CN103441967B - Ofdm system channel estimation and signal detecting method based on basis expansion model - Google Patents
Ofdm system channel estimation and signal detecting method based on basis expansion model Download PDFInfo
- Publication number
- CN103441967B CN103441967B CN201310389937.8A CN201310389937A CN103441967B CN 103441967 B CN103441967 B CN 103441967B CN 201310389937 A CN201310389937 A CN 201310389937A CN 103441967 B CN103441967 B CN 103441967B
- Authority
- CN
- China
- Prior art keywords
- channel
- domain
- ofdm
- frequency
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title abstract description 6
- 125000004122 cyclic group Chemical group 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 16
- 239000011159 matrix material Substances 0.000 claims description 21
- 230000000694 effects Effects 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 4
- 230000009977 dual effect Effects 0.000 abstract description 3
- 238000010295 mobile communication Methods 0.000 abstract description 2
- 230000014509 gene expression Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005311 autocorrelation function Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Noise Elimination (AREA)
Abstract
基于基扩展模型的OFDM系统信道估计与信号检测方法,属于无线与移动通信技术领域。具体包括以下步骤:发送端发送OFDM信号、接收端信道建模、初始化、估计基扩展模型系数、信道均衡与信号检测、迭代、输出。接收端信道建模对接收端频域信号进行干扰和有用信息的分离,初始化假设无循环前缀限制,估计出基扩展模型系数并且检测得到当前发送数据符号,通过迭代求出符号间干扰频响以及循环前缀重构部分的频响,进而消除符号间干扰带来的影响。本发明提出的估计方法,一方面,可以估计时变性明显的信道,又能有效地消除多径时延引入的符号间干扰,完成对双选信道下OFDM系统的信道估计以及信号检测,提高系统性能。
The invention relates to an OFDM system channel estimation and signal detection method based on a base extension model, which belongs to the technical field of wireless and mobile communication. Specifically, the method includes the following steps: transmitting OFDM signal at the transmitting end, channel modeling at the receiving end, initialization, estimating base extension model coefficients, channel equalization and signal detection, iteration, and output. Channel modeling at the receiving end separates interference and useful information from the frequency domain signal at the receiving end. Initialization assumes that there is no cyclic prefix restriction, estimates the base expansion model coefficients and detects the current transmitted data symbols, and obtains the inter-symbol interference frequency response and The cyclic prefix reconstructs the frequency response of the part, thereby eliminating the impact of inter-symbol interference. The estimation method proposed by the present invention, on the one hand, can estimate the channel with obvious time variation, and can effectively eliminate the intersymbol interference introduced by the multipath time delay, and complete the channel estimation and signal detection of the OFDM system under the dual channel selection, and improve the system performance. performance.
Description
技术领域technical field
本发明属于无线与移动通信技术领域,具体涉及一种双选信道下基于基扩展模型循环前缀缺失的OFDM系统联合信道估计与信号检测算法,从频域角度出发,通过迭代进行符号间干扰消除和循环前缀的重构,很大程度上克服循环前缀缺失带来的符号间干扰影响,进而到达理想的信道估计与信号检测性能。The invention belongs to the technical field of wireless and mobile communication, and specifically relates to an OFDM system joint channel estimation and signal detection algorithm based on the lack of cyclic prefix of the base extension model under the double-selection channel. From the perspective of the frequency domain, the inter-symbol interference elimination and the iteration are carried out. The reconstruction of the cyclic prefix largely overcomes the influence of inter-symbol interference caused by the absence of the cyclic prefix, and then achieves ideal channel estimation and signal detection performance.
背景技术Background technique
在地面超高速移动环境中,信道快时变引起载波间干扰(Inter-CarrierInterference,ICI)和多径效应带来的符号间干扰(Inter-Symbol Interference,ISI)会破坏OFDM系统的传输特性,造成系统性能的迅速恶化。因此,在这样挑战下如何利用梳状导频进行有效的信道估计,提高系统抗干扰能力是未来无线通信传输系统的核心技术之一。In the ground ultra-high-speed mobile environment, inter-carrier interference (Inter-Carrier Interference, ICI) caused by fast time-varying channels and inter-symbol interference (Inter-Symbol Interference, ISI) caused by multipath effects will destroy the transmission characteristics of OFDM systems, resulting in Rapid deterioration of system performance. Therefore, under such challenges, how to use comb pilots for effective channel estimation and improve system anti-interference ability is one of the core technologies of future wireless communication transmission systems.
面对信道快时变引起载波间干扰(Inter-Carrier Interference,ICI)问题,当信道的归一化最大多普勒频移大于20%时,信道的每个可分离径上待估参数是一个OFDM符号的长度,即使信道只有一条可分离径,如果要估计单径的快变信道,也需要OFDM系统发端全部子载波都是导频,因此我们必须采用一种模型来等效快变信道。基扩展模型BEM(BasisExpansion Model)用相互正交的基函数逼近信道,使信道的每个可分离径上的待估计参数从一个OFDM符号的长度减小到基函数的个数,从而使估计参量大大减少。技术文献1(K.A.D.Teo and S.Ohno,Optimal MMSE finite parameter model for doubly-selective channels[C],in IEEE Global Telecommunications Conference,2005.GLOBECOM’05.,2005,6(5):3502–3507)采用DKL-BEM(Discrete Karhuen-Loeve BEM)来近似时变信道,这种模型利用信道的统计特性构造BEM基,把信道自相关函数的主特征向量作为基函数向量,这种模型具有较好的估计效果,但需要明确知道信道的统计特性。In the face of the Inter-Carrier Interference (ICI) problem caused by fast time-varying channels, when the normalized maximum Doppler shift of the channel is greater than 20%, the parameters to be estimated on each separable path of the channel are one The length of the OFDM symbol, even if the channel has only one separable path, if we want to estimate a single-path fast-changing channel, all subcarriers at the origin of the OFDM system are required to be pilots, so we must use a model to equivalent fast-changing channels. The basis expansion model BEM (Basis Expansion Model) approximates the channel with mutually orthogonal basis functions, so that the parameters to be estimated on each separable path of the channel are reduced from the length of one OFDM symbol to the number of basis functions, so that the estimated parameters decrease very much. Technical Document 1 (K.A.D.Teo and S.Ohno, Optimal MMSE finite parameter model for doubly-selective channels[C], in IEEE Global Telecommunications Conference, 2005.GLOBECOM'05., 2005, 6(5):3502–3507) adopted DKL-BEM (Discrete Karhuen-Loeve BEM) is used to approximate the time-varying channel. This model uses the statistical characteristics of the channel to construct the BEM basis, and uses the main eigenvector of the channel autocorrelation function as the basis function vector. This model has a better estimation effect, but requires explicit knowledge of the statistical properties of the channel.
面对信道多径效应带来的符号间干扰(Inter-Symbol Interference,ISI)问题,技术文献2(Dukhyun Kim;Stuber,G.L.Residual ISI cancellation for OFDM withapplication to HDTV broadcasting,IEEE Trans.Commun.,vol.16,no.8,pp.1590-1599,Oct.1998;及Cheol-Jin Park;Gi-Hong Im;Efficient Cyclic Prefix Reconstructionfor Coded OFDM Systems,IEEE Commun.lett.,vol.8,no.5,pp.274-276,May.2004)把其转化为无循环前缀保护的OFDM系统结构。残余符号间干扰消除算法(Residual ISIcancellation,RISIC)和循环前缀重构(Cyclic Prefix Reconstruction,CPR)算法能够有效的消除符号间干扰,达到对OFDM符号的有效检测。但是该方法是假设信道是慢变的情况下实现的。Facing the problem of Inter-Symbol Interference (ISI) caused by channel multipath effects, Technical Document 2 (Dukhyun Kim; Stuber, G.L. Residual ISI cancellation for OFDM with application to HDTV broadcasting, IEEE Trans.Commun., vol. 16, no.8, pp.1590-1599, Oct.1998; and Cheol-Jin Park; Gi-Hong Im; Efficient Cyclic Prefix Reconstruction for Coded OFDM Systems, IEEE Commun.lett., vol.8, no.5, pp .274-276, May.2004) transform it into OFDM system structure without cyclic prefix protection. Residual ISI cancellation algorithm (Residual ISIcancellation, RISIC) and cyclic prefix reconstruction (Cyclic Prefix Reconstruction, CPR) algorithm can effectively eliminate intersymbol interference and achieve effective detection of OFDM symbols. But this method is realized under the assumption that the channel is slowly changing.
以上可知,利用基扩展模型对快时变信道建模,可以有效地跟踪信道的时变性,而基于有效的符号间干扰消除和循环前缀的重构可以克服信道多径带来的ISI,但当信道呈现双选特性,也就是两者兼顾出现时,如何进行OFDM系统的信道估计与信号检测,至今还鲜有文献讨论,本发明就是基于此展开的。It can be seen from the above that using the base extension model to model fast time-varying channels can effectively track the time-varying nature of the channel, and based on effective inter-symbol interference cancellation and cyclic prefix reconstruction can overcome the ISI caused by channel multipath, but when The channel presents a dual-selection characteristic, that is, when both are considered, how to perform channel estimation and signal detection in an OFDM system has not been discussed in literature so far, and the present invention is based on this.
发明内容Contents of the invention
本发明目的是为了解决现有利用基扩展模型估计快变信道技术在向循环前缀缺失的OFDM系统应用时存在的问题,提出的一种基于基扩展模型的双选信道和信号前缀缺失情况下OFDM系统信道估计与信号检测方法。The purpose of the present invention is to solve the existing problems of using the base extension model to estimate the fast-changing channel technology when it is applied to the OFDM system with missing cyclic prefix. System channel estimation and signal detection methods.
为了实现上述目的,本发明的技术方案是:In order to achieve the above object, technical scheme of the present invention is:
基于基扩展模型的OFDM系统信道估计与信号检测方法,如图3、4所示,包括如下步骤:The OFDM system channel estimation and signal detection method based on the base extension model, as shown in Figures 3 and 4, includes the following steps:
步骤一:设当前OFDM系统发送端发送的导频和数据混合的频域OFDM符号为Xi,记为其中N表示OFDM符号的长度,频域OFDM符号Xi中一些确定位置的子载波分配导频,其它为数据子载波;则发送端当前发送的相应时域OFDM符号xi可记为且xi=FHXi,其中FH表示N点的IFFT变换矩阵,i表示第i个OFDM符号,即OFDM符号的索引号;Step 1: Set the frequency-domain OFDM symbols mixed with pilot and data sent by the sender of the current OFDM system as X i , denoted as Among them, N represents the length of the OFDM symbol, and some subcarriers with certain positions in the frequency domain OFDM symbol Xi are assigned pilots, and others are data subcarriers; then the corresponding time domain OFDM symbol Xi currently sent by the sender can be written as And x i =F H X i , where F H represents the IFFT transformation matrix of N points, and i represents the ith OFDM symbol, that is, the index number of the OFDM symbol;
步骤二:假设时域OFDM符号xi经快时变和多径效应叠加的双选信道后,接收端接收到的时域OFDM符号为 Step 2: Assuming that the time-domain OFDM symbol x i is double-selected through fast time-varying and multipath effect superimposition, the time-domain OFDM symbol received by the receiving end is
利用复指数基扩展模型描述快时变和多径效应叠加的双选信道h=[h0,h1,...,hl,...,hL],其中hl=[h0,l,h1,l,…,hn,l,…,hN-1,l]表示第l条径冲激响应,如果用hq(l)表示信道第l条径对应的BEM系数,bq表示基函数,则有:Using the complex exponent base extension model to describe the dual-choice channel h=[h 0 ,h 1 ,...,h l ,...,h L ], where h l =[h 0 ,l ,h 1,l ,…,h n,l ,…,h N-1,l ] represent the impulse response of the lth path, if h q (l) is used to represent the BEM coefficient corresponding to the lth path of the channel , b q represents the basis function, then there are:
其中,表示向上取整,fd表示最大多普勒频移、且fd=fcv/c,而fc表示OFDM系统载波的中心频率,v表示发送端和接收端之间的相对运动速度,c表示光速,Ts表示采样周期;in, Represents rounding up, f d represents the maximum Doppler frequency shift, and f d =f c v/c, and f c represents the center frequency of the OFDM system carrier, v represents the relative motion speed between the transmitting end and the receiving end, c represents the speed of light, T s represents the sampling period;
时域OFDM符号xi经快时变和多径效应叠加的双选信道后,接收端接收到的时域OFDM符号yi可表示为:After the time-domain OFDM symbol xi is double-selected by fast time-varying and multipath effects, the time-domain OFDM symbol y received by the receiving end can be expressed as:
其中,表示OFDM系统中循环前缀的长度大于信道的最大多径时延时接收端接收到第i个OFDM符号,代表前一个OFDM发送符号xi-1对当前OFDM接收符号yi的干扰,代表循环前缀的重构部分;in, Indicates that the length of the cyclic prefix in the OFDM system is greater than the maximum multipath delay of the channel and the receiving end receives the i-th OFDM symbol, Represents the interference of the previous OFDM transmitted symbol x i-1 on the current OFDM received symbol y i , represents the refactored part of the cyclic prefix;
将式子(20)变换到频域,则:Transform the formula (20) into the frequency domain, then:
步骤三:初始化;Step 3: Initialize;
设置迭代次数I=0,令这样 Set the number of iterations I = 0, let so
步骤四:估计相应的信道基扩展模型系数;Step 4: Estimating the corresponding channel base expansion model coefficients;
接收端信号Y中导频位置观测量Yp可以表示为:The pilot position observation Y p in the signal Y at the receiving end can be expressed as:
其中,Yp表示接收端导频位置处的频响,Pheqv表示导频产生的频响,DdSdheqv表示OFDM符号数据子载波对导频子载波的干扰部分,Wp表示接收端导频位置处的频域噪声;Among them, Y p represents the frequency response at the pilot position at the receiving end, Ph eqv represents the frequency response generated by the pilot, D d S d heqv represents the interference part of the OFDM symbol data subcarrier to the pilot subcarrier, and W p represents the receiving Frequency domain noise at the end pilot position;
利用LS估计准则对heqv进行估计,则估计方程为:Use the LS estimation criterion to estimate heqv , then the estimation equation is:
考虑对矩阵P求逆运算的准确性,常常加上一个小的扰动,其中α为扰动因子。将估计得到的BEM系数代入等式(15),即可求出信道时域冲激响应 Considering the accuracy of the inverse operation of the matrix P, a small disturbance is often added, where α is the disturbance factor. will estimate the resulting BEM coefficients Substituting into equation (15), the channel time-domain impulse response can be obtained
步骤五:信道均衡与信号检测;Step 5: Channel equalization and signal detection;
利用估计得到的信道时域冲激响应构造矩阵求出信道频率响应矩阵利用MMSE准则构造第i帧OFDM数据单元的频域均衡器有其中,σ2是噪声方差,IN是N×N的单位矩阵,然后检测得到发端当前频域符号矢量 Using the estimated channel time-domain impulse response construct matrix Find the Channel Frequency Response Matrix Using the MMSE criterion to construct the frequency domain equalizer of the i-th frame OFDM data unit has Among them, σ 2 is the noise variance, I N is the identity matrix of N×N, and then the current frequency domain symbol vector of the sending end is detected
步骤六:判断;令:Step 6: Judgment; order:
I=I+1 (10)I=I+1 (10)
如果I≤M,M为取值范围为自然数的迭代次数,执行步骤七,否则,转到步骤八;If I≤M, M is the number of iterations whose value range is a natural number, execute step 7, otherwise, go to step 8;
步骤七:迭代;Step seven: iteration;
利用估计得到的信道时域冲激响应构造矩阵再加上前一时刻估计得到的频域符号矢量和当前频域符号矢量时域代入式子(25)(26),求出和后更新等式(24),然后转到步骤四;Using the estimated channel time-domain impulse response construct matrix Plus the frequency domain symbol vector estimated at the previous moment and the current frequency-domain sign vector Substituting the time domain into the formula (25)(26) to obtain with After updating equation (24), go to step four;
步骤八:检测得到发端当前频域符号矢量计算最后的估计量 Step 8: Detect and obtain the current frequency-domain symbol vector of the transmitting end Calculate the final estimator
本发明的有益效果是:The beneficial effects of the present invention are:
本发明提出的一种基于基扩展模型的双选信道和信号前缀缺失情况下OFDM系统信道估计与信号检测方法,利用基扩展模型,从频域角度出发,分析符号间干扰部分和循环前缀的重构部分引入的频域响应,并通过迭代很大程度上克服循环前缀缺失带来的ISI影响,进而到达理想的信道估计和信号检测性能。The present invention proposes a method for channel estimation and signal detection of an OFDM system based on a base-spreading model in the case of dual channel selection and signal prefix absence, using the base-spreading model to analyze the inter-symbol interference and the repetition of the cyclic prefix from the perspective of the frequency domain The frequency domain response introduced by the structural part, and through iteration to a large extent overcome the ISI impact caused by the lack of cyclic prefix, and then achieve the ideal channel estimation and signal detection performance.
附图说明Description of drawings
图1为本发明发送端处理流程示意图。FIG. 1 is a schematic diagram of the processing flow at the sending end of the present invention.
图2为本发明采用的时域数据结构模型示意图。FIG. 2 is a schematic diagram of a time-domain data structure model adopted in the present invention.
图3为本发明接收端处理流程示意图。FIG. 3 is a schematic diagram of a processing flow at the receiving end of the present invention.
图4为本发明具体算法步骤流程示意图。Fig. 4 is a schematic flow chart of specific algorithm steps of the present invention.
具体实施方式detailed description
基于基扩展模型的OFDM系统信道估计与信号检测方法,如图3、4所示,包括如下步骤:The OFDM system channel estimation and signal detection method based on the base extension model, as shown in Figures 3 and 4, includes the following steps:
步骤一:设当前OFDM系统发送端发送的导频和数据混合的频域OFDM符号为Xi,记为其中N表示OFDM符号的长度,频域OFDM符号Xi中一些确定位置的子载波分配导频,其它为数据子载波;则发送端当前发送的相应时域OFDM符号xi可记为且xi=FHXi,其中FH表示N点的IFFT变换矩阵,i表示第i个OFDM符号,即OFDM符号的索引号。Step 1: Set the frequency-domain OFDM symbols mixed with pilot and data sent by the sender of the current OFDM system as X i , denoted as Among them, N represents the length of the OFDM symbol, and some subcarriers with certain positions in the frequency domain OFDM symbol Xi are assigned pilots, and others are data subcarriers; then the corresponding time domain OFDM symbol Xi currently sent by the sender can be written as And x i =F H X i , where F H represents the IFFT transformation matrix of N points, and i represents the ith OFDM symbol, that is, the index number of the OFDM symbol.
步骤二:假设时域OFDM符号xi经快时变和多径效应叠加的双选信道后,接收端接收到的时域OFDM符号为由于发送端时域OFDM符号经过双选信道后,接收端接收到的时域OFDM符号将会受到来自相邻OFDM符号的符号间干扰(ISI,如图2(b)所示的灰色阴影部分),所以:Step 2: Assuming that the time-domain OFDM symbol x i is double-selected through fast time-varying and multipath effect superimposition, the time-domain OFDM symbol received by the receiving end is Since the time-domain OFDM symbols at the transmitting end pass through dual channel selection, the time-domain OFDM symbols received at the receiving end will be subject to inter-symbol interference (ISI, as shown in the gray shaded part in Figure 2(b)) from adjacent OFDM symbols. ,so:
其中,L表示多径信道的路径数目,l表示信道第l条路径,表示第i个OFDM符号在第n采样时刻第l条路径的冲激响应,<n-l>N表示(n-l)对N求余数,x<n-l>表示第n-l采样时刻的采样输出值,表示第n采样时刻的方差为σ2的零均值时域加性高斯白噪声。Among them, L represents the number of paths of the multipath channel, and l represents the lth path of the channel, Indicates the impulse response of the i-th OFDM symbol at the n-th sampling time of the l-th path, <nl>N means (nl) to find the remainder of N, x <nl> means the sampling output value at the nl-th sampling time, Represents zero-mean time-domain additive white Gaussian noise with variance σ 2 at the nth sampling moment.
将式(11)表示成向量形式,有:Expressing formula (11) in vector form, we have:
其中表达式为:in The expression is:
利用复指数基扩展模型描述快时变和多径效应叠加的双选信道h=[h0,h1,...,hl,...,hL],其中hl=[h0,l,h1,l,…,hn,l,…,hN-1,l]表示第l条径冲激响应,如果用hq(l)表示信道第l条径对应的BEM系数,bq表示基函数,则有:Using the complex exponent base extension model to describe the dual-choice channel h=[h 0 ,h 1 ,...,h l ,...,h L ], where h l =[h 0 ,l ,h 1,l ,…,h n,l ,…,h N-1,l ] represent the impulse response of the lth path, if h q (l) is used to represent the BEM coefficient corresponding to the lth path of the channel , b q represents the basis function, then there are:
其中,表示向上取整,fd表示最大多普勒频移、且fd=fcv/c,而fc表示OFDM系统载波的中心频率,v表示发送端和接收端之间的相对运动速度,c表示光速,Ts表示采样周期。in, Represents rounding up, f d represents the maximum Doppler frequency shift, and f d =f c v/c, and f c represents the center frequency of the OFDM system carrier, v represents the relative motion speed between the transmitting end and the receiving end, c represents the speed of light, and T s represents the sampling period.
现假设OFDM系统中循环前缀的长度大于信道的最大多径时延,这种情况下接收端接收到第i个OFDM符号为表示为:Now assume that the length of the cyclic prefix in the OFDM system is greater than the maximum multipath delay of the channel. In this case, the i-th OFDM symbol received by the receiving end is Expressed as:
这里表示时域信道矩阵,由时变信道冲激响应系数循环移位构成,可以表示为:here Represents the time-domain channel matrix, by the time-varying channel impulse response coefficient The cyclic shift composition can be expressed as:
比较等式(12)和(18)可知:Comparing equations (12) and (18) shows that:
其中,in,
这里,代表前一个OFDM发送符号xi-1对当前OFDM接收符号yi的干扰,代表循环前缀的重构部分。here, Represents the interference of the previous OFDM transmitted symbol x i-1 on the current OFDM received symbol y i , Refactored part representing a cyclic prefix.
将式子(18)、(20)变换到频域,则频域上各分量表达式为:Transform the formulas (18) and (20) into the frequency domain, then the expressions of each component in the frequency domain are:
联立式子(15)和(19)得:Simultaneous formulas (15) and (19) get:
其中,Hq是由组成的循环对称矩阵,其形式为:where H q is given by The cyclic symmetric matrix composed of is of the form:
步骤三:初始化。Step 3: Initialize.
设置迭代次数I=0,令这样 Set the number of iterations I = 0, let so
步骤四:估计相应的信道基扩展模型系数。Step 4: Estimate the corresponding channel base expansion model coefficients.
将式(27)代入(23),有:Substituting formula (27) into (23), we have:
其中,FL代表FFT变换矩阵F的前L列。Among them, FL represents the first L columns of the FFT transformation matrix F.
为了方便表示,省略i上标,接收端信号Y中导频位置观测量Yp可以表示为:For the convenience of expression, the i superscript is omitted, and the pilot position observation Y p in the signal Y at the receiving end can be expressed as:
其中,Yp表示接收端导频位置处的频响,Pheqv表示导频产生的频响,DdSdheqv表示OFDM符号数据子载波对导频子载波的干扰部分,Wp表示接收端导频位置处的频域噪声;这里:Among them, Y p represents the frequency response at the pilot position at the receiving end, Ph eqv represents the frequency response generated by the pilot, D d S d heqv represents the interference part of the OFDM symbol data subcarrier to the pilot subcarrier, and W p represents the receiving Frequency-domain noise at the end pilot locations; here:
heqv=[h0 T,h1 T,...,hq T,...hQ T]T (34)h eqv =[h 0 T ,h 1 T ,...,h q T ,...h Q T ] T (34)
hq=[hq(0),hq(1)...,hq(L)]T (35)h q = [h q (0), h q (1)..., h q (L)] T (35)
类似地,可以写出Dd、Sd的表示式,把导频子载波位置的索引号p变成数据子载波位置的索引号d即可。Similarly, the expressions of D d and S d can be written, and the index number p of the position of the pilot subcarrier is changed to the index number d of the position of the data subcarrier.
利用LS估计准则对heqv进行估计,则估计方程为:Use the LS estimation criterion to estimate heqv , then the estimation equation is:
考虑对矩阵P求逆运算的准确性,常常加上一个小的扰动,其中α为扰动因子。将估计得到的BEM系数代入等式(15),即可求出信道时域冲激响应 Considering the accuracy of the inverse operation of the matrix P, a small disturbance is often added, where α is the disturbance factor. will estimate the resulting BEM coefficients Substituting into equation (15), the channel time-domain impulse response can be obtained
步骤五:信道均衡与信号检测。Step five: channel equalization and signal detection.
利用估计得到的信道时域冲激响应构造矩阵求出信道频率响应矩阵利用MMSE准则构造第i帧OFDM数据单元的频域均衡器有其中,σ2是噪声方差,IN是N×N的单位矩阵,然后检测得到发端当前频域符号矢量 Using the estimated channel time-domain impulse response construct matrix Find the Channel Frequency Response Matrix Using the MMSE criterion to construct the frequency domain equalizer of the i-th frame OFDM data unit has Among them, σ 2 is the noise variance, I N is the identity matrix of N×N, and then the current frequency domain symbol vector of the sending end is detected
步骤六:判断。Step Six: Judgment.
I=I+1 (37)I=I+1 (37)
如果I≤M,执行步骤七,否则,转到步骤八If I≤M, go to step 7, otherwise, go to step 8
步骤七:迭代。Step Seven: Iterate.
利用估计得到的信道时域冲激响应构造矩阵再加上前一时刻估计得到的频域符号矢量和当前频域符号矢量时域代入式子(25)(26),求出和后更新等式(24),然后转到步骤四。Using the estimated channel time-domain impulse response construct matrix Plus the frequency domain symbol vector estimated at the previous moment and the current frequency-domain sign vector Substituting the time domain into the formula (25)(26), to obtain with After updating equation (24), go to step four.
步骤八:检测得到发端当前频域符号矢量计算最后的估计量 Step 8: Detect and obtain the current frequency-domain symbol vector of the transmitting end Calculate the final estimator
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310389937.8A CN103441967B (en) | 2013-08-31 | 2013-08-31 | Ofdm system channel estimation and signal detecting method based on basis expansion model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310389937.8A CN103441967B (en) | 2013-08-31 | 2013-08-31 | Ofdm system channel estimation and signal detecting method based on basis expansion model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103441967A CN103441967A (en) | 2013-12-11 |
CN103441967B true CN103441967B (en) | 2017-03-15 |
Family
ID=49695633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310389937.8A Expired - Fee Related CN103441967B (en) | 2013-08-31 | 2013-08-31 | Ofdm system channel estimation and signal detecting method based on basis expansion model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103441967B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104158774B (en) * | 2014-08-31 | 2017-05-31 | 电子科技大学 | A kind of multi-OFDM symbol method of estimation |
DE102015107080B3 (en) * | 2015-05-06 | 2016-08-25 | Intel IP Corporation | Methods and apparatus for channel estimation for mobile systems of insufficient cyclic prefix length |
CN105227505B (en) * | 2015-10-10 | 2018-06-05 | 上海交通大学 | A kind of more symbol combination channel estimating methods under high-speed mobile environment |
CN105472735B (en) * | 2015-12-10 | 2018-08-21 | 成都希盟泰克科技发展有限公司 | A kind of time delay evaluated error compensation method based on the positioning of the mobile terminals LTE |
CN105471802B (en) * | 2016-01-12 | 2018-10-16 | 上海工程技术大学 | Comb Pilot ofdm system receiver |
CN107018101A (en) * | 2017-03-28 | 2017-08-04 | 西安电子科技大学 | Based on the varying Channels method of estimation for simplifying basis expansion model |
CN108667524B (en) * | 2017-03-31 | 2021-02-23 | 华为技术有限公司 | Equalization method and related device for anti-multipath effect in visible light communication |
CN107070821B (en) * | 2017-04-26 | 2020-05-15 | 广西师范大学 | Base extension model and double-selection channel estimation method |
CN107294616B (en) * | 2017-06-12 | 2021-03-23 | 西北工业大学 | A Doppler Diversity Communication Method for Double-Expanded Underwater Acoustic Channels Based on Basis-Expanded Model |
CN108768566A (en) * | 2018-05-30 | 2018-11-06 | 重庆大学 | A kind of BEM channel estimation methods based on Wiener filtering |
CN111181879B (en) * | 2020-01-03 | 2021-05-28 | 西安交通大学 | A Time-varying Channel Equalization Method for Anti-jamming Based on Adaptive Basis Unfolding |
CN111786921B (en) * | 2020-06-01 | 2023-04-07 | 中国电子科技集团公司第七研究所 | Aviation communication system base extension channel estimation method based on prior time delay information |
CN112152664B (en) * | 2020-09-25 | 2021-07-27 | 中国电子科技集团公司第五十四研究所 | Anti-multipath anti-interference signal sending method based on time division multiple access |
CN115022135B (en) * | 2022-07-15 | 2023-10-20 | 北京理工大学 | AmBC-based dual-selection channel LMMSE estimation and ML detection method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101741775A (en) * | 2009-12-22 | 2010-06-16 | 上海大学 | Single-frequency OFDM time-varying channel estimation method based on Taylor expansion |
CN102790746A (en) * | 2012-08-08 | 2012-11-21 | 电子科技大学 | Channel estimation method for OFDM (orthogonal frequency division multiplexing) system |
CN102801682A (en) * | 2012-08-08 | 2012-11-28 | 电子科技大学 | Signal detection method of OFDM (Orthogonal Frequency Division Multiplexing) system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010096329A2 (en) * | 2009-02-18 | 2010-08-26 | Massachusetts Institute Of Technology | Method and apparatus for synchronizing a wireless communication system |
-
2013
- 2013-08-31 CN CN201310389937.8A patent/CN103441967B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101741775A (en) * | 2009-12-22 | 2010-06-16 | 上海大学 | Single-frequency OFDM time-varying channel estimation method based on Taylor expansion |
CN102790746A (en) * | 2012-08-08 | 2012-11-21 | 电子科技大学 | Channel estimation method for OFDM (orthogonal frequency division multiplexing) system |
CN102801682A (en) * | 2012-08-08 | 2012-11-28 | 电子科技大学 | Signal detection method of OFDM (Orthogonal Frequency Division Multiplexing) system |
Also Published As
Publication number | Publication date |
---|---|
CN103441967A (en) | 2013-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103441967B (en) | Ofdm system channel estimation and signal detecting method based on basis expansion model | |
CN103095639B (en) | Orthogonal frequency division multiplexing (OFDM) underwater acoustic communication parallel iterative inter-carrier interference (ICI) elimination method | |
Ma et al. | A low complexity MMSE for OFDM systems over frequency-selective fading channels | |
CN103107969B (en) | Incremental iterative time-varying channel evaluation and inter carrier interference (ICI) elimination method of fast orthogonal frequency division multiplexing (OFDM) system | |
CN103491046B (en) | The doppler spread processing method of underwater sound high speed ofdm communication | |
CN107332797B (en) | Channel estimation method in power line OFDM communication system | |
CN105337906B (en) | Channel estimation methods and device | |
CN103051578B (en) | With the iteration error propagation judgement OFDM channel estimation method that ICI eliminates | |
CN103873406A (en) | Inter-frame interference elimination method used for underwater sound orthogonal frequency-division multiplexing communication system | |
CN103281272B (en) | Based on the ofdm system signal detecting method of BEM under Cyclic Prefix disappearance | |
CN104539562A (en) | MIMO-OFDM wideband HF channel estimation method | |
CN102790746B (en) | Channel estimation method for OFDM (orthogonal frequency division multiplexing) system | |
CN102413080B (en) | Method for estimating channel in high-speed moving TDD-LTE (time division duplex-long time evolution) uplink | |
CN107026804A (en) | Channel estimation methods based on exponential smoothing in MIMO ofdm systems | |
CN107592276A (en) | Ultrahigh speed mobile environment LTE V2V channel estimation and equalization methods | |
CN102647372B (en) | Channel estimating method | |
CN102801682B (en) | Signal detection method of OFDM (Orthogonal Frequency Division Multiplexing) system | |
CN113055318B (en) | Channel estimation method | |
CN102045290A (en) | Gray modeling-based OFDM narrow-band slow-fading slowly time-varying channel estimation method | |
CN105610746A (en) | Doubly-selective channel estimation method based on V-OFDM (Vector-Orthogonal Frequency Division Multiplexing) | |
CN104348765B (en) | Channel estimation methods | |
Sheng et al. | A BEM method of channel estimation for OFDM systems in high-speed train environment | |
CN104158774B (en) | A kind of multi-OFDM symbol method of estimation | |
CN104301263B (en) | A kind of mostly band UWB system low complexity channel estimation method and device | |
Song et al. | Joint channel estimation and signal detection for the OFDM system without cyclic prefix over doubly-selective channels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170315 Termination date: 20200831 |
|
CF01 | Termination of patent right due to non-payment of annual fee |