[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103399332B - A kind of iHCO of utilization telstar realizes the method for worldwide navigation location - Google Patents

A kind of iHCO of utilization telstar realizes the method for worldwide navigation location Download PDF

Info

Publication number
CN103399332B
CN103399332B CN201310325604.9A CN201310325604A CN103399332B CN 103399332 B CN103399332 B CN 103399332B CN 201310325604 A CN201310325604 A CN 201310325604A CN 103399332 B CN103399332 B CN 103399332B
Authority
CN
China
Prior art keywords
msubsup
msub
ihco
user terminal
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310325604.9A
Other languages
Chinese (zh)
Other versions
CN103399332A (en
Inventor
马利华
艾国祥
崔君霞
吕中林
马冠一
吴京华
苏蓬
古博宇
经姚翔
杨旭海
施浒立
蔡贤德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apt Satellite Co ltd
Sino Satellite Communications Co ltd
National Time Service Center of CAS
National Astronomical Observatories of CAS
Original Assignee
Apt Satellite Co ltd
Sino Satellite Communications Co ltd
National Time Service Center of CAS
National Astronomical Observatories of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apt Satellite Co ltd, Sino Satellite Communications Co ltd, National Time Service Center of CAS, National Astronomical Observatories of CAS filed Critical Apt Satellite Co ltd
Priority to CN201310325604.9A priority Critical patent/CN103399332B/en
Publication of CN103399332A publication Critical patent/CN103399332A/en
Application granted granted Critical
Publication of CN103399332B publication Critical patent/CN103399332B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention discloses a kind of method that the iHCO of utilization telstar realizes worldwide navigation location, the method comprises the following steps: step 1, utilize many iHCO telstars composition navigator fix constellations; Step 2, aeronautical ground radio station adopt Pseudo-Random Noise Code to every up navigation signal of iHCO telstar, the navigation signal that every iHCO communication satellite broadcasting aeronautical ground radio station is up; Step 3, user terminal receive the navigation signal of many iHCO communication satellite broadcastings and demodulate navigation message and wide area enhancing information, and calculate user terminal to every iHCO telstar measurement pseudorange; Step 4, user terminal are measured the position coordinates of pseudorange to user terminal according to user terminal to every iHCO telstar and are resolved, and finally obtain the accurate coordinate of user terminal location.The present invention can realize the satellite navigation location of Global coverage.

Description

Method for realizing global navigation positioning by iHCO communication satellite
Technical Field
The invention relates to a satellite navigation positioning technology, in particular to a method for realizing global navigation positioning by using iHCO communication satellites, which is suitable for a communication satellite navigation positioning system.
Background
In 2002, a satellite navigation and positioning system based on communication satellites is invented in the leaders of auspicious academy of Chinese sciences (patent application number: CN200410046064.1, the name of the invention is a transponder satellite communication navigation and positioning system, and the inventor obtains authorization from 29 th of 7 th month in 2009, namely Ainational auspicious, Shuihuli, Wuhaitao, Yanyi, Liriobijing, Huimeghui, Lishirigo, Guogue and Chuaixiansde). The patent application uses the communication frequency points on the communication satellite as navigation, and creates a new start of expanding full-frequency communication into full-frequency navigation. The geosynchronous orbit communication satellite at the end of the service life adopts the inclined orbit operation, namely, only the orbit position of the satellite in the east-west direction is kept, the communication satellite is allowed to drift in the north-south direction, and under the perturbation action of the sun-moon gravitation, the communication satellite drifts into the inclined geosynchronous orbit satellite with a small inclination angle. The operation of inclining the orbit can greatly prolong the service life of the communication satellite in the orbit, and the integration of navigation and communication can be realized by using transponder resources on the communication satellite (patent application number: CN200610055909.2, the name of the invention is a method for changing an retired satellite into a small-inclination angle synchronous navigation satellite, and the inventor obtains authorization from 6, 3 days in 2009. The ground navigation station adopts a pseudo-random noise code to carry three paths of navigation signals up to each communication satellite, each communication satellite broadcasts the three paths of navigation signals up to the ground navigation station, the user terminal receives the navigation signals to obtain the orbit position of each communication satellite, the pseudo-range measurement and the carrier phase measurement of three frequencies from each communication satellite to the user terminal are realized, and a rapid and high-precision new navigation positioning system can be realized in relation to the inside (the patent application number is CN200910131310.6, the invention name is a combination method of the three-frequency code wave pseudo-range and the carrier phase in satellite navigation positioning, and the inventor is informed in auspicious, Marigua, Shikuui, Lishirigo, Wuhaitao, Biyujing, Maguanyi, Suxiyan and Lixiahui, and obtains authorization on 17.2011). Meanwhile, each communication satellite is subjected to pseudo-range measurement and Doppler frequency shift measurement, the user terminal can be constrained to the circumference of the bottom surface of a cone, and the navigation and positioning of the user terminal can be realized by utilizing the pseudo-range measurement values and the Doppler frequency shift measurement values of more than two (including two) communication satellites (application number: CN201110164385.1, the name of the invention: a positioning method combining Doppler speed measurement in satellite navigation, the inventor: Marihua, Chinese auspicious and Suihufu). Each communication satellite simultaneously descends a plurality of navigation carriers, so that equivalent pseudo-range measurement errors of the communication satellite can be effectively reduced, and the navigation positioning precision of a user terminal is improved (application number: CN201110228917.3, the name of the invention is a multi-carrier positioning method in satellite navigation, and the inventor is Marihua, auspicious and Quihifu). If the number of carriers in each satellite downlink is different, a brand new scientific explanation is made on the positioning accuracy of the user terminal multiplied by the multiple carrier frequency points from a physical level, and the positioning accuracy of the user terminal can be multiplied by the multiple carrier frequency point resources in a multi-frequency satellite navigation positioning system (application number: CN201210090864.8, the invention name: a method for multiplying the positioning accuracy in the satellite navigation positioning system, the inventor: auspicious, Malihua, Shilii, Quihai).
Communication satellites in high inclined circle Orbit (iHCO) orbits that are about 200 kilometers higher than GeoSynchronous Orbit (GSO) constitute a navigation and positioning constellation. The iHCO communication satellites drift towards the west relative to the earth, the ground navigation station adopts pseudo-random noise codes to carry out uplink navigation telegraph text and wide area enhancement information on each iHCO communication satellite, each iHCO communication satellite broadcasts an uplink navigation signal of the ground navigation station, the user terminal receives the navigation signal, pseudo-range measurement from the iHCO communication satellites to the user terminal is achieved, an equation set is built by utilizing pseudo-range observed quantities of not less than 4 iHCO communication satellites, and accurate coordinates of the position of the user terminal are calculated through iterative calculation. And forming a navigation positioning constellation by using the iHCO communication satellite to realize a global-coverage navigation positioning system.
Disclosure of Invention
The invention aims to provide a new navigation positioning system for realizing global coverage by using iHCO communication satellites. Communication satellites in a high inclined circle Orbit (iHCO) track which is 200 kilometers higher than a GeoSynchronous Orbit (GSO) form a navigation and positioning constellation, and a navigation and positioning system with global coverage can be formed. The ground navigation station adopts pseudo-random noise codes to carry out uplink navigation messages and wide area enhancement information on each iHCO communication satellite, each iHCO communication satellite broadcasts uplink navigation signals of the ground navigation station, the user terminal receives the navigation signals and demodulates the navigation messages and the wide area enhancement information, the navigation messages are used for obtaining the orbit position of the iHCO communication satellite, the wide area enhancement information is used for correcting ionosphere time delay and troposphere time delay errors, and pseudo-range measurement from the iHCO communication satellite to the user terminal is achieved. And (3) constructing an equation set by utilizing pseudo-range observation error equations of not less than 4 iHCO communication satellites, and calculating the accurate coordinates of the position of the user terminal through iterative calculation.
In order to achieve the above object, the present invention provides a method for implementing global navigation positioning by using iHCO communication satellites, comprising the steps of:
step 1, forming a navigation positioning constellation by using a plurality of iHCO communication satellites;
step 2, the ground navigation station adopts pseudo-random noise codes to carry out uplink navigation signals on each iHCO communication satellite, and each iHCO communication satellite broadcasts the uplink navigation signals of the ground navigation station;
step 3, the user terminal receives navigation signals broadcasted by a plurality of iHCO communication satellites, demodulates navigation messages and wide area augmentation information, and calculates to obtain a measurement pseudo-range from the user terminal to each iHCO communication satellite;
and 4, resolving the position coordinate of the user terminal by the user terminal according to the measured pseudo range from the user terminal to each iHCO communication satellite, and finally obtaining the accurate coordinate of the position of the user terminal.
The method can realize the global navigation positioning of the communication satellite.
Drawings
FIG. 1 is a diagram of a navigational positioning system for global coverage using iHCO communication satellites in accordance with the present invention;
fig. 2 is a flow chart of a navigation positioning method for realizing global coverage by using an iHCO communication satellite in the invention.
Detailed Description
In order that the objects, technical solutions and advantages of the present invention will become more apparent, the present invention will be further described in detail with reference to the accompanying drawings in conjunction with the following specific embodiments.
Fig. 1 shows a schematic structural diagram of a navigation positioning system for realizing global coverage by using iHCO communication satellites according to the present invention. As shown in fig. 1, the system includes: navigation positioning constellation, ground navigation station and user terminal.
The navigation positioning constellation is composed of a plurality of iHCO communication satellites in high-inclination circular orbits higher than the geosynchronous orbit by a certain height, the ground navigation station adopts pseudo-random noise codes to transmit navigation signals comprising navigation messages and wide area enhancement information to each iHCO communication satellite in an uplink mode, and each iHCO communication satellite broadcasts the navigation signals transmitted by the ground navigation station in an uplink mode. The user terminal receives the navigation signal broadcasted by the iHCO communication satellite and demodulates the navigation message and the wide area enhancement information, the user terminal obtains the orbit position of the iHCO communication satellite by using the navigation message, and corrects the ionosphere time delay and the troposphere time delay error by using the wide area enhancement information, so that the pseudo-range measurement from the visual iHCO communication satellite to the user terminal is realized. The user terminal can be a fixed terminal or a mobile terminal, and the fixed terminal is fixed satellite receiving equipment; the mobile terminal is a vehicle-mounted, ship-mounted or handheld receiving device.
The user terminal carries out iterative calculation on the position coordinate of the user terminal according to the pseudo-range measurement value of at least 4 visual iHCO communication satellites and the satellite orbit position, and finally the accurate coordinate of the position of the user terminal is obtained.
Fig. 2 shows a flow chart of a navigation positioning method for realizing global coverage by using an iHCO communication satellite according to the present invention. As shown in fig. 2, the method specifically includes the following steps:
step 1, forming a navigation positioning constellation by utilizing a plurality of communication satellites in a high inclined circle Orbit (iHCO) which is 200 kilometers higher than a GeoSynchronous Orbit (GSO) Orbit;
step 2, the ground navigation station adopts pseudo-random noise codes to transmit navigation signals including navigation messages and wide area enhancement information to each iHCO communication satellite in an uplink mode, and each iHCO communication satellite broadcasts the navigation signals transmitted by the ground navigation station in the uplink mode;
the pseudo-random noise codes realize identification of iHCO communication satellites, and each iHCO communication satellite corresponds to a group of fixed pseudo-random noise codes; after receiving the pseudo random code, the user terminal measures the transmission time of the navigation signal from the iHCO communication satellite to the user terminal by utilizing the autocorrelation and cross-correlation characteristics of the pseudo random noise code, and obtains the measured pseudo range from the iHCO communication satellite to the user terminal by utilizing the transmission time multiplied by the electric wave transmission speed, namely the light speed; the navigation message comprises satellite system time, clock correction parameters of the iHCO communication satellite, an orbit position of the iHCO communication satellite and satellite health conditions; the wide-area augmentation information includes orbit correction data of the iHCO communication satellite, ionosphere delay model parameters, troposphere delay model parameters and integrity information.
M (M is more than or equal to 4) visible iHCO communication satellites in the satellite navigation positioning system simultaneously downlink navigation signals.
Step 3, the user terminal receives the navigation signals broadcast by the iHCO communication satellite, demodulates the navigation messages and the wide area enhancement information, and calculates to obtain the measurement pseudo-range from the user terminal to each iHCO communication satellite;
in this step, the obtaining, by the user terminal, a measured pseudorange from each iHCO communication satellite to the user terminal according to the pseudo random noise code further includes:
at the measuring time tkThe user terminal obtains the iHCO communication satellite S through measurementjMeasured pseudoranges to user terminalsThe method can be obtained by multiplying the transmission time of a navigation signal from an iHCO communication satellite to a user terminal, which is measured according to the autocorrelation and cross-correlation characteristics of pseudo-random code noise codes, by the electric wave transmission speed, namely the light speed, wherein M (M is more than or equal to 4) is the number of the iHCO communication satellites;
establishing the iHCO communication satellite SjMeasured pseudoranges to user terminalsThe pseudo-range observation equation of (1) is expressed as follows:
<math> <mrow> <msubsup> <mi>&rho;</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>X</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>Y</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>Z</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> </math>
<math> <mrow> <mo>+</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>c&Delta;</mi> <msup> <mi>t</mi> <mi>j</mi> </msup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>n</mi> </msub> <mi>j</mi> </msubsup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>P</mi> </msub> <mi>j</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula,to measure pseudoranges, as known quantities; (X)k,Yk,Zk) For a user terminal to be positioned at tkThe exact coordinates of the moment (amount to be solved); (X)j,Yj,Zj) For iHCO communication satellite SjPosition coordinates when transmitting the navigation signal; bkThe equivalent distance (amount to be solved) of the clock error of the user terminal; Δ tjParameters are corrected for the clock of the iHCO communication satellite and can be obtained from a navigation message sent by the iHCO communication satellite; c is the speed of the vacuum light,in order to achieve the ionospheric time delay,and the ionosphere time delay and the troposphere time delay are obtained according to the ionosphere model parameters and the troposphere delay model parameters in the wide area enhancement information.
Consider the observed random error asAn error equation for the pseudorange observations is established, as follows:
<math> <mrow> <msubsup> <mi>v</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&rho;</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>-</mo> <msup> <mrow> <mo>[</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>X</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>Y</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>Z</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow> </math>
<math> <mrow> <mo>-</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>c&Delta;</mi> <msup> <mi>t</mi> <mi>j</mi> </msup> <mo>-</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>n</mi> </msub> <mi>j</mi> </msubsup> <mo>-</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>P</mi> </msub> <mi>j</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
and 4, the user terminal carries out iterative calculation on the position coordinate of the user terminal according to the pseudo-range measurement value from the user terminal to at least 4 visible iHCO communication satellites and the satellite orbit position, and finally the accurate coordinate of the position of the user terminal is obtained.
The step 4 further comprises the following steps:
step 4.1, when the user terminal is positioned and calculated, firstly setting an initial value of the position coordinate of the user terminal, namely the approximate position coordinate (X) of the user terminalk 0,Yk 0,Zk 0);
Step 4.2, performing 1-order Taylor series expansion on the pseudo-range observation error equation shown in the formula (2) to obtain a linearized form of the pseudo-range observation error equation containing the position coordinate correction step length of the user terminal:
<math> <mrow> <msubsup> <mi>v</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>l</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>m</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Z</mi> <mi>k</mi> </msub> </mrow> </math>
<math> <mrow> <mo>-</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>&rho;</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>-</mo> <msup> <msub> <mi>R</mi> <mi>k</mi> </msub> <mi>j</mi> </msup> <mo>+</mo> <mi>c&Delta;</mi> <msup> <mi>t</mi> <mi>j</mi> </msup> <mo>-</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>n</mi> </msub> <mi>j</mi> </msubsup> <mo>-</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>P</mi> </msub> <mi>j</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, Xk、YkAnd ZkRespectively as the position coordinates X of the user terminalk、YkAnd ZkThe step size of the correction of (2),for gross location coordinates of user terminals to iHCO communication satellite SjDirection cosine of (c):
l k j = X j - X k i R k j , m k j = Y j - Y k i R k j , n k j = Z j - Z k i R k j - - - ( 4 )
wherein (X)k i,Yk i,Zk i) The approximate location coordinates of the user terminal obtained for the previous iteration, which for the first iteration has a value of (X)k 0,Yk 0,Zk 0);Rk jFor gross location coordinates of user terminals to iHCO communication satellite SjThe distance of (c):
Rk j=[(Xj-Xk i)2+(Yj-Yk i)2+(Zj-Zk i)2]1/2 (5)
position coordinates (X) of iHCO communication satellite according to navigation signal transmission timej,Yj,Zj) The approximate position coordinate of the user terminal is calculated to the iHCO communication satellite S by the equations (4) and (5) using the approximate position coordinate of the user terminaljDirection cosine ofAnd rough location coordinates of the user terminal to the iHCO communication satellite SjGeometric distance R ofk j
4.3, solving an error equation of the linearized pseudo-range observation obtained in the step 4.2 to obtain a correction step length of the position coordinate of the user terminal;
said step 4.3 further comprises the steps of:
step 4.3.1, using the known item in the linearized pseudo-range observation error equation (3)It shows, as follows:
<math> <mrow> <msubsup> <mi>v</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>l</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>m</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>-</mo> <msubsup> <mi>L</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula,constant terms for the linearized pseudorange observation error equation:
<math> <mrow> <msubsup> <mi>L</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msup> <msub> <mi>R</mi> <mi>k</mi> </msub> <mi>j</mi> </msup> <mo>-</mo> <msubsup> <mi>&rho;</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>-</mo> <mi>c&Delta;</mi> <msup> <mi>t</mi> <mi>j</mi> </msup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>n</mi> </msub> <mi>j</mi> </msubsup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>P</mi> </msub> <mi>j</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
step 4.3.2, write equation (6) into matrix form:
V=AX-L (8)
in the formula, X is a undetermined parameter vector:
X=[Xk Yk Zk bk]T (9)
a is a coefficient matrix of the parameter to be determined:
<math> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>l</mi> <mi>k</mi> <mn>1</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>m</mi> <mi>k</mi> <mn>1</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>n</mi> <mi>k</mi> <mn>1</mn> </msubsup> </mtd> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>l</mi> <mi>k</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>m</mi> <mi>k</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>n</mi> <mi>k</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>l</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>m</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>n</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mtd> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>l</mi> <mi>k</mi> <mi>M</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>m</mi> <mi>k</mi> <mi>M</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>n</mi> <mi>k</mi> <mi>M</mi> </msubsup> </mtd> <mtd> <mo>-</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein one iHCO communication satellite SjCorresponding to a row in matrix a.
L is a constant term vector:
<math> <mrow> <mi>L</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mn>1</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msubsup> <mi>L</mi> <mi>k</mi> <mi>M</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
v is the random error vector:
<math> <mrow> <mi>V</mi> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msubsup> <mi>v</mi> <mi>k</mi> <mn>1</mn> </msubsup> </mtd> <mtd> <msubsup> <mi>v</mi> <mi>k</mi> <mn>2</mn> </msubsup> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msubsup> <mi>v</mi> <mi>k</mi> <mi>j</mi> </msubsup> </mtd> <mtd> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mtd> <mtd> <msubsup> <mi>v</mi> <mi>k</mi> <mi>M</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
and 4.3.3, solving the formula (8) by using a least square method to obtain a vector X of the undetermined parameter:
X=(ATA)-1ATL (13)
step 4.4, correcting the rough position coordinate of the user terminal by using the correction step length of the position coordinate of the user terminal obtained in the step 4.3;
the approximate position coordinates of the user terminal are corrected by substituting the parameter vector X to be determined calculated by the formula (13) into the following formula:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <msub> <mi>X</mi> <mi>k</mi> </msub> <mi>i</mi> </msup> <mo>+</mo> <mi>&delta;</mi> <msub> <mi>X</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mi>i</mi> </msup> <mo>+</mo> <mi>&delta;</mi> <msub> <mi>Y</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mi>i</mi> </msup> <mo>+</mo> <mi>&delta;</mi> <msub> <mi>Z</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
and 4.5, taking the corrected position coordinate of the user terminal as the approximate position coordinate of the user terminal, repeating the step 4.3 to the step 4.4 to carry out iterative calculation until an iteration ending condition is met, wherein the obtained position coordinate of the user terminal is the accurate coordinate of the position of the user terminal.
According to the requirement of practical application, the iteration ending condition may be a number requirement (for example, the maximum number of iterations is 5) or an accuracy requirement (for example, a difference value of each coordinate value of two iterations before and after is less than a certain fixed value, for example, 0.5 meter).
The above-mentioned embodiments are intended to illustrate the objects, technical solutions and advantages of the present invention in further detail, and it should be understood that the above-mentioned embodiments are only exemplary embodiments of the present invention and are not intended to limit the present invention, and any modifications, equivalents, improvements and the like made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (10)

1. A method for realizing global navigation positioning by using iHCO communication satellite comprises the following steps:
step 1, forming a navigation positioning constellation by using a plurality of iHCO communication satellites;
step 2, the ground navigation station adopts pseudo-random noise codes to carry out uplink navigation signals on each iHCO communication satellite, and each iHCO communication satellite broadcasts the uplink navigation signals of the ground navigation station;
step 3, the user terminal receives navigation signals broadcasted by a plurality of iHCO communication satellites, demodulates navigation messages and wide area augmentation information, and calculates to obtain a measurement pseudo-range from the user terminal to each iHCO communication satellite;
and 4, the user terminal calculates the position coordinates of the user terminal according to the measured pseudo-range from the user terminal to each iHCO communication satellite, and finally the accurate coordinates of the position of the user terminal are obtained.
2. The method of claim 1, wherein the navigational positioning constellation consists of a plurality of communication satellites in an iHCO orbit that is about 200 km above a GSO orbit; the navigation signal comprises navigation messages and wide area augmentation information.
3. The method of claim 1 wherein the pseudo-random noise codes identify each iHCO communication satellite by corresponding to a fixed set of pseudo-random noise codes.
4. The method of claim 1, wherein the measured pseudorange of the user terminal to the iHCO communication satellite is determined by multiplying a transmission time of the navigation signal to the user terminal, which is measured using auto-correlation and cross-correlation properties of the pseudorandom noise code, by a transmission speed of an electric wave.
5. A method according to any of claims 1-3, characterized in that said measured pseudoranges satisfy the following pseudorange observation equation:
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>&rho;</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>X</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>Y</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>Z</mi> <mi>j</mi> </msup> <mo>-</mo> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>]</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>+</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>c&Delta;</mi> <msup> <mi>t</mi> <mi>j</mi> </msup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>n</mi> </msub> <mi>j</mi> </msubsup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>P</mi> </msub> <mi>j</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </math>
wherein,to be at the measuring time tkMeasuring a pseudo range from the user terminal to the jth iHCO communication satellite, wherein j is 1, 2, …, and M is the number of iHCO communication satellites; (X)k,Yk,Zk) For a user terminal to be positioned at time tkThe accurate coordinates of (2); (X)j,Yj,Zj) The position coordinates of the jth iHCO communication satellite when transmitting navigation signals are obtained; bkThe equivalent distance of the clock error of the user terminal; Δ tjCorrecting parameters for a clock of the iHCO communication satellite; c is the speed of the vacuum light,in order to achieve the ionospheric time delay,is the tropospheric delay.
6. The method of claim 5, wherein the iHCO communications satellite has a clock correction parameter Δ tjIonospheric time delayAnd tropospheric time delayObtained by the navigation signal.
7. The method of claim 1, wherein the step 4 further comprises:
step 4.1, setting the user terminal at the time tkInitial approximate position coordinates (X)k 0,Yk 0,Zk 0);
Step 4.2, performing 1-order Taylor series expansion according to a pseudo-range observation error equation from the user terminal to the iHCO communication satellite to obtain an error equation expressed linearly as follows;
<math> <mfenced open='' close=''> <mtable> <mtr> <mtd> <msubsup> <mi>v</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>l</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>m</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Z</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>&rho;</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>-</mo> <msup> <msub> <mi>R</mi> <mi>k</mi> </msub> <mi>j</mi> </msup> <mo>+</mo> <mi>c&Delta;</mi> <msup> <mi>t</mi> <mi>j</mi> </msup> <mo>-</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>n</mi> </msub> <mi>j</mi> </msubsup> <mo>-</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>P</mi> </msub> <mi>j</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, Xk、YkAnd ZkRespectively as the position coordinates X of the user terminalk、YkAnd ZkThe step size of the correction of (2),the general location coordinates of the user terminal to the directional cosine of the jth iHCO communication satellite, bkThe equivalent distance of the clock error of the user terminal;to be at the measuring time tkMeasurement pseudorange, delta t, from user terminal to jth iHCO communication satellitejCorrecting parameters for the clock of the jth iHCO communication satellite; c is the speed of the vacuum light,for the ionospheric delay of the jth iHCO communication satellite,tropospheric delay, R, for the jth iHCO communication satellitek jThe distance from the rough position coordinate of the user terminal to the jth iHCO communication satellite; the direction cosine is calculated as follows:
l k j = X j - X k i R k j , m k j = Y j - Y k i R k j , n k j = Z j - Z k i R k j
the distance is calculated as follows: rk j=[(Xj-Xk i)2+(Yj-Yk i)2+(Zj-Zk i)2]1/2(Xk i,Yk i,Zk i) The approximate position coordinate of the user terminal obtained from the previous iteration is the initial approximate position coordinate (X) in the first iterationk 0,Yk 0,Zk 0);
4.3, solving the pseudo-range observation error equation expressed linearly to obtain the correction step length of the position coordinate of the user terminal;
step 4.4, correcting the rough position coordinate of the user terminal according to the correction step length to obtain the corrected rough position coordinate of the user terminal;
and 4.5, if the iteration end condition is met, outputting the corrected approximate position coordinate of the user terminal as the final position coordinate of the user terminal, otherwise, turning to the step 4.3 to perform the next iteration operation.
8. The method of claim 7, wherein the step 4.3 further comprises:
step 4.3.1, expressing the known term in the linearized expressed pseudorange observation error equation asObtaining:
<math> <mrow> <msubsup> <mi>v</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msubsup> <mi>l</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>m</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>+</mo> <msubsup> <mi>n</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mi>&delta;</mi> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>b</mi> <mi>k</mi> </msub> <mo>-</mo> <msubsup> <mi>L</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>;</mo> </mrow> </math>
wherein,for the known terms of the pseudorange observation error equation, the following is expressed:
<math> <mrow> <msubsup> <mi>L</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>=</mo> <msup> <msub> <mi>R</mi> <mi>k</mi> </msub> <mi>j</mi> </msup> <mo>-</mo> <msubsup> <mi>&rho;</mi> <mi>k</mi> <mi>j</mi> </msubsup> <mo>-</mo> <mi>c&Delta;</mi> <msup> <mi>t</mi> <mi>j</mi> </msup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>n</mi> </msub> <mi>j</mi> </msubsup> <mo>+</mo> <mi>&Delta;</mi> <msubsup> <mi>&rho;</mi> <msub> <mi>k</mi> <mi>P</mi> </msub> <mi>j</mi> </msubsup> </mrow> </math>
step 4.3.2, writing the pseudo-range observation error equation in the step 4.3.1 into a matrix form, and expressing the equation as follows:
V=AX-L
wherein, X is an undetermined parameter vector: x ═ Xk Yk Zk bk]T
A is a coefficient matrix of the parameter to be determined:
A = l k 1 m k 1 n k 1 - 1 l k 2 m k 2 n k 2 - 1 . . . . . . . . . . . . l k j m k j n k j - 1 . . . . . . . . . . . . l k M m k M n k M - 1
l is a constant term vector: L = L k 1 L k 2 . . . L k j . . . L k M T
v is the random error vector: V = v k 1 v k 2 . . . v k j . . . v k M T
wherein M is the number of iHCO communication satellites;
step 4.3.3, solving a pseudo-range observation error equation in the matrix form by using a least square method to obtain a to-be-determined parameter vector X: x ═ ATA)-1ATL。
9. The method according to claim 1, wherein the user terminal is a fixed terminal or a mobile terminal, the fixed terminal is a fixed satellite receiving device, and the mobile terminal is a vehicle-mounted, ship-mounted or handheld receiving device.
10. The method of claim 1, wherein the number of iHCO communication satellites is at least 4.
CN201310325604.9A 2013-07-30 2013-07-30 A kind of iHCO of utilization telstar realizes the method for worldwide navigation location Active CN103399332B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310325604.9A CN103399332B (en) 2013-07-30 2013-07-30 A kind of iHCO of utilization telstar realizes the method for worldwide navigation location

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310325604.9A CN103399332B (en) 2013-07-30 2013-07-30 A kind of iHCO of utilization telstar realizes the method for worldwide navigation location

Publications (2)

Publication Number Publication Date
CN103399332A CN103399332A (en) 2013-11-20
CN103399332B true CN103399332B (en) 2015-07-29

Family

ID=49562987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310325604.9A Active CN103399332B (en) 2013-07-30 2013-07-30 A kind of iHCO of utilization telstar realizes the method for worldwide navigation location

Country Status (1)

Country Link
CN (1) CN103399332B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104237901A (en) * 2014-09-29 2014-12-24 上海交通大学 Satellite navigation and communication integrated method and system
CN108287353B (en) * 2018-01-03 2020-01-14 武汉理工大学 Space-based unmanned aerial vehicle communication satellite positioning and tracking method
CN110907972B (en) * 2019-12-04 2022-02-25 辰芯科技有限公司 Position positioning method, speed positioning method, device and positioning terminal
CN112649828B (en) * 2020-11-30 2024-03-01 中国科学院国家天文台 Orbital determination method, system and equipment for inclined high circular orbit communication satellite
CN115378494B (en) * 2022-09-16 2023-12-01 西安交通大学 OTFS-based low-orbit satellite navigation integrated transmission method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502446A (en) * 1994-05-02 1996-03-26 Trimble Navigation Limited GPS-based automatic target reporting and finding network and components
CN101344584A (en) * 2008-08-26 2009-01-14 清华大学 Navigation positioning method
CN101464508A (en) * 2008-12-19 2009-06-24 苏州莱迪斯特电子有限公司 Method for capturing C/A code signal of GPS
CN102763003A (en) * 2010-02-26 2012-10-31 纳夫科姆技术公司 Method and system for estimating position with bias compensation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031125A1 (en) * 2003-08-08 2005-02-10 Arthur Acampora Global-positioning-system data integrator and distribution system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502446A (en) * 1994-05-02 1996-03-26 Trimble Navigation Limited GPS-based automatic target reporting and finding network and components
CN101344584A (en) * 2008-08-26 2009-01-14 清华大学 Navigation positioning method
CN101464508A (en) * 2008-12-19 2009-06-24 苏州莱迪斯特电子有限公司 Method for capturing C/A code signal of GPS
CN102763003A (en) * 2010-02-26 2012-10-31 纳夫科姆技术公司 Method and system for estimating position with bias compensation

Also Published As

Publication number Publication date
CN103399332A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
CN109061677B (en) Method for satellite-based navigation enhancement by using low-earth orbit satellite
EP2856208B1 (en) Global positioning system (gps) and doppler augmentation (gdaug) and space location inertial navigation geopositioning system (spacelings)
CN103364801B (en) A method for multiplying positioning precision in a satellite navigation positioning system
CN104035068B (en) A kind of indoor locating system based on pseudo satellite, pseudolite and method
CN103399332B (en) A kind of iHCO of utilization telstar realizes the method for worldwide navigation location
CN102215558B (en) Ground mobile communication network positioning method assisted by communication broadcast satellite signal
KR20140056247A (en) Coding in a wide area positioning system (waps)
EP2867698A1 (en) Ground location inertial navigation geopositioning system (groundlings)
CN102608633B (en) Satellite locating pseudorange difference method
CN102749637A (en) Method for realizing accurate positioning of vehicle-mounted GPS (Globe Positioning System)
CN103792546A (en) Increment ionosphere refraction error correction method
CN104808225A (en) Measurement method, correction method and measurement device of single-point satellite positioning errors
CN113671537A (en) Three-frequency beacon signal ionosphere channel simulation method
CN100381835C (en) Radio combined positioning method based on digital broadcasting-television signal
CN103543454A (en) Satellite orbit determination system inserted in mobile communication network
CN103529482A (en) Method for determining dynamic accelerated speed of carrier precisely
CN107991696B (en) Satellite navigation signal simulation method for terminal carrier being high orbit satellite
CN103399334B (en) Method for improving positioning precision of satellite navigation system on basis of ultra-precise code
Bhardwaj et al. Study of temporal variation of vertical TEC using NavIC data
JP2004309307A (en) Satellite simulation system
CN101150351B (en) A method and device for obtaining receiver location under mixed satellite mode
CN106507954B (en) Relay type satellite navigation system wide area Enhancement Method
CN102830410A (en) Positioning method in combination with Doppler velocity measurement in satellite navigation
CN115951378A (en) Self-adaptive information fusion positioning method based on Beidou satellite-based enhanced information
US11209554B2 (en) Enhanced LORAN (eLORAN) system having multiple transmit frequencies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant