[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103459784A - 具有co2捕集设备的联合循环发电设备 - Google Patents

具有co2捕集设备的联合循环发电设备 Download PDF

Info

Publication number
CN103459784A
CN103459784A CN2012800073139A CN201280007313A CN103459784A CN 103459784 A CN103459784 A CN 103459784A CN 2012800073139 A CN2012800073139 A CN 2012800073139A CN 201280007313 A CN201280007313 A CN 201280007313A CN 103459784 A CN103459784 A CN 103459784A
Authority
CN
China
Prior art keywords
heat exchanger
lng
cooling
power plant
combined cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012800073139A
Other languages
English (en)
Inventor
M.沃森
C.鲁奇蒂
H.李
F.德鲁
F.Z.科札克
A.札戈斯基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of CN103459784A publication Critical patent/CN103459784A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/064Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle in combination with an industrial process, e.g. chemical, metallurgical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/02Compressor intake arrangement, e.g. filtering or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/80Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/80Hot exhaust gas turbine combustion engine
    • F25J2240/82Hot exhaust gas turbine combustion engine with waste heat recovery, e.g. in a combined cycle, i.e. for generating steam used in a Rankine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/80Integration in an installation using carbon dioxide, e.g. for EOR, sequestration, refrigeration etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

联合循环发电设备(10)包含与液化天然气LNG再气化系统(20)操作集成的CO2捕集系统(5A,5B),其中来自再气化过程的冷能被用于CO2捕集系统或与其相关的过程中的冷却过程。这些冷却系统包括用于冷却CO2捕集所用的贫或富吸收溶液或冷却烟道气的系统。LNG再气化系统(20)按照具有(21-23)的一个或多个热交换阶段以及一个或多个冷储存单元(24,35,36)来布置。具有CO2捕集(10)的发电设备可在改进的总体效率下操作。

Description

具有CO2捕集设备的联合循环发电设备
技术领域
本发明涉及一种用于发电的联合循环发电设备,所述联合循环发电设备具有气体涡轮、蒸汽涡轮和热量回收蒸汽发生器,还涉及一种用于捕集和压缩二氧化碳的设备。具体地,本发明涉及液化天然气加工系统与发电设备的集成。
背景技术
已知用于发电的联合循环发电设备包括气体涡轮、蒸汽涡轮和热量回收蒸汽发生器,该热量回收蒸汽发生器利用气体涡轮排放的热烟道气产生蒸汽以驱动蒸汽涡轮。为了降低引起温室效应的排放,已提出各种措施来尽可能减少排放到大气中的二氧化碳的量。这些措施包括在发电设备中布置系统,其捕集和处理由热量回收蒸汽发生器HRSG或燃煤锅炉排放的烟道气中包含的CO2。这样的CO2捕集过程基于例如冷氨或胺吸收方法进行操作。为了有效地工作,这两种方法均需要将烟道气冷却至低于10℃的温度。此外,为了经济地输送和储存捕集的CO2,将其纯化、与水分离、冷冻、压缩和液化。为此,还需要在经济条件下提供足够冷的热交换介质。这种类型的CO2捕集设备需要给定量的能量,由此将降低发电设备的总体效率。为了设计在能量利用上更为有效的具有CO2捕集的联合循环发电设备,已提出对于一些发电设备过程使用来自LNG再气化的冷能。
JP2000024454公开了使用LNG的汽化热来冷却废气和固化在废气中包含的二氧化碳。JP60636999公开了使用在蒸发LNG以从废气将二氧化碳回收为液化二氧化碳时产生的冷热量。WO 2008/009930公开了在空气分离单元中使用这样的冷能来生产氮和氧。
US 6,367,258公开了将液化天然气汽化用于联合循环发电设备,其中利用汽化的冷能来冷冻气体涡轮吸入空气、蒸汽涡轮冷凝器冷却水或用于冷却气体涡轮的部件的第一传热流体。
Velautham等人,使用LNG冷却的零排放联合发电循环)»,JSME International Journal,Series B,第44卷,第4期,2001,公开了使用液化天然气的冷能,通过与空气热交换来冷却空气,期望从空气分离氧以进一步用于联合循环发电设备。使用液化天然气冷能降低氧-空气分离过程的能耗。还公开了使用液化天然气冷能与CO2热交换用于CO2液化。
WO2007/148984公开了一种LNG再气化设备,其中天然气在纯氧中燃烧。该设备还包含锅炉和蒸汽涡轮,以由热的燃烧气体发电。通过冷凝水蒸汽,由所得到的烟道气分离CO2。此外,CO2被LNG冷却而液化。
US5467722公开了一种具有随后的CO2捕集系统和LNG再气化设备的联合循环发电设备。CO2捕集系统包含换热器,其使用液体LNG作为热沉来冷却烟道气以捕集低温CO2
发明概述
本发明的一个目的是提供一种连带CO2捕集设备一起操作的联合循环发电设备,比起已知的这种类型的发电设备,本发明的联合循环发电设备具有提高的发电设备效率。
联合循环发电设备包含气体涡轮、蒸汽涡轮和热量回收蒸汽发生器(HRSG),其中两种涡轮驱动发电器。此外,发电设备包含CO2捕集系统,其基于冷氨或胺吸收方法进行操作并且布置用于处理来自HRSG的废气。
根据本发明,联合循环发电设备包含液化天然气再气化系统,其包含与CO2捕集系统内的一个或多个换热器操作连接的换热器。
液化天然气LNG的再气化提供在CO2捕集系统中进行冷却过程所必需的冷能。该冷却过程中的热交换介质得到的热量进而用于支持LNG的再气化过程。CO2捕集系统的LNG再气化系统和冷却系统集成为闭合的回路系统。该集成降低操作CO2捕集系统和LNG系统所需的能量,否则所述能量要通过其它方式提供,例如通过蒸汽提取和发电设备的电力提供。因此,其减轻由于CO2捕集过程和LNG再气化过程造成的效率降低。
在本发明的一个实施方案中,LNG再气化系统包含一个或多个换热器,级联排列,经设置以在天然气的特定温度范围(从LNG入口温度到环境温度)下操作,用于在换热器的冷流侧的LNG和热流侧的热交换介质之间热交换。在换热器的输出处,热流侧的热交换介质具有低温(cryogenic temperature)或冷冻温度(chilling temperature),取决于过程的冷能要求。
冷冻温度(chilling temperature)可例如在以下范围内:从高于低温温度(cryogenic temperature)(低温温度为低于-150℃的温度)到10℃或甚至到环境温度,或者在一个实施方案中,对于冷氨吸收方法应用,在5℃-2℃范围。
在另一实施方案中,布置CO2捕集系统用于冷氨吸收方法。为了支持该方法,发电设备包含管线,以将热交换介质从产生具有低温或冷冻温度的介质的该再气化换热器引向CO2捕集系统内的一个或多个致冷系统,其中致冷系统为
- 在烟道气直接接触冷却器的冷却回路中的冷却器,
- 设置在烟道气水洗涤设备之前的水冷却器,
- 用于冷却一部分富吸收溶液流的冷却器,用于调节所述富吸收溶液流的温度。
在本发明的另一实施方案中,CO2吸收系统为采用胺吸收方法用于从烟道气除去CO2的系统,并且用于LNG再气化的系统与在该CO2吸收系统内的冷却系统操作连接。该采用胺吸收方法的系统需要热交换介质,用于冷却贫吸收溶液至约45℃的温度。如在以上实施方案的情况,使用来自LNG系统的冷却能减轻了由于CO2捕集过程造成的效率降低。在本发明的一个具体实施方案中,管线从LNG系统的换热器通向胺吸收方法的贫溶液的冷却器,并且返回至换热器。
换热器以级联方式布置(热交换的天然气输出温度为随后的换热器的输入温度,并且将天然气加热,从LNG入口低温温度到-10℃或更高,优选到0℃或到环境温度),并且基于对经方法集成优化的冷却设施(cold utilities)的载荷和温度要求(例如空气分离单元、CO2液化过程、冷氨CO2捕集过程、联合循环发电设备中的冷却要求等),LNG再气化系统的每一个换热器经设置和布置以在特定的温度范围内热交换。更具体地,在一个示例性实施方案中,第一换热器中的天然气温度范围由LNG的低温入口温度以及冷却设施的要求和在该第一换热器的热流侧的热交换介质限定。在再气化压力下,LNG的沸腾温度可用作该第一换热器的天然气出口设计温度。为了降低设备尺寸,第一范围的天然气出口温度可更高,通常比LNG沸腾温度高10℃-50℃。该第一换热器将为冷却设施提供低温冷却能或超低温冷冻能,所述冷却设施需要极低温冷却,例如空气分离单元等。
第二温度范围的天然气入口温度为第一范围的出口温度,而第二范围的输出温度为第三范围的入口温度。该换热器可设计为在高于第一换热器的温度下提供超低温冷冻能。
第三温度范围的天然气入口温度为第二范围的出口温度。该换热器可设计为提供冷冻能,其具有比第二换热器高的温度。
在这样的级联布置中,当向不同的冷却设施提供冷却时,最大可能地减少了LNG冷冻能的可用能损失。
具体地,在一个示例性实施方案中,使用以下温度范围:
第一天然气温度范围:-165℃至-120℃,第二温度范围:-120℃至-80℃,和第三温度范围:-80℃至0℃。
这些换热器中的每一个可包含一个或多个热交换设备,它们可彼此串联或并联布置。这样的布置允许热交换介质的流动和温度控制的灵活性并且允许控制发电设备的不同操作模式的灵活性。
在本发明的另一实施方案中,LNG再气化系统包含用于储存LNG的冷储存单元,其布置用于向发电设备内的上述冷却系统提供冷的热交换介质。在不运行LNG再气化或再气化的情况下,包含在这些冷储存单元中的冷能可用于CO2液化过程,从而能够降低CO2吸收系统的功耗。
在本发明的另一实施方案中,LNG再气化系统,具体是布置为用热交换介质操作的换热器(热交换介质在换热器输出处具有冷冻温度),还与用于冷却通向联合循环发电设备的气体涡轮的入口空气的系统操作连接。介质的冷冻温度可在10℃或更低的范围,或者在5℃-2℃的范围。
在本发明的另一示例性实施方案中,LNG再气化系统还与一个或多个以下系统操作连接,所述系统与从来自联合循环发电设备的烟道气捕集CO2的过程关联:
- 在烟道气进入CO2捕集系统之前用于其冷却和/或冷冻(cooling and/or chilling)的系统,以满足CO2捕集过程的温度要求,
- 用于冷却在HRSG之后再循环返回气体涡轮入口的烟道气的系统,
- 用于冷冻在HRSG之后再循环返回气体涡轮入口的烟道气的系统,
- 用于冷却CO2捕集系统所提取的CO2的系统,
- 用于通过冷冻来干燥CO2的系统。
烟道气的再循环提高烟道气中的CO2浓度,从而提高CO2捕集过程效率。
在本发明的另一示例性实施方案中,LNG再气化系统还与用于蒸汽涡轮冷凝器的冷却水系统操作连接。通过有效地利用可得的冷能用于冷却,并且进而利用可得自LNG再气化过程的冷凝的低水平热量,这进一步提高总体效率。
由所有上述冷却系统,将返回热交换介质引回LNG再气化系统内的换热器。
LNG再气化系统从而可使用联合循环发电设备的冷却器和冷冻器系统提供的热量来操作。反过来,冷却器和冷冻器系统可使用LNG提供的冷能来操作。
由于这些冷却系统不再需要使用由发电设备的其它来源提取的能量来操作,使用可得自以上任何冷却系统中的LNG再气化系统的冷能提高总体发电设备效率。另一方面,由上述冷却系统取回的热量提供用于LNG再气化的热量来源。因此,不需要或需要较少的来自联合循环发电设备的蒸汽提取来操作LNG 再气化。可改进发电设备的性能(效率和功率输出)。
在本发明的另一示例性实施方案中,用于LNG再气化的系统包含换热器,其经设置和布置用于液化CO2捕集系统所提取的CO2。具有这样的LNG系统的发电设备不需要或需要较少用于液化CO2的压缩机。此外,来自CO2液化过程的热量被提供给LNG再气化系统的换热器。
在另一实施方案中,发电设备包含管线,以将热交换介质从液化天然气再气化系统的第一换热器引向空气分离单元。在换热器的输出处,热交换介质具有低温温度(温度低于-150℃),并且用于空气分离过程的操作,从而降低操作该单元所需的能量。用于来自空气分离单元的返回热交换介质的其它管线通回该第一换热器,并且为液化天然气再气化过程提供其热量。
在一个备选的实施方案中,来自液化天然气再气化系统的第一换热器的冷冻能交换到空气分离单元的入口空气,并且来自液化天然气再气化系统的第二换热器的冷冻能用于冷却空气分离单元的第一压缩机的出口空气。
附图简述
图1显示根据本发明具有CO2捕集系统的联合循环发电设备的示意图,特别是LNG再气化系统与在发电设备内的冷却系统之间的操作连接。
图2显示CO2捕集系统的详细示意图,特别是冷氨吸收系统和在LNG系统与该CO2捕集系统之间的操作连接。
图3显示CO2捕集系统的详细示意图,特别是基于胺吸收方法的系统和在LNG系统与该CO2捕集系统之间的操作连接。
图4显示根据本发明的另一实施方案,具有CO2捕集系统的联合循环发电设备的示意图,特别是LNG再气化系统与在发电设备内的冷却系统之间的操作连接。
实施本发明的最佳方式
图1描述用于发电的联合循环发电设备10,其具有提供有环境空气A的气体涡轮GT、使用来自气体涡轮的热废气产生蒸汽的热量回收蒸汽发生器HRSG,和通过HRSG中产生的蒸汽驱动的蒸汽涡轮ST。冷凝器1冷凝膨胀的蒸汽,并且将冷凝物作为进料水引向HRSG,从而完成蒸汽涡轮的水/蒸汽循环。此外,发电设备包含CO2捕集系统5A、5B,它们可为基于冷氨吸收方法而进行操作的系统(如在图2中所示的5A)或基于胺吸收方法的系统(如在图3中所示的5B)。
发电设备10的气体涡轮使用液化天然气LNG再气化设备20供应的天然气进行操作。发电设备10与具有一个或多个阶段的LNG加工系统20操作连接,系统20使低温液化天然气LNG汽化,用于气体涡轮燃烧室CC。根据本发明,系统20中的LNG再气化过程与发电设备10内的一个或多个冷却和冷冻系统集成,以优化总体发电设备效率。为此,LNG系统20包含数个阶段21-23,它们串联布置,其中每一个阶段与在大致的特定温度水平范围内再气化LNG相关。特别是,CO2捕集系统内的冷却或冷冻系统在闭合的热交换回路中与LNG再气化系统20集成。
第一实施方案包含具有CO2捕集系统5a的发电设备,其为基于冷氨吸收方法而进行操作的系统,如图2所示。在直接接触冷却器DCC之后,系统5a包含CO2吸收塔A,直接接触冷却器DCC将经由管线G1来自于HRSG的烟道气从120℃-80℃的温度范围冷却降至10℃或更低的温度,这是成功操作冷氨吸收方法所需的。冷却器31布置在直接接触冷却器DCC的冷却回路中并且经设置以使用来自LNG再气化系统20的换热器23的冷能。换热器23产生10℃或更低(例如2-5℃)的冷冻流动介质,其用于冷却器33,以冷却烟道气至低于10℃的温度。
不含CO2的气体经由管线G5离开塔A,并且引向水洗涤WW,由该水洗涤WW,清洁的烟道气所用的气体管线G6延伸至直接接触冷却器DCC2。最后,清洁的烟道气从直接接触冷却器DCC经由管线G7引向烟道S和大气。
水洗涤W W经由水管线W与汽提塔St和水冷却器32操作连接。用于纯CO2流的管线从汽提塔St通向再生器RG。
由烟道气捕集的CO2最后在再生器RG的顶部释放,由此将其引向进一步处理,例如压缩、干燥或冷冻。
CO2吸收塔A与用于再生冷氨(CO2的吸收溶液)的系统连接。借助再生器RG再加热富CO2的吸收溶液RS,以释放CO2和产生贫CO2的溶液LS,以再用于吸收塔A。吸收溶液再生系统另外包含富溶液RS的冷却器33。
在冷氨CO2捕集系统5A内的每一个上述冷却器31、32、33需要冷冻水作为温度低于10℃的冷却介质,其可通过LNG系统20的换热器23提供。这些冷却器中的每一个借助管线25和26在闭合回路中与换热器23连接。
根据本发明的另一实施方案,CO2捕集系统还可为基于胺吸收方法的系统5B,如图3所示。系统5B包括CO2吸收器B,其经由管线W提供有水流并且提供有贫吸收剂流LS’。将来自HRSG的烟道气引向吸收器B的底部,并且上升通过设备,与贫溶液LS’成逆流。清洁的烟道气在设备顶部离开,并且经由烟道S引向大气。将得自吸收过程的富溶液经由管线RS’和换热器LRX引向胺再生器塔ARC。在此从溶液释放CO2并且经由冷凝器C’引导至设备以进一步处理或储存。吸收塔ARC与含有再沸器RB的回路进一步连接,由再沸器RB将贫溶液流经由管线LS’引向换热器LRX,其中贫溶液LS’与富溶液RS’交换热量,从而在其进入胺再生塔ARC之前预热富溶液。在贫溶液LS’用于吸收器塔B之前,需要将其进一步冷却。为此,其通过换热器LSC引导,该换热器LSC设置为借助在管线25中的来自LNG系统的阶段23的冷冻水来冷却贫溶液。将来自换热器LSC的已加热的水引回至阶段23,以在阶段23中再次冷冻,从而闭合回路。
从烟道气提取的CO2从再生塔ARC离开,并且被引向进一步处理,例如压缩、干燥或冷冻。
取决于安装的CO2捕集系统的类型,来自HRSG的烟道气应在其在该系统内处理之前冷却至特定的温度范围。在冷氨吸收方法的情况下,在进入吸收器之前,烟道气的优选温度低于10℃。在胺吸收方法的情况下,烟道气的温度应为约50℃,以确保最佳操作。对于这样的烟道气冷却,发电设备包含烟道气冷却器3A,或者如果需要,在烟道气管线中另外布置烟道气冷冻器3B,用于在CO2捕集处理中处理烟道气之前冷却或冷冻烟道气。因此,可从LNG系统完全取出冷能。冷却器/冷冻器系统3A、3B进而用热量支持LNG系统,所述热量从烟道气获得并且经由管线26引向LNG系统。
发电设备包含数个与CO2捕集系统连接或相关的其它冷却系统,除了CO2捕集系统的冷却系统自身以外,它们可与LNG系统集成。
CO2捕集系统5A、5B与CO2干燥和冷却系统6连接,用于处理捕集的CO2,其在CO2捕集系统中已与烟道气分离。在冷却系统6之后,可布置任选的压缩机,用于CO2压缩。
为了通过提高烟道气中的CO2浓度来提高CO2捕集过程的效率,发电设备10可另外包含烟道气再循环系统,其可包括从HRSG的排放管线分出的管线,其将未经处理的烟道气经由烟道气冷却器4a以及随后任选的烟道气冷冻器4b引回气体涡轮入口。将从烟道气冷却器或烟道气冷冻器离开的已冷却或冷冻的烟道气分别引导至预期用于气体涡轮压缩机的入口空气流A并且与之混合。
为了进一步提高发电设备容量,发电设备可包含入口空气冷冻系统2,其使用经由管线25来自换热器23的冷冻介质,来冷却例如在高环境空气温度情况下的入口气体。已加热的介质经由管线26返回换热器23。
发电设备与液化天然气加工系统20操作连接,系统20将低温液化天然气LNG汽化用于气体涡轮燃烧室CC和/或经由气体管线输出。再气化过程和在发电设备10内的多个冷却和冷冻系统采用优化总体发电设备效率的方式集成。LNG系统20包含例如数个阶段21-23,它们串联布置,其中每一个阶段汽化LNG至不同的温度水平。第一阶段21经设置和布置以气化LNG,并且在闭合的回路中经由管线27和28与发电设备10内的空气分离单元ASU操作连接。管线27经由流动介质引导低温冷冻,以操作ASU,其中管线28将在ASU中产生的热量引回至气化器阶段21,以气化LNG。
空气分离单元ASU布置在环境空气的管线中,其从用于气体涡轮压缩机的入口空气流管线A分出。将从环境空气提取的纯氧引回环境空气管线至压缩机,和/或气体涡轮的燃烧室CC,和/或热量回收蒸汽发生器HRSG,以支持补充燃烧。
如图1所示,LNG系统20的第二换热器22与CO2干燥和冷却系统6操作连接。在压缩机37中充分压缩CO2之后,LNG换热器22的冷能用于液化从气体涡轮废气捕集的CO2。可将液化的CO2引向输送设备T或任何其它设备,用于处理或储存CO2
在发电设备的CO2处理中集成LNG气化器的第二换热器22使得可以液化CO2,而无需另外的CO2压缩机和中间冷却器来将CO2压缩至更高的压力。该布置允许显著节约投资和操作成本以及设备效率。
LNG再气化系统20的第三换热器23借助管线25和26与CO2捕集系统5A或5B的冷却器系统操作连接。为了额外优化总体发电设备效率,在发电设备10内的其它冷却系统可采用类似的方式集成。这些系统包括例如冷却系统,用于蒸汽涡轮冷凝器1。
换热器21-23中的每一个本身可包含一个或多个气化器单元,其中在数个单元的情况下,所述单元可串联或并联布置。这样的布置使得可以灵活地控制LNG和热交换流和相应温度。
另外,最后的换热器23可与冷储存单元24组合,冷储存单元24也通过管线与管线25和26连接。换热器22也可与冷储存单元35连接,冷储存单元35通过管线与压缩机37和输送设备T连接。类似地,换热器21可与冷储存单元36组合,冷储存单元36经由管线与管线27和28连接。该设置使得可以在LNG再气化过程的停车或没有足够的可得自过程的冷冻时,操作发电设备内的冷却和冷冻系统。
图4显示发电设备10的另一示例性实施方案,具有LNG再气化设备20’的变化方案。该变化方案包含两个换热器21和23用于LNG再气化,具有任选的冷储存单元24和36。发电设备不具有用于CO2液化的换热器22,而是包含压缩机37的系统,压缩机37具有在干燥和冷冻系统6之后布置的中间冷却器34。经由管线25由换热器23对中间冷却器供应冷却。
图中使用的附图标记
1 蒸汽涡轮冷凝器
2 入口空气冷冻系统
3A/3B 烟道气冷却器/冷冻器
4A/4B 再循环的烟道气冷却器/冷冻器
5A CO2捕集系统-冷氨吸收系统
5B CO2捕集系统-胺吸收方法
6 CO2干燥和冷却系统
10 联合循环发电设备
20,20’ 液化天然气再气化系统
21 在低温温度下的第一换热器
22 在冷冻温度下的第二换热器
23 第三换热器
24 冷储存单元
25 用于从第三换热器到发电设备的热交换介质的管线
26 用于从发电设备返回LNG再气化换热器的热交换介质的返回管线
27 用于从第一LNG再气化换热器到空气分离单元的低温热交换介质的管线
28 用于从空气分离单元返回LNG再气化换热器的热交换介质的返回管线
31-33 在冷氨CO2捕集系统内的致冷系统
31 在冷氨CO2捕集系统内的DCC冷却回路中的冷却器
32 在冷氨CO2捕集系统内的水冷却器
33 在冷氨CO2捕集系统内的富溶液冷却器
34 CO2中间冷却器
35,36 冷储存单元
37 CO2压缩机
GT 气体涡轮
ST 蒸汽涡轮
HRSG 热量回收蒸汽发生器
A 入口空气
ASU 空气分离单元
LNG 液化天然气
NG 气化天然气
DCC 直接接触冷却器
A CO2吸收器
RG CO2吸收溶液再生器
RS 用于CO2吸收富溶液的管线
LS 用于CO2吸收贫溶液的管线
W 水管线
WW 水洗涤设备
G1,G2,G5,G6,G7 烟道气管线
B CO2吸收器
RS’ 用于CO2吸收富溶液的管线
LS’ 用于CO2吸收贫溶液的管线
ARC 胺再生器塔
RB 再沸器
C’ 贫溶液冷却系统
S 烟道
T 液化CO2输送系统

Claims (13)

1. 联合循环发电设备(10),所述设备(10)包含气体涡轮(GT)、蒸汽涡轮(ST)、热量回收蒸汽发生器(HRSG)、液化天然气(LNG)再气化系统(20),和
CO2捕集系统(5A,5B),该CO2捕集系统(5A,5B)经布置以处理所述热量回收蒸汽发生器(HRSG)排放的废气,其特征在于
所述液化天然气再气化系统(20)包含与所述CO2捕集系统(5A,5B)内的换热器(31,32,33,36,LSC)操作连接的换热器(21,22,23),
其中一个或多个换热器(21,22,23)以级联方式布置,经设置用于在从LNG入口温度到至少-10℃的温度下操作天然气,并且其中至少一个换热器(23)经设置和布置用于在液化天然气和热交换介质之间进行热交换,其中该热交换介质在该至少一个换热器(21)的输出处具有低温温度或冷冻温度。
2. 权利要求1的联合循环发电设备(10),
其特征在于
所述CO2捕集系统为经布置用于冷氨吸收方法的系统(5A),并且所述发电设备(10)包含管线(25,26),以将所述热交换介质从该再气化换热器(23)引向以下一个或多个在所述CO2捕集系统内的致冷系统
- 在烟道气直接接触冷却器(DCC)的冷却回路中集成的冷却器(31),
- 在烟道气水洗涤设备(WW)之前的水冷却器(32),
- 用于冷却在所述CO2捕集系统(5A)内的富CO2吸收溶液的冷却器(33)。
3. 权利要求1的联合循环发电设备(10)
其特征在于
所述CO2捕集系统为经布置用于胺吸收方法的系统(5B),用于从烟道气除去CO2,并且所述液化天然气再气化系统(20)包含一个或多个以级联方式布置的换热器(21,22,23),经设置以在从LNG入口温度到至少0℃下操作天然气,并且其中至少一个换热器(21)经设置和布置用于在液化天然气和热交换介质之间进行热交换,其中该热交换介质在该至少一个换热器(23)的输出处具有低温温度或冷冻温度。
4. 权利要求3的联合循环发电设备(10),
其特征在于
所述发电设备(10)包含管线(25,26),以将所述热交换介质从该再气化换热器(21)引向系统(LSC),用于在所述CO2捕集胺吸收方法的系统(5B)内冷却贫CO2溶液。
5. 权利要求1或3的联合循环发电设备(10),
其特征在于
所述至少一个换热器(23)经设置和布置用于在液化天然气和热交换介质之间进行热交换,所述热交换介质在换热器的输出处具有低温温度或冷冻温度,所述至少一个换热器(23)与用于冷却进入所述联合循环发电设备(10)的气体涡轮(GT)的入口空气的系统(2)操作连接。
6. 权利要求5的联合循环发电设备(10),
其特征在于
所述液化天然气再气化系统的一个或多个换热器(21-23)与所述联合循环发电设备(10)的一个或多个以下系统另外操作连接:
- 系统(3a),用于在烟道气进入所述CO2捕集系统之前冷却烟道气,
- 系统(3b),用于在烟道气进入所述CO2捕集系统之前冷冻烟道气,
- 冷却水系统(1),用于蒸汽涡轮冷凝器,
- 系统(4a),用于冷却在HRSG之后再循环返回所述气体涡轮入口的烟道气,
-系统(4b),用于冷冻在HRSG之后再循环返回所述气体涡轮入口的烟道气,
- 系统(6),用于冷却通过所述CO2捕集系统提取的CO2
- 系统(6),通过冷冻来干燥CO2
7. 前述权利要求1-6中任一项的联合循环发电设备(10),
其特征在于
所述液化天然气再气化系统的换热器(21-23)以串联或并联布置。
8. 权利要求7的联合循环发电设备(10),
其特征在于
所述LNG再气化系统(20)的每一个换热器(21,22,23)经设置和布置以在给定的温度范围内热交换,其中每一个换热器(21,22,23)可包含一个或多个热交换设备,它们可彼此串联或并联布置。
9. 权利要求5的联合循环发电设备(10),
其特征在于
所述液化天然气再气化系统(20)包含一个或多个冷储存单元,用于储存液化天然气,与其换热器(21-23)并联布置。
10. 权利要求1或3的联合循环发电设备(10),
其特征在于
所述用于液化天然气再气化的系统包含经设置和布置用于液化所述CO2捕集系统所提取的CO2的换热器(22)。
11. 权利要求6和10的联合循环发电设备(10),
其特征在于
具有从用于干燥和冷却CO2的系统(6)通到用于CO2液化的换热器(22)的管线,以及从该换热器(22)通到输送设备(T)或泵的液化CO2的管线。
12. 权利要求1的联合循环发电设备(10),
其特征在于
所述液化天然气再气化系统(20)包含:换热器(21),所述换热器(21)经设置和布置以在液化天然气和在所述换热器(21)的输出处具有低温温度的介质之间进行热交换;和通向空气分离单元(27)的所述热交换介质的管线(27);和从所述空气分离单元(ASU)通回所述换热器(21)的管线(28)。
13. 权利要求5的联合循环发电设备(10),
其特征在于
所述液化天然气再气化系统(21-23)与用于蒸汽涡轮(ST)冷凝器(1)的冷却系统另外操作连接。
CN2012800073139A 2011-02-01 2012-01-26 具有co2捕集设备的联合循环发电设备 Pending CN103459784A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11152823 2011-02-01
EP11152823.8 2011-02-01
PCT/EP2012/051267 WO2012104202A1 (en) 2011-02-01 2012-01-26 Combined cycle power plant with co2 capture plant

Publications (1)

Publication Number Publication Date
CN103459784A true CN103459784A (zh) 2013-12-18

Family

ID=44246132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012800073139A Pending CN103459784A (zh) 2011-02-01 2012-01-26 具有co2捕集设备的联合循环发电设备

Country Status (5)

Country Link
US (1) US20130312386A1 (zh)
EP (1) EP2673478A1 (zh)
JP (1) JP2014512471A (zh)
CN (1) CN103459784A (zh)
WO (1) WO2012104202A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103867894A (zh) * 2014-03-29 2014-06-18 辽宁石油化工大学 一种利用液化天然气冷能发电及co2捕集的方法与装置
CN105605602A (zh) * 2016-01-28 2016-05-25 华中科技大学 将lng冷能用于空分制氧和碳捕获的天然气富氧燃烧系统
CN107899375A (zh) * 2017-11-25 2018-04-13 杨正山 一种燃煤电厂烟道气二氧化碳混合捕集耦合微藻固碳工艺
CN110787594A (zh) * 2019-11-25 2020-02-14 中冶京诚工程技术有限公司 烟气中co2捕集利用耦合lng减压循环的方法及系统
CN116335823A (zh) * 2022-11-24 2023-06-27 浙江大学 与Allam循环形式电站相结合的联合循环系统及低温循环方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140020388A1 (en) * 2012-07-19 2014-01-23 Miguel Angel Gonzalez Salazar System for improved carbon dioxide capture and method thereof
WO2014137573A2 (en) * 2013-03-04 2014-09-12 Exxonmobil Upstream Research Company Regasification plant
CA2902479C (en) 2013-03-08 2017-11-07 Exxonmobil Upstream Research Company Power generation and methane recovery from methane hydrates
TW201500635A (zh) 2013-03-08 2015-01-01 Exxonmobil Upstream Res Co 處理廢氣以供用於提高油回收
CN103628982B (zh) * 2013-11-27 2015-09-09 暨南大学 利用液化天然气冷能捕集二氧化碳的联合动力循环方法及其系统
US10473029B2 (en) * 2013-12-30 2019-11-12 William M. Conlon Liquid air power and storage
CN106164443A (zh) * 2014-03-26 2016-11-23 埃克森美孚上游研究公司 用于调节循环废气的系统和方法
ES2580879B2 (es) * 2015-02-26 2017-02-08 Universidade Da Coruña Planta termoeléctrica alimentada con calor ambiental y enfriada mediante regasificación de gas natural licuado
WO2016195968A1 (en) 2015-06-01 2016-12-08 Conlon William M Part load operation of liquid air power and storage system
WO2016195999A1 (en) 2015-06-03 2016-12-08 Conlon William M Liquid air power and storage with carbon capture
WO2016204893A1 (en) 2015-06-16 2016-12-22 Conlon William M Cryogenic liquid energy storage
EP3365536B1 (en) 2015-10-21 2020-11-18 William M. Conlon High pressure liquid air power and storage
US10378763B2 (en) 2015-12-03 2019-08-13 General Electric Company Method and apparatus to facilitate heating feedwater in a power generation system
EP3390939B1 (en) * 2015-12-14 2020-12-30 Exxonmobil Upstream Research Company Expander-based lng production processes enhanced with liquid nitrogen
JP6946012B2 (ja) * 2017-02-09 2021-10-06 三菱重工業株式会社 Co2液化システム及びco2液化方法
IT201700073449A1 (it) * 2017-07-05 2019-01-05 Fpt Ind Spa Veicolo dotato di sistema recuperativo di calore (whr)
CN108579361A (zh) * 2018-05-09 2018-09-28 常州大学 一种lng发电厂尾气中二氧化碳低能耗捕集装置
US20210220771A1 (en) * 2018-06-06 2021-07-22 Saipem S.P.A. Post-combustion co2 capture with heat recovery and integration
CN109821341A (zh) * 2019-03-20 2019-05-31 赫普科技发展(北京)有限公司 一种燃气轮机利用lng冷能碳捕集系统及碳捕集方法
CN109876590A (zh) * 2019-03-20 2019-06-14 赫普科技发展(北京)有限公司 一种火电厂利用lng冷能碳捕集系统及碳捕集方法
CN110711463A (zh) * 2019-10-31 2020-01-21 上海海事大学 一种基于太阳能和lng冷能的燃气电厂co2捕集系统
JP7356345B2 (ja) * 2019-12-27 2023-10-04 三菱重工業株式会社 排気ガス処理設備、及びガスタービンプラント
JP7491760B2 (ja) * 2020-07-20 2024-05-28 三菱重工業株式会社 ガスタービンプラント
WO2022094605A1 (en) * 2020-10-30 2022-05-05 Colorado State University Research Foundation Synergistic heat pumped thermal storage and flexible carbon capture system
CN113669121B (zh) * 2021-08-26 2022-06-14 江南大学 一种电厂凝汽系统及工艺方法
EP4423370A1 (en) * 2021-10-25 2024-09-04 Colorado State University Research Foundation Synergistic heat pumped thermal storage and flexible carbon capture system
CN114909605B (zh) * 2022-06-08 2024-04-19 江苏科技大学 Lng船冷能循环存储及冷能综合利用系统及其工作方法
CN115014000B (zh) * 2022-06-10 2023-12-26 国网浙江省电力有限公司电力科学研究院 多能联供零碳排放系统及其运行控制方法
CN115263466A (zh) 2022-07-13 2022-11-01 江苏科技大学 Lng动力船低温碳捕集耦合冷能与余热梯级利用系统
WO2024039365A1 (en) * 2022-08-16 2024-02-22 General Electric Technology Gmbh System and method for multi-stage carbon capture
WO2024054119A1 (en) * 2022-09-06 2024-03-14 Capsol Technologies As Carbon capture for gas turbines
WO2024111523A1 (ja) * 2022-11-25 2024-05-30 三菱重工業株式会社 二酸化炭素回収システム及び二酸化炭素回収方法
CN116164573B (zh) * 2022-12-15 2023-09-19 钜变科技(深圳)有限公司 一种基于二氧化碳气固相变的干冰储能系统及方法
WO2024157039A1 (en) * 2023-01-24 2024-08-02 Totalenergies Onetech Power generation system and co2 capture system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433554A (en) * 1982-07-16 1984-02-28 Institut Francais Du Petrole Process for producing cold and/or heat by use of an absorption cycle with carbon dioxide as working fluid
US4942734A (en) * 1989-03-20 1990-07-24 Kryos Energy Inc. Cogeneration of electricity and liquid carbon dioxide by combustion of methane-rich gas
US4995234A (en) * 1989-10-02 1991-02-26 Chicago Bridge & Iron Technical Services Company Power generation from LNG
CN1117751A (zh) * 1993-12-10 1996-02-28 卡伯特公司 一种改进的以液化天然气为燃料的联合循环发电设备
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US7288136B1 (en) * 2005-01-13 2007-10-30 United States Of America Department Of Energy High capacity immobilized amine sorbents
CN101466976A (zh) * 2006-06-20 2009-06-24 阿克工程及技术股份公司 用于液化天然气再气化的方法和设备

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0663699B2 (ja) * 1990-06-14 1994-08-22 財団法人電力中央研究所 液化天然ガス焚き火力発電所から排出される二酸化炭素の回収方法
NO180520C (no) * 1994-02-15 1997-05-07 Kvaerner Asa Fremgangsmåte til fjerning av karbondioksid fra forbrenningsgasser
US5467722A (en) 1994-08-22 1995-11-21 Meratla; Zoher M. Method and apparatus for removing pollutants from flue gas
CN1112505C (zh) * 1995-06-01 2003-06-25 特雷克特贝尔Lng北美公司 液化天然气作燃料的混合循环发电装置及液化天然气作燃料的燃气轮机
JP3784966B2 (ja) 1998-07-08 2006-06-14 中国電力株式会社 燃焼排ガスの処理方法及び装置
ATE342478T1 (de) * 1999-04-05 2006-11-15 Air Liquide Vorrichtung mit variabler auslastung und entsprechendes verfahren zur trennung eines einsatzgemisches
MXPA02000764A (es) 1999-07-22 2002-07-22 Bechtel Corp Un metodo y aparato para vaporizar gas liquido en una planta de energia de ciclo combinado.
US7299619B2 (en) * 2003-12-13 2007-11-27 Siemens Power Generation, Inc. Vaporization of liquefied natural gas for increased efficiency in power cycles
EP1781902A4 (en) * 2004-07-14 2009-08-12 Fluor Tech Corp CONFIGURATIONS AND METHOD FOR ENERGY EFFICIENCY WITH INTEGRATED LNG RE-GASIFICATION
JP2006036999A (ja) 2004-07-29 2006-02-09 Matsushita Electric Ind Co Ltd 有機物のガス化方法
US7637109B2 (en) * 2004-08-02 2009-12-29 American Air Liquide, Inc. Power generation system including a gas generator combined with a liquified natural gas supply
US7314847B1 (en) * 2004-10-21 2008-01-01 The United States Of America As Represented By The United States Department Of Energy Regenerable sorbents for CO2 capture from moderate and high temperature gas streams
US7654320B2 (en) * 2006-04-07 2010-02-02 Occidental Energy Ventures Corp. System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir
ITMI20061149A1 (it) * 2006-06-14 2007-12-15 Eni Spa Procedimento ed impianto per la rigassificazione di gas naturale liquefatto e il suom stoccaggio
GB0614250D0 (en) 2006-07-18 2006-08-30 Ntnu Technology Transfer As Apparatus and Methods for Natural Gas Transportation and Processing
US20080115531A1 (en) * 2006-11-16 2008-05-22 Bao Ha Cryogenic Air Separation Process and Apparatus
CA2676078A1 (en) * 2007-01-25 2008-07-31 Shell Canada Limited Process for producing a pressurised co2 stream in a power plant integrated with a co2 capture unit
US7867322B2 (en) * 2007-01-31 2011-01-11 Alstom Technology Ltd Use of SO2 from flue gas for acid wash of ammonia
AU2008267757B2 (en) * 2007-06-22 2012-12-13 Commonwealth Scientific And Industrial Research Organisation An improved method for CO2 transfer from gas streams to ammonia solutions
CA2693994A1 (en) * 2007-07-25 2009-01-29 Bp Alternative Energy International Limited Separation of carbon dioxide and hydrogen
GB0721488D0 (en) * 2007-11-01 2007-12-12 Alstom Technology Ltd Carbon capture system
EP2060788B1 (de) * 2007-11-16 2010-05-12 Linde AG Verfahren zum Ansteuern einer Pumpenanordnung und Pumpenanordnung
US20090151318A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regenerating an absorbent solution
US20090282977A1 (en) * 2008-05-14 2009-11-19 Alstom Technology Ltd Gas purification system having provisions for co2 injection of wash water
WO2009140317A1 (en) * 2008-05-15 2009-11-19 Shell Oil Company Method for recovering a natural gas contaminated with high levels of co2
US7846240B2 (en) * 2008-10-02 2010-12-07 Alstom Technology Ltd Chilled ammonia based CO2 capture system with water wash system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433554A (en) * 1982-07-16 1984-02-28 Institut Francais Du Petrole Process for producing cold and/or heat by use of an absorption cycle with carbon dioxide as working fluid
US4942734A (en) * 1989-03-20 1990-07-24 Kryos Energy Inc. Cogeneration of electricity and liquid carbon dioxide by combustion of methane-rich gas
US4995234A (en) * 1989-10-02 1991-02-26 Chicago Bridge & Iron Technical Services Company Power generation from LNG
CN1117751A (zh) * 1993-12-10 1996-02-28 卡伯特公司 一种改进的以液化天然气为燃料的联合循环发电设备
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
US7288136B1 (en) * 2005-01-13 2007-10-30 United States Of America Department Of Energy High capacity immobilized amine sorbents
CN101466976A (zh) * 2006-06-20 2009-06-24 阿克工程及技术股份公司 用于液化天然气再气化的方法和设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103867894A (zh) * 2014-03-29 2014-06-18 辽宁石油化工大学 一种利用液化天然气冷能发电及co2捕集的方法与装置
CN103867894B (zh) * 2014-03-29 2016-02-10 辽宁石油化工大学 一种利用液化天然气冷能发电及co2捕集的方法与装置
CN105605602A (zh) * 2016-01-28 2016-05-25 华中科技大学 将lng冷能用于空分制氧和碳捕获的天然气富氧燃烧系统
CN105605602B (zh) * 2016-01-28 2017-10-31 华中科技大学 将lng冷能用于空分制氧和碳捕获的天然气富氧燃烧系统
CN107899375A (zh) * 2017-11-25 2018-04-13 杨正山 一种燃煤电厂烟道气二氧化碳混合捕集耦合微藻固碳工艺
CN110787594A (zh) * 2019-11-25 2020-02-14 中冶京诚工程技术有限公司 烟气中co2捕集利用耦合lng减压循环的方法及系统
CN110787594B (zh) * 2019-11-25 2023-09-01 中冶京诚工程技术有限公司 烟气中co2捕集利用耦合lng减压循环的方法及系统
CN116335823A (zh) * 2022-11-24 2023-06-27 浙江大学 与Allam循环形式电站相结合的联合循环系统及低温循环方法
CN116335823B (zh) * 2022-11-24 2024-01-23 浙江大学 与Allam循环形式电站相结合的联合循环系统及低温循环方法

Also Published As

Publication number Publication date
WO2012104202A1 (en) 2012-08-09
EP2673478A1 (en) 2013-12-18
JP2014512471A (ja) 2014-05-22
US20130312386A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
CN103459784A (zh) 具有co2捕集设备的联合循环发电设备
CN103086375B (zh) 二氧化碳的纯化
US9416683B2 (en) Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
US10391447B2 (en) Method and plant for CO2 capture
US5344627A (en) Process for removing carbon dioxide from combustion exhaust gas
RU2362099C2 (ru) Способ криогенного сжижения/охлаждения и система для осуществления способа
JP5468562B2 (ja) 二酸化炭素回収システムを備えた石炭焚きボイラシステム
CA2588540C (en) Method to condense and recover carbon dioxide (co2) from co2 containing gas streams
TW201213650A (en) Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
Rong et al. Thermoeconomic analysis on a cascade energy utilization system for compression heat in air separation units
CN114768488A (zh) 一种燃煤机组烟气二氧化碳捕集系统
CN115898578B (zh) 利用低温空气冷能燃气电站的碳捕集系统及运行方法
CN102052101B (zh) 用于改进igcc发电设施的性能的系统
JP5117431B2 (ja) 二酸化炭素回収型ガスタービンプラント
KR102623304B1 (ko) 냉각기, 공기 분리 시스템 및 관련 방법
CN216303278U (zh) 一种超临界压力下二氧化碳的直接液化捕集系统
JP2001141359A (ja) 空気分離装置
Liang et al. Energy consumption optimization of CO2 capture and compression in natural gas combined cycle power plant through configuration modification and process integration
CN118846739A (zh) 一种基于液氮洗涤方式对合成尾气分离装置及其方法
US10330381B2 (en) Plant for the liquefaction of nitrogen using the recovery of cold energy deriving from the evaporation of liquefied natural gas
CN113401903A (zh) 一种超临界压力下二氧化碳的直接液化捕集系统和方法
JP2024146410A (ja) 二酸化炭素回収システム装置、及び二酸化炭素回収方法
RU2575519C2 (ru) Интегрирование тепла при захвате со2
Utilizing et al. Postcombustion CO2 Capture for
EA040663B1 (ru) Система для обработки и охлаждения потока углеводородов

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20161116

C20 Patent right or utility model deemed to be abandoned or is abandoned