CN103389736B - 一种基于红外热成像的海底管道巡线机器人的控制方法 - Google Patents
一种基于红外热成像的海底管道巡线机器人的控制方法 Download PDFInfo
- Publication number
- CN103389736B CN103389736B CN201310303537.0A CN201310303537A CN103389736B CN 103389736 B CN103389736 B CN 103389736B CN 201310303537 A CN201310303537 A CN 201310303537A CN 103389736 B CN103389736 B CN 103389736B
- Authority
- CN
- China
- Prior art keywords
- submarine pipeline
- module
- inspection robot
- electromagnetic wave
- frequency electromagnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 88
- 238000001931 thermography Methods 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000012545 processing Methods 0.000 claims abstract description 41
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims abstract description 22
- 238000001514 detection method Methods 0.000 claims abstract description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 230000009466 transformation Effects 0.000 claims description 4
- 239000003086 colorant Substances 0.000 claims description 3
- 238000000605 extraction Methods 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 abstract description 5
- 239000003921 oil Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
一种基于红外热成像的海底管道巡线机器人及其控制方法,该机器人包括红外热成像摄像头、低频电磁波检测模块、GPS/北斗双模定位模块、LED光电模块、姿态位置控制模块、超低频电磁波发射模块、中央处理模块、图像存储模块和机器人本体;红外热成像摄像头倾斜安装在机器人本体外部的前端,低频电磁波检测模块安装在机器人本体下部,LED光电模块安装在机器人本体上方,图像存储模块、姿态位置控制模块、超低频电磁波发射模块、中央处理模块和GPS/北斗双模定位模块均安装在机器人本体内部;本发明能精确定位海底管道内检测器在管道中运行的位置,实时确定位海底管道内检测器在海底管道内的堵塞位置,可以用作海底管道内检测器的辅助设备。
Description
技术领域
本发明涉及海底管道无损检测技术领域和潜水机器人设备领域,具体是一种基于红外热成像的海底管道巡线机器人及其控制方法。
背景技术
随着能源需求的增加,作为海上油气能源的开发利用越来越受到各国政府的重视,管道作为海上油气开发输送的主要手段在海上油气开发过程中扮演着重要的角色。与此同时,管道运输的安全性问题也越来越受到各国政府的重视,由于传输介质的危险性、污染性和所处环境的特殊性,一旦发生事故必将造成巨大的生命财产损失和严重的环境污染。管道泄漏检测是石油、化工、天然气等领域中需要解决的重要问题之一,而管道内检测是管道泄漏检测的一种重要的方法。在进行管道内检测时,有必要知道管道内检测器当前时刻在管道中的位置,而且当内检测器在管道内部出现故障或者卡堵时,需要及时确定其具体位置,并将其取出。如果长时间卡在管道中,使得流体不能正常运输,将会造成巨额的经济损失和环境的污染。针对该问题,现有技术中的方法有:基于检测脉冲电磁信号的追踪系统和基于声波检测的管道内检测器追踪方法,但这些方法都不能实现对海底管道内检测器自动跟踪和精确定位这两项技术要求。
发明内容
针对现有技术存在的不足,本发明提供一种基于红外热成像的海底管道巡线机器人及其控制方法。
本发明的技术方案是:
一种基于红外热成像的海底管道巡线机器人,用于海底管道巡线检测,该机器人包括红外热成像摄像头、低频电磁波检测模块、GPS/北斗双模定位模块、LED光电模块、姿态位置控制模块、超低频电磁波发射模块、中央处理模块、图像存储模块和机器人本体;
红外热成像摄像头倾斜安装在机器人本体外部的前端,低频电磁波检测模块安装在机器人本体下部,LED光电模块安装在机器人本体上方,图像存储模块、姿态位置控制模块、超低频电磁波发射模块、中央处理模块和GPS/北斗双模定位模块均安装在机器人本体内部;
红外热成像摄像头的输出端、GPS/北斗双模定位模块的输出端、低频电磁波检测模块的输出端分别连接中央处理模块的不同输入端,中央处理模块的不同输出端分别连接图像存储模块的输入端、超低频电磁波发射模块的输入端、姿态位置控制模块的输入端和LED光电模块的输入端。
所述机器人本体采用潜水器航空模型。
所述红外热成像摄像头用于通过热成像方式实时拍摄海底管道轮廓,并将拍摄到的海底管道轮廓热红外图像传输至中央处理模块。
所述低频电磁波检测模块用于实时采集海底管道内检测器的低频电磁波装置所产生的低频电磁波,并将采集到的低频电磁波传输至中央处理模块。
所述GPS/北斗双模定位模块用于在海底管道巡线机器人无法识别海底管道线路时获得自身位置,并与指定返航位置坐标进行比较后实现自主返航。
所述LED光电模块用于海底管道内检测器堵塞在海底管道内时,通过光信号和超低频电磁波模块发射的超低频电磁波信号,辅助潜水员准确找到海底管道巡线机器人位置,进而准确定位海底管道内检测器在海底管道内的堵塞位置。
所述姿态位置控制模块用于控制海底管道巡线机器人沿海底管道走向前进。
所述超低频电磁波发射模块用于向水面船只发射超低频电磁波,通过水面船只的超低频电磁波接收装置和定位装置获得海底管道巡线机器人的位置,并结合LED光电模块的闪烁信号辅助潜水员准确找到海底管道巡线机器人位置。
所述中央处理模块用于接收拍摄到的海底管道轮廓图像数据、采集到的低频电磁波和GPS/北斗双模定位模块获得的位置数据,并根据这些数据得到姿态位置控制模块所需的控制信息、LED光电模块的控制信号和超低频电磁波发射模块的控制信号。
一种海底管道巡线机器人的控制方法,包括如下步骤:
步骤1:在海上平台管线开端投放基于红外热成像的海底管道巡线机器人;
步骤2:实时判断海底管道巡线机器人能否正确识别出管线:通过热成像方式能拍摄到海底管道轮廓,则海底管道巡线机器人能正确识别出管线,执行步骤4;否则海底管道巡线机器人不能正确识别出管线,此时,调整机器人本体的姿态,执行步骤3;
步骤3:若调整机器人本体的姿态后,海底管道巡线机器人能正确识别出管线,则执行步骤4;否则海底管道巡线机器人上浮至水面,开启GPS/北斗双模定位模块获取当前地理坐标,将当前地理坐标与中央处理模块存储的指定返航位置坐标进行比较,得到姿态位置控制模块所需的控制信息,控制海底管道巡线机器人向指定返航位置坐标返航并对海底管道巡线机器人进行回收;
步骤4:通过热成像方式实时拍摄海底管道轮廓,并将拍摄到的海底管道轮廓的热红外图像传输至中央处理模块,中央处理模块将热红外图像存储至图像存储模块;
步骤5:中央处理模块根据海底管道轮廓的热红外图像,控制海底管道巡线机器人沿海底管道巡航;
步骤5.1:对海底管道轮廓的热红外图像进行伪彩色模式转换,得到海底管道轮廓的伪彩色图像;
步骤5.2:利用小波去噪方法对海底管道轮廓的伪彩色图像进行小波去噪处理;
步骤5.3:利用小波边缘提取方式对小波去噪后的图像进行边缘提取;
步骤5.4:对提取的边缘点进行直线拟合和坐标提取,得到各边缘点的坐标信息;
步骤5.5:计算各边缘点的坐标信息相对于预设的各边缘点的坐标位置的偏移量;
步骤5.6:根据步骤5.5计算出的偏移量,对海底管道巡线机器人的巡线运动进行调整,控制其按照预设的各边缘点的坐标位置沿海底管道巡航;
步骤6:实时采集海底管道内检测器的低频电磁波装置所产生的低频电磁波,并将采集到的低频电磁波传输至中央处理模块;
步骤7:当采集到的低频电磁波的信号强度大于给定阈值时,海底管道巡线机器人维持当前姿态和位置,执行步骤8;否则,海底管道巡线机器人继续沿海底管道巡航;
步骤8:超低频电磁波发射模块向水面船只发射超低频电磁波同时LED光电模块闪烁,通过水面船只的超低频电磁波接收装置和定位装置获得海底管道巡线机器人的当前位置;
步骤9:若海底管道巡线机器人维持当前姿态和位置达到24小时,海底管道巡线机器人上浮至水面,开启GPS/北斗双模定位模块获取当前地理坐标,将当前地理坐标与中央处理模块存储的指定返航坐标进行比较,得到姿态位置控制模块所需的控制信息,控制海底管道巡线机器人向指定返航位置坐标返航;否则,返回步骤5,海底管道巡线机器人继续沿海底管道巡航;
步骤10:海底管道巡线机器人到达海上平台管线终端并被回收。
有益效果:
本发明的海底管道巡线机器人及其控制方法对海底管线进行无人化巡检,并能精确定位海底管道内检测器在海底管道内的堵塞位置,本发明不仅可以用作海底管道内检测器的辅助设备,还可以应用于海底管道可视化巡线和检修。
附图说明
图1是本发明具体实施方式的基于红外热成像的海底管道巡线机器人的结构示意图;
图2是本发明具体实施方式的基于红外热成像的海底管道巡线机器人的连接示意图;
图3是本发明具体实施方式的海底管道轮廓的伪彩色图像;
图4是本发明具体实施方式的边缘提取处理效果图;
图5是本发明具体实施方式的基于红外热成像的海底管道巡线机器人的控制方法流程图;
图6是基于红外热成像的海底管道巡线机器人运行流程图;
图7是基于红外热成像的海底管道巡线机器人各模块间连接图;
其中,1-红外热成像摄像头,2-低频电磁波检测模块,3-GPS/北斗双模定位模块,4-LED光电模块,5-姿态位置控制模块,6-超低频电磁波发射模块,7-中央处理模块,8-图像存储模块,9-机器人本体。
具体实施方式
下面结合附图对本发明的具体实施方式做详细说明。
如图1所示,本实施方式的基于红外热成像的海底管道巡线机器人,包括红外热成像摄像头1、低频电磁波检测模块2、GPS/北斗双模定位模块3、LED光电模块4、姿态位置控制模块5、超低频电磁波发射模块6、中央处理模块7、图像存储模块8和机器人本体9;
红外热成像摄像头1倾斜安装在机器人本体9外部的前端,低频电磁波检测模块2安装在机器人本体9下部,LED光电模块4安装在机器人本体9上方,图像存储模块8、姿态位置控制模块5、超低频电磁波发射模块6、中央处理模块7和GPS/北斗双模定位模块3均安装在机器人本体9内部;
如图2所示,红外热成像摄像头1的输出端、GPS/北斗双模定位模块3的输出端、低频电磁波检测模块2的输出端分别连接中央处理模块7的不同输入端,中央处理模块7的不同输出端分别连接图像存储模块8的输入端、超低频电磁波发射模块6的输入端、姿态位置控制模块5的输入端和LED光电模块4的输入端。
红外热成像摄像头1用于通过热成像方式实时拍摄海底管道轮廓,并将拍摄到的海底管道轮廓热红外图像传输至中央处理模块7,由于海底管道通常传输的物质为海上平台开采的原油,因此海底管道的温度通常在60°C,甚至温度更高,而海水的温度通常在10-20°C,因此,管道轮廓可以通过热成像方式清晰呈现,再通过姿态和位置控制,保证海底管道巡线机器人能准确的沿海管走向前进。红外热成像摄像头采用ThermoVisionA40M,其通过以太网形式与中央处理模块连接,可拍摄320*240像素的热红外图像,ThermoVision A40M是无需维护的非制冷微热量型探测器,其温度测量范围在-40°C-500°C,具有0.08°C的温度分辨率,完全满足本实施方式的海底管道巡线机器人的性能需求。
低频电磁波检测模块2用于实时采集海底管道内检测器的低频电磁波装置所产生的低频电磁波,并将采集到的低频电磁波传输至中央处理模块7。安装在海底管道巡线机器人下部的低频电磁波检测模块2,采集内检测器附带的低频电磁波装置所产生的低频电磁波,通过所测得的低频电磁波强度可以准确确定内检测器所在位置。
GPS/北斗双模定位模块3采用MAX232芯片,用于在海底管道巡线机器人无法识别海底 管道线路时获得自身位置,并与指定返航位置坐标进行比较后实现自主返航。
LED光电模块4用于海底管道内检测器堵塞在海底管道内时,通过光信号和超低频电磁波模块发射的超低频电磁波信号,辅助潜水员准确找到海底管道巡线机器人位置,进而准确定位海底管道内检测器在海底管道内的堵塞位置。
机器人本体9采用潜水器航空模型,包括储水仓、尾鳍、动力系统和控制系统。
姿态位置控制模块5用于控制海底管道巡线机器人沿海底管道走向前进,通过调节机器人本体的尾舵、压水仓、发动机输出来实现对潜水器航空模型的姿态控制。
超低频电磁波发射模块6用于向水面船只发射超低频电磁波,通过水面船只的超低频电磁波接收装置和定位装置获得海底管道巡线机器人的位置,并结合LED光电模块4的闪烁信号辅助潜水员准确找到海底管道巡线机器人位置。
中央处理模块7采用型号为TMS320F2812型号的DSP,用于接收拍摄到的海底管道轮廓图像数据、采集到的低频电磁波和GPS/北斗双模定位模块3获得的位置数据,并根据这些数据得到姿态位置控制模块5所需的控制信息、LED光电模块4的控制信号和超低频电磁波发射模块的控制信号。
如图7所示,TMS320F2812的TDI脚连接LED光电模块,TMS320F2812的T3CTRP脚和XA2脚均连接姿态位置控制模块U1,TMS320F2812的PWM9脚和PWM10脚均连接低频电磁波检测模块U2,TMS320F2812的XWE脚和XA3脚均连接至图像存储模块U3,将TMS320F2812接收到的海底管道轮廓图像数据存储至图像存储模块U3,TMS320F2812的PWM7脚和PWM8脚均连接红外热成像摄像头U4,TMS320F2812的XHOLDA脚和T4CTRP脚均连接超低频电磁波发射模块U5,TMS320F2812的SCIRXB脚和SCITXB脚分别与MAX232的R22OUT脚和T2IN脚连接。
上述的海底管道巡线机器人的控制方法,如图6所示,包括如下步骤:
步骤1:在海上平台管线开端投放基于红外热成像的海底管道巡线机器人;
步骤2:实时判断海底管道巡线机器人能否正确识别出管线:通过热成像方式能拍摄到海底管道轮廓,则海底管道巡线机器人能正确识别出管线,执行步骤4;否则海底管道巡线机器人不能正确识别出管线,此时,调整机器人本体的姿态,执行步骤3;
步骤3:若调整机器人本体的姿态后,海底管道巡线机器人能正确识别出管线,则执行步骤4;否则海底管道巡线机器人上浮至水面,开启GPS/北斗双模定位模块获取当前地理坐标,将当前地理坐标与中央处理模块存储的指定返航位置坐标进行比较,得到姿态位置控制模块所需的控制信息,控制海底管道巡线机器人间指定返航位置坐标返航并对其进行回收;
步骤4:通过热成像方式实时拍摄海底管道轮廓,并将拍摄到的海底管道轮廓的热红外图像 传输至中央处理模块,中央处理模块将热红外图像存储至图像存储模块;
步骤5:中央处理模块根据海底管道轮廓的热红外图像,控制海底管道巡线机器人沿海底管道巡航;
如图5所示,中央处理模块根据海底管道轮廓的热红外图像,控制海底管道巡线机器人沿海底管道巡航的步骤如下:
步骤5.1:对海底管道轮廓的热红外图像进行伪彩色模式转换,得到海底管道轮廓的伪彩色图像,如图3所示,其中中间深色部分为管道,由于噪声等影响,红外热成像所产生的结果不会形成明显的边界,因此需要进行去噪;
步骤5.2:利用小波去噪方法对海底管道轮廓的伪彩色图像进行小波去噪处理;
小波去噪是现有技术中较为有效的图像去噪方式,它比经典的频率域滤波方法更具有灵活性。以小波变换为基础的去噪方法是把含噪信号放在二维平面上,利用信号和噪声表现出来的截然不同的特性进行分时分频处理,在理论上,此方法不但能够获得较高的信噪比,而且能够保持良好的分辨率。阈值选取是离散小波去噪的最重要步骤,在去噪过程中,小波阈值δ起到了决定性作用:如果阈值太小,则施加阈值后小波系数将包含过多的噪声分量,达不到去噪的效果;反之,阈值过大,则去除了有用的成分,造成失真。本实施方式采用统一阈值其中,σ为噪声标准方差,N为信号的尺寸。
步骤5.3:利用小波边缘提取方式对小波去噪后的图像进行边缘提取;
步骤5.4:对提取的边缘点进行直线拟合和坐标提取,得到各边缘点的坐标信息;
在去噪过程之后,为了得到可用的信息,还需要进行边缘检测。由于小波的多尺度特征,在多尺度分析时小波的快速多尺度边缘检测可以取得较好效果。对于信号f(x,y),通过计算其梯度矢量的模局部极大值即可得到图像边缘位置,完成边缘提取。
步骤5.5:计算各边缘点的坐标信息相对于预设的各边缘点的坐标位置的偏移量;
通过小波去噪和边缘提取后,还需要通过提取边缘的坐标点,通过最小二乘法直线拟合方式获得如图4所示的结果及坐标。由于热红外摄像头的透视视角,只要红外摄像头位置是固定的,即可获得唯一的图像信息。线a1-b1和线a3-b3为管道边缘,a2是计算得到的a1和a3的中点,b2分别b1和b3的中点。当热红外摄像头远离管道(海底管道巡线机器人远离管道)时,点a1和点a3的位置会向点a2靠近(即点a1和点a3间的距离d1变小),同理点b1和点b3的位置会向点b2靠近(即点b1和点b3间的距离d2变小)。相反地,当热红外摄像头靠近管道(海底管道巡线机器人靠近管道)时,点a1和点a3的位置会远离点a2(即d1变大),同理点b1和点b3的位置会远离点b2(即d2变大)。
步骤5.6:根据步骤5.5计算出的偏移量,对海底管道巡线机器人的巡线运动进行调整,控制其按照预设的各边缘点的坐标位置沿海底管道巡航;
通过线a2-b2的倾角即可计算出热红外摄像头前进方向(海底管道巡线机器人前进方向)与管线走向之间的夹角,从而控制海底管道巡线机器人前进方向。
步骤6:实时采集海底管道内检测器的低频电磁波装置所产生的低频电磁波,并将采集到的低频电磁波传输至中央处理模块;
步骤7:当采集到的低频电磁波的信号强度大于给定阈值时,海底管道巡线机器人维持当前姿态和位置,执行步骤8;否则,海底管道巡线机器人继续沿海底管道巡航;
步骤8:超低频电磁波发射模块向水面船只发射超低频电磁波同时LED光电模块闪烁,通过水面船只的超低频电磁波接收装置和定位装置获得海底管道巡线机器人的当前位置;
步骤9:若海底管道巡线机器人维持当前姿态和位置达到24小时,海底管道巡线机器人上浮至水面,开启GPS/北斗双模定位模块获取当前地理坐标,将当前地理坐标与中央处理模块存储的指定返返航坐标进行比较,得到姿态位置控制模块所需的控制信息,控制海底管道巡线机器人向指定返航位置坐标返航;否则,返回步骤5,海底管道巡线机器人继续沿海底管道巡航;
步骤10:海底管道巡线机器人到达管线终端并被回收。
Claims (1)
1.一种基于红外热成像的海底管道巡线机器人的控制方法,所述基于红外热成像的海底管道巡线机器人用于海底管道巡线检测,包括红外热成像摄像头、低频电磁波检测模块、GPS/北斗双模定位模块、LED光电模块、姿态位置控制模块、超低频电磁波发射模块、中央处理模块、图像存储模块和机器人本体;
红外热成像摄像头倾斜安装在机器人本体外部的前端,低频电磁波检测模块安装在机器人本体下部,LED光电模块安装在机器人本体上方,图像存储模块、姿态位置控制模块、超低频电磁波发射模块、中央处理模块和GPS/北斗双模定位模块均安装在机器人本体内部;
红外热成像摄像头的输出端、GPS/北斗双模定位模块的输出端、低频电磁波检测模块的输出端分别连接中央处理模块的不同输入端,中央处理模块的不同输出端分别连接图像存储模块的输入端、超低频电磁波发射模块的输入端、姿态位置控制模块的输入端和LED光电模块的输入端;
其特征在于:该控制方法包括如下步骤:
步骤1:在海上平台管线开端投放基于红外热成像的海底管道巡线机器人;
步骤2:实时判断海底管道巡线机器人能否正确识别出管线:通过热成像方式能拍摄到海底管道轮廓,则海底管道巡线机器人能正确识别出管线,执行步骤4;否则海底管道巡线机器人不能正确识别出管线,此时,调整机器人本体的姿态,执行步骤3;
步骤3:若调整机器人本体的姿态后,海底管道巡线机器人能正确识别出管线,则执行步骤4;否则海底管道巡线机器人上浮至水面,开启GPS/北斗双模定位模块获取当前地理坐标,将当前地理坐标与中央处理模块存储的指定返航位置坐标进行比较,得到姿态位置控制模块所需的控制信息,控制海底管道巡线机器人向指定返航位置坐标返航并对海底管道巡线机器人进行回收;
步骤4:通过热成像方式实时拍摄海底管道轮廓,并将拍摄到的海底管道轮廓的热红外图像传输至中央处理模块,中央处理模块将热红外图像存储至图像存储模块;
步骤5:中央处理模块根据海底管道轮廓的热红外图像,控制海底管道巡线机器人沿海底管道巡航;
步骤5.1:对海底管道轮廓的热红外图像进行伪彩色模式转换,得到海底管道轮廓的伪彩色图像;
步骤5.2:利用小波去噪方法对海底管道轮廓的伪彩色图像进行小波去噪处理;
步骤5.3:利用小波边缘提取方式对小波去噪后的图像进行边缘提取;
步骤5.4:对提取的边缘点进行直线拟合和坐标提取,得到各边缘点的坐标信息;
步骤5.5:计算各边缘点的坐标信息相对于预设的各边缘点的坐标位置的偏移量;
步骤5.6:根据步骤5.5计算出的偏移量,对海底管道巡线机器人的巡线运动进行调整,控制其按照预设的各边缘点的坐标位置沿海底管道巡航;
步骤6:实时采集海底管道内检测器的低频电磁波装置所产生的低频电磁波,并将采集到的低频电磁波传输至中央处理模块;
步骤7:当采集到的低频电磁波的信号强度大于给定阈值时,海底管道巡线机器人维持当前姿态和位置,执行步骤8;否则,海底管道巡线机器人继续沿海底管道巡航;
步骤8:超低频电磁波发射模块向水面船只发射超低频电磁波同时LED光电模块闪烁,通过水面船只的超低频电磁波接收装置和定位装置获得海底管道巡线机器人的当前位置;
步骤9:若海底管道巡线机器人维持当前姿态和位置达到24小时,海底管道巡线机器人上浮至水面,开启GPS/北斗双模定位模块获取当前地理坐标,将当前地理坐标与中央处理模块存储的指定返航坐标进行比较,得到姿态位置控制模块所需的控制信息,控制海底管道巡线机器人向指定返航位置坐标返航;否则,返回步骤5,海底管道巡线机器人继续沿海底管道巡航;
步骤10:海底管道巡线机器人到达管线终端并被回收。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310303537.0A CN103389736B (zh) | 2013-07-18 | 2013-07-18 | 一种基于红外热成像的海底管道巡线机器人的控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310303537.0A CN103389736B (zh) | 2013-07-18 | 2013-07-18 | 一种基于红外热成像的海底管道巡线机器人的控制方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103389736A CN103389736A (zh) | 2013-11-13 |
CN103389736B true CN103389736B (zh) | 2015-09-30 |
Family
ID=49534032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310303537.0A Expired - Fee Related CN103389736B (zh) | 2013-07-18 | 2013-07-18 | 一种基于红外热成像的海底管道巡线机器人的控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103389736B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759751A (zh) * | 2014-01-17 | 2014-04-30 | 中国地质大学(北京) | 一种水下拖曳式多参数姿态记录装置及方法 |
CN103926448B (zh) * | 2014-04-24 | 2016-09-21 | 青岛远创机器人自动化有限公司 | 一种高效智能寻管线检测系统 |
CN104237917B (zh) * | 2014-09-04 | 2017-02-15 | 中国石油天然气股份有限公司 | 一种管道内检测器远程实时跟踪系统及方法 |
CN104251381B (zh) * | 2014-09-19 | 2016-08-17 | 中国船舶重工集团公司第七一九研究所 | 基于水下无人航行器的海底输油管道泄漏检测系统和方法 |
CN104948916A (zh) * | 2015-05-15 | 2015-09-30 | 厦门大学 | 圆形环绕水下鱼形机器人水下管道检测装置及检测方法 |
CN105629994B (zh) * | 2016-03-15 | 2018-02-27 | 浙江大学 | 一种用于管道探伤的水下机器人 |
CN105805563B (zh) * | 2016-05-10 | 2018-03-27 | 广州丰谱信息技术有限公司 | 基于随路内窥式管道泄漏及堵塞的超声检测装置与方法 |
CN106125118B (zh) * | 2016-05-25 | 2020-05-05 | 南京安透可智能系统有限公司 | 一种管道机器人gps辅助实时地理定位的方法 |
CN106394815B (zh) * | 2016-10-28 | 2020-01-07 | 杭州电子科技大学 | 一种无人船加无人潜水器的组合系统 |
CN107332896B (zh) * | 2017-06-23 | 2021-09-24 | 中国计量大学 | 一种水下探伤器控制系统及方法 |
CN107322594B (zh) * | 2017-06-26 | 2020-05-15 | 北京臻迪科技股份有限公司 | 一种涉水机器人控制方法及涉水机器人 |
CN108955891A (zh) * | 2018-05-15 | 2018-12-07 | 北京华夏光谷光电科技有限公司 | 水下自喷热源红外成像/光电探测系统 |
CN110873290B (zh) * | 2018-09-04 | 2022-07-12 | 中国石油化工股份有限公司 | 一种顺序输送混油控制跟踪方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1952825A (zh) * | 2006-11-02 | 2007-04-25 | 上海交通大学 | 海底管道内爬行器智能控制器 |
CN201680157U (zh) * | 2010-05-19 | 2010-12-22 | 中国船舶重工集团公司第七〇二研究所 | 基于光视觉的水下管线巡检装置 |
CN102162577A (zh) * | 2010-12-27 | 2011-08-24 | 哈尔滨工业大学 | 管道缺陷表面完整性检测装置及其检测方法 |
CN102588743A (zh) * | 2012-03-08 | 2012-07-18 | 东北大学 | 实时跟踪与精确定位管道内检测器的装置及方法 |
CN102679165A (zh) * | 2012-04-27 | 2012-09-19 | 东北大学 | 一种用于海底管道中内检测器定位的装置及方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2868148B1 (fr) * | 2004-03-26 | 2006-06-02 | Enertag Soc Par Actions Simpli | Procede et dispositif pour la localisation d'anomalies situees a l'interieur d'une structure creuse immergee |
CN101886743B (zh) * | 2010-06-30 | 2012-10-17 | 东北大学 | 一种定位海底管道机器人方法及装置 |
-
2013
- 2013-07-18 CN CN201310303537.0A patent/CN103389736B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1952825A (zh) * | 2006-11-02 | 2007-04-25 | 上海交通大学 | 海底管道内爬行器智能控制器 |
CN201680157U (zh) * | 2010-05-19 | 2010-12-22 | 中国船舶重工集团公司第七〇二研究所 | 基于光视觉的水下管线巡检装置 |
CN102162577A (zh) * | 2010-12-27 | 2011-08-24 | 哈尔滨工业大学 | 管道缺陷表面完整性检测装置及其检测方法 |
CN102588743A (zh) * | 2012-03-08 | 2012-07-18 | 东北大学 | 实时跟踪与精确定位管道内检测器的装置及方法 |
CN102679165A (zh) * | 2012-04-27 | 2012-09-19 | 东北大学 | 一种用于海底管道中内检测器定位的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103389736A (zh) | 2013-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103389736B (zh) | 一种基于红外热成像的海底管道巡线机器人的控制方法 | |
CN103218607B (zh) | 一种用于无人机自主着舰的合作目标设计与定位方法 | |
CN105184816A (zh) | 基于usv的视觉检测和水面目标追踪系统及其检测追踪方法 | |
CN103152819B (zh) | 一种基于水下无线传感器网络的弱目标跟踪方法 | |
CN103488175A (zh) | 一种自治遥控水下机器人水下管道检测跟踪系统及检测方法 | |
CN105809684A (zh) | 一种自主式水下机器人的光学引导回收系统及其回收方法 | |
CN116245916B (zh) | 一种面向无人艇的红外舰船目标跟踪方法及装置 | |
Xu et al. | Review of underwater cable shape detection | |
CN201680157U (zh) | 基于光视觉的水下管线巡检装置 | |
Fairley et al. | Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment | |
CN103971370A (zh) | 一种针对遥感大图像的海洋溢油智能检测方法 | |
KR20190038211A (ko) | 실시간 위치기반 표준형 등부표용 해양 감시 시스템 | |
CN110596728A (zh) | 一种基于激光雷达的水面小目标探测方法 | |
CN111144208A (zh) | 一种海上船舶目标的自动检测和识别方法及目标检测器 | |
CN115019412A (zh) | 一种基于多传感器的水下auv海缆巡检系统及方法 | |
CN204037864U (zh) | 一种深水域抗浪水体监测艇 | |
Wang et al. | Research of obstacle recognition method for USV based on laser radar | |
CN110806760B (zh) | 一种无人水下航行器的目标跟踪控制方法 | |
CN113790718A (zh) | 一种基于无人船的信息共享系统 | |
Yu et al. | Automatic extraction of green tide using dual polarization Chinese GF-3 SAR images | |
CN112611376B (zh) | 一种RGI-Lidar/SINS紧耦合AUV水下导航定位方法与系统 | |
KR101790482B1 (ko) | 항해용 레이더를 이용한 파고 측정 시스템 및 측정 방법 | |
CN115546651B (zh) | 一种多模态船舶目标检测和识别系统及装置 | |
CN205898246U (zh) | 一种基于雷达测量的无人值守站点潮位测量系统 | |
CN114194364B (zh) | 一种基于水下滑翔机的声电联合探测装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150930 |