及焊接方法 |
CN111687414A (zh) * | 2020-06-15 | 2020-09-22 | 上海理工大学 | 多束流电子束成型方法 |
CN111673283A (zh) * | 2020-06-23 | 2020-09-18 | 华北水利水电大学 | 一种铝合金厚板多层激光-tig复合焊接装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
BR112013025043B8 (pt) | 2020-05-19 |
AU2012233752B2 (en) | 2017-04-06 |
US20170001253A1 (en) | 2017-01-05 |
JP2014512961A (ja) | 2014-05-29 |
ES2564850T3 (es) | 2016-03-29 |
JP2016193457A (ja) | 2016-11-17 |
GB201105433D0 (en) | 2011-05-18 |
JP6211156B2 (ja) | 2017-10-11 |
US9481931B2 (en) | 2016-11-01 |
EP2691197B1 (en) | 2015-12-30 |
US20140061165A1 (en) | 2014-03-06 |
EA024135B1 (ru) | 2016-08-31 |
GB2489493A (en) | 2012-10-03 |
EA201391415A1 (ru) | 2014-03-31 |
CN103476523B (zh) | 2016-04-20 |
BR112013025043A2 (pt) | 2016-12-27 |
SG193965A1 (en) | 2013-11-29 |
KR20140038958A (ko) | 2014-03-31 |
US11213920B2 (en) | 2022-01-04 |
WO2012134299A2 (en) | 2012-10-04 |
EP2691197A2 (en) | 2014-02-05 |
KR101984142B1 (ko) | 2019-09-03 |
GB2489493B (en) | 2013-03-13 |
US10421142B2 (en) | 2019-09-24 |
WO2012134299A3 (en) | 2013-01-03 |
CA2831221A1 (en) | 2012-10-04 |
BR112013025043B1 (pt) | 2019-04-02 |
JP5996627B2 (ja) | 2016-09-21 |
AU2012233752A1 (en) | 2013-10-17 |
US20160318130A1 (en) | 2016-11-03 |
CA2831221C (en) | 2021-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103476523B (zh) | 用于通过固体自由成型制造来构建金属物件的方法和装置 | |
EP3380265B1 (en) | System and method for single crystal growth with additive manufacturing | |
CN109689267B (zh) | 用于由两个焊枪通过固体自由成形制造来构建金属物体的方法和设备 | |
EP3383573B1 (en) | Electron beam additive manufacturing | |
CN110773837B (zh) | 一种钛合金高精度电弧增材制造工艺 | |
Ye et al. | Study of hybrid additive manufacturing based on pulse laser wire depositing and milling | |
CN116000457B (zh) | 激光同轴诱导多tig电弧多丝快速增材制造方法及制造系统 | |
US20220176484A1 (en) | Method and arrangement for building metallic objects by solid freeform fabrication | |
Nowotny et al. | Generative manufacturing and repair of metal parts through direct laser deposition using wire material | |
Gokhale et al. | Directed Energy Deposition for Metals | |
Horbenko et al. | Comprehensive analysis of arc methods of 3D printing of metal products: assessment of the efficiency and prospects of using TIG as a heat source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |