[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

CN103270160B - 病毒启动子、其截短物以及使用方法 - Google Patents

病毒启动子、其截短物以及使用方法 Download PDF

Info

Publication number
CN103270160B
CN103270160B CN201180061456.3A CN201180061456A CN103270160B CN 103270160 B CN103270160 B CN 103270160B CN 201180061456 A CN201180061456 A CN 201180061456A CN 103270160 B CN103270160 B CN 103270160B
Authority
CN
China
Prior art keywords
plant
sequence
nucleotide sequence
promotor
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180061456.3A
Other languages
English (en)
Other versions
CN103270160A (zh
Inventor
S.迪恩
C.R.西蒙斯
A.L.卢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Hi Bred International Inc
EIDP Inc
Original Assignee
Pioneer Hi Bred International Inc
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred International Inc, EI Du Pont de Nemours and Co filed Critical Pioneer Hi Bred International Inc
Publication of CN103270160A publication Critical patent/CN103270160A/zh
Application granted granted Critical
Publication of CN103270160B publication Critical patent/CN103270160B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8225Leaf-specific, e.g. including petioles, stomata
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/00041Use of virus, viral particle or viral elements as a vector
    • C12N2730/00043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供用于调节异源核苷酸序列在植物中的表达的组合物和方法。组合物包含启动子的新核苷酸序列。提供了使用本发明所公开的启动子序列在植物中表达异源核苷酸序列的方法。所述方法包括向植物细胞的基因组中稳定掺入与本发明的启动子有效连接的核苷酸序列,并再生出表达该核苷酸序列的稳定转化植物。

Description

病毒启动子、其截短物以及使用方法
技术领域
本发明涉及植物分子生物学领域,更具体而言涉及植物中基因表达的调节。
背景技术
植物基因工程的最新进展已经使得工程化下述植物具有成为可能,所述植物具有改进的特征或者性状,如抗病性、昆虫抗性、除草剂抗性、从该植物获得的最终消费产品的提高的稳定性或者货架期和该植物的可食部分的营养品质改进。因此,可以将一种或者多种所需基因掺入到该植物的基因组中,其中所述基因来自不同于该植物的来源,但经工程化以赋予不同或者改进的特征或性状。然后,可以在该植物细胞中表达一个或者多个新的基因以表现出所需表型,如新的性状或者特征。
适当的调节信号必须存在并且相对于该基因处于适当的位置,以便获得新插入的基因在该植物细胞中的表达。这些调节信号可以包括启动子区、5'非翻译前导序列和3'转录终止/聚腺苷酸化序列。
启动子是这样的DNA序列,其引导植物的细胞装置以从启动子下游(3')的连续编码序列产生RNA。启动子区影响其中产生该基因的RNA转录物的速率、发育阶段和细胞类型。RNA转录物经加工以产生信使RNA(mRNA),后者充当RNA序列翻译成所编码的多肽的氨基酸序列的模板。5'非翻译前导序列是mRNA的位于蛋白编码区上游的区域,其可以在mRNA的起始和翻译中发挥作用。3'转录终止/聚腺苷酸化信号是蛋白质编码区下游的非翻译区域,其在植物细胞中发挥作用以引起RNA转录物终止和向该RNA的3'末端添加聚腺苷酸核苷酸。
异源DNA序列在植物宿主中的表达有赖于在该植物宿主中发挥作用的有效连接的启动子的存在。所选择的启动子序列的类型基于该生物体内何时和何处需要异源DNA的表达。需要在特定组织或者器官中表达的情况下,可以使用组织偏好的启动子。需要应答于刺激而表达基因的情况下,诱导型启动子是首选的调节元件。相比之下,在需要在植物的细胞中连续表达的情况下,采用组成型启动子。
诱导型启动子是能够响应诱导物而直接或者间接激活一个或者多个DNA序列或者基因的转录的启动子。在不存在诱导物的情况下,DNA序列或者基因将不转录。诱导物可以是化学剂如代谢物、生长调节剂、除草剂或者酚类化合物,或者直接强加于植物上的生理胁迫如寒冷、热、盐、毒素。在抗击植物害虫的情况下,还期望具有受植物病原体诱导的启动子,所述植物病原体包括植物昆虫害虫、线虫或者病害媒介(disease agent)如细菌、病毒或者真菌。与病原体接触将诱导转录的激活,从而抗病原体蛋白将在它将有效防护该植物的时间产生。病原体诱导的启动子还可以用来检测与病原体的接触,例如通过可检测标记物的表达来检测,从而可以评估是否需要施加杀虫剂。可通过以下方式使含有可诱导启动子的植物细胞暴露于诱导物:通过将该诱导物例如通过喷雾、喷淋、加热而外施于该细胞或者植物,或者通过暴露于该有效病原体。
组成型启动子是这样的启动子,其引导基因在植物各个部分中以及连续地在植物发育过程中表达。一些广泛用于诱导异源基因在转基因植物中表达的组成型启动子的例子包括来自根瘤农杆菌(Agrobacterium tumefaciens)的胭脂氨酸合酶(NOS)基因启动子(美国专利No.5,034,322)、花椰菜花叶病毒(CaMv)35S和19S启动子(美国专利No.5,352,605)、那些衍自已知在大多数细胞类型中表达的几种肌动蛋白基因中任一种肌动蛋白基因的启动子(美国专利No.6,002,068)以及遍在蛋白启动子(Christensen et al.(1989)Plant Mol.Biol.12:619-632(Christensen等人,1989年,《植物分子生物学》,第12卷,第619-632页)和Christensen et al.(1992)Plant Mol.Biol.18:675-689(Christensen等人,1992年,《植物分子生物学》,第18卷,第675-689页)),遍在蛋白是一种已知在许多细胞类型中积累的基因产物。
在转化载体的表达构建体中可包括位于核心启动子序列上游和/或下游的另外的调节序列,以在转基因植物中导致异源核苷酸序列的不同水平的表达。因此,通过使用基因工程技术对植物进行遗传变更以产生具有有用性状的植物,这要求有多种启动子可供利用。
为了使转基因植物技术的商业应用最大化,重要的是引导所引入的DNA以位点特异性方式表达。例如,需要在受病原体攻击的组织中产生毒性防御化合物,但在要收获并被消费者食用的组织中却不产生。通过位点定向方式合成或者贮藏所需的蛋白质或者化合物,可以将植物作为工厂或者生产系统加以操纵,以便得到各种各样具有商业用途的化合物。细胞特异性启动子使得能够引导化合物在空间上和时间上合成到高度专化的组织或者器官,如根、叶、维管组织、胚、种子或者花。
或者,可能需要抑制植物组织内的天然DNA序列的表达以实现所需的表型。在这个情况下,可使用siRNA或者反义技术转化植物来实现这种抑制。
由于引入到植物中的嵌合基因的表达模式是使用启动子来控制,因此人们对能够控制基因表达的新型启动子的分离和鉴定一直有兴趣。
发明内容
提供用于调节植物中基因表达的组合物和方法。组合物包含这样的启动子的新型核苷酸序列,该启动子以组成型方式起始转录,同时还在选定的组织中驱动非常高水平的表达。更具体而言,提供从蓝莓红环斑病毒(CSSV)分离株分离的转录起始区。本发明另外的实施例包括SEQ ID NO:1-3中所述的核苷酸序列以及启动子序列,该启动子序列按布达佩斯条约规定保藏于美国农业研究培养物保藏中心(Agricultural Research Service(ARS)Culture Collection),专利保藏号为NRRL B-50312,该保藏中心在美国国家农业应用研究中心(National Center for Agricultural Utilization Research(NCAUR))的微生物基因组学和生物加工研究组(Microbial Genomics andBioprocessing Research Unit)。还产生并测试了该全长启动子的变型形式,包括该启动子的截短形式和重复(或者重叠)形式。##实施例的组合物还包含与SEQ ID NO:1-3中所述的序列具有至少70%序列同一性并驱动有效连接的核苷酸序列的表达的核苷酸序列。还包括在严格条件下与SEQ IDNO:1-3中所述的序列或者与保藏于细菌宿主中的启动子序列(专利保藏号为NRRL B-50312)杂交的核苷酸序列,或者它们的互补序列。
组合物还包括包含与异源目的核苷酸序列有效连接的实施例的启动子的DNA构建体,其中所述启动子能够驱动所述核苷酸序列在植物细胞中的表达,并且所述启动子包含实施例的核苷酸序列。实施例还提供表达载体以及在其基因组中稳定掺入了上述DNA构建体的植物或者植物细胞。另外,组合物包括这种植物的转基因种子。
实施例的方法包括在植物中选择性表达核苷酸序列的手段,所述方法包括用DNA构建体转化植物细胞,并从所述植物细胞再生出转化植物,所述DNA构建体包含启动子和与所述启动子有效连接的异源核苷酸序列,其中所述启动子起始所述核苷酸序列在植物细胞中的转录。如此,启动子序列可用于控制有效连接的编码序列的表达。
在启动子的下游并处于启动子的转录起始调节的将是目的序列,其将提供对植物的表型的修饰。这种修饰包括调节内源产物的生成(数量、相对分布等方面)或者外源表达产物的生成,以在植物中提供新功能或者产物。例如,涵盖编码这样的基因产物的异源核苷酸序列,该基因产物赋予对病原体、除草剂、盐、寒冷、干旱或者昆虫的抗性。
在又一个方面,所公开的方法涉及调节稳定转化的植物在选定组织中表达的方法,所述方法包括以下步骤:(a)用包含与至少一个核苷酸序列有效连接的实施例的启动子的DNA构建体转化植物细胞;(b)使该植物细胞在植物生长条件下生长,并且(c)从其中该核苷酸序列的表达改变该植物的表型的植物细胞再生出稳定转化的植物。
附图说明
图1是花椰菜病毒科长基因间区域的大体结构的示意图。从这类区域鉴定到在本文中称为BRRV全长启动子的1059个碱基对的序列。指示了TATA框、聚A信号、茎环和ORF区域。
图2是全长1059bp启动子序列以及从该全长启动子序列构建的360bp截短物和产生的重复启动子的示意图。FL=全长;TR=截短;Dup=位于推定TATA框上游的区域的重复。
具体实施方式
实施例的组合物包含启动子、尤其从BRRV分离株获得的启动子的新型核苷酸序列。实施例提供分离的核酸分子,所述分离的核酸分子包含SEQ ID NO:1-3中所述的核苷酸序列和2009年7月30日以专利保藏号NRRL B-50312保藏于细菌宿主中的启动子序列,以及其片段、变体和互补序列。
该BRRV启动子的保藏物是在2009年7月30日按布达佩斯条约规定保藏于美国农业研究(ARS)培养物保藏中心,该保藏中心在美国国家农业应用研究中心(NCAUR)的微生物基因组学和生物加工研究组。给予该保藏物以下登录号:NRRL B-50312。NCAUR的地址是美国伊利诺伊州皮奥里亚市北大学路1815号,邮编61604(1815N.University Street,Peoria,IL,61604)。这个保藏将按照国际承认用于专利程序的微生物保藏布达佩斯条约的条款维持。这个保藏仅仅是为了本领域技术人员的方便而作出,而并非承认美国法典第35篇第112条(35U.S.C.§112)要求保藏。在专利授权后,该保藏物将不可撤回地和无限制或者条件地可供公众获取。但是,应认识到,保藏物的可获取性不构成许可在损害政府行为所授予的专利权的情况下实施本发明。
实施例的启动子序列可用于表达有效连接的核苷酸序列。特别是,实施例的启动子在与玉米AdhI内含子结合使用时主要驱动叶组织中的表达,同时也驱动穗和茎秆中的低水平表达。在花粉中检测到非常低水平的表达,并且在根中基本上未检测到表达。根据这些数据,BRRV启动子为绿色组织偏好的启动子。如在本公开说明书的“实例”部分进一步描述,对于使用截短启动子和重复启动子进行的表达,表达模式稍有不同。
实施例的序列可用于构建表达载体以便随后转化到目的植物中,可用作分子标记物,等等。实施例的BRRV启动子序列引导有效连接的核苷酸序列以组成型方式表达。因此,BRRV启动子序列可用于有效连接的目的核苷酸序列的组成型表达,同时还驱动在选定组织中的表达。用来获得本发明实施例的BRRV启动子的具体方法在本专利申请的“实例”部分中出现的实例1中描述。
所述实施例涵盖分离的或者实质上(substantially)纯化的核酸组合物。“分离的”或者“纯化的”核酸分子或者其生物活性部分,当通过重组技术产生时实质上不含其他细胞材料或者培养基,或者当用化学法合成时基本上不含化学前体或者其他化学物质。“分离的”核酸基本上(essentially)不含在该核酸的来源生物体的基因组DNA中天然处于该核酸旁侧的序列(即位于该核酸的5'端和3'端的序列)(优选蛋白质编码序列)。例如,在各个实施例中,分离的核酸分子可含有少于约5kb、4kb、3kb、2kb、1kb、0.5kb或0.1kb的在该核酸的来源细胞的基因组DNA中天然处于该核酸分子的旁侧的核苷酸序列。
实施例的组合物包括了包含SEQ ID NO:1-3中所述的启动子核苷酸序列的分离的核酸分子。术语“启动子”意在指这样的DNA调节区,其通常包含能够引导RNA聚合酶II在特定编码序列的适当转录起始位点处起始RNA合成的TATA框。启动子可另外包含通常位于TATA框的上游(5')的其他识别序列,称为上游启动子元件,它们影响转录起始速率。应认识到,在鉴定了本文所公开的启动子区的核苷酸序列的情况下,要分离和鉴定在本文所鉴定的特定启动子区上游的5'非翻译区中的更多调节元件,这在本领域的技术范围内。因此,例如,本文所公开的启动子区可还包含上游调节元件如那些负责编码序列的组织表达和时序表达的调节元件、增强子等等。具体参见澳大利亚专利No.AU-A-77751/94以及美国专利No.5,466,785和No.5,635,618。按相同的方式,可鉴定、分离出使在所需组织中的表达得以实现的启动子元件,并与其他核心启动子一起使用。在实施例的这个方面,“核心启动子”意在指不含启动子元件的启动子。
在本发明的情形中,术语“调节元件”也指通常但不总是位于结构基因的编码序列的上游(5')的DNA序列,其包括通过提供为使转录在特定位点启动而需要的RNA聚合酶和/或其他因子的识别来控制编码区的表达的序列。提供RNA聚合酶或者其他转录因子的识别以确保在特定位点处起始的调节元件的一个例子是启动子。启动子包含负责转录的起始的核心启动子元件以及修饰基因表达的其他调节元件(如在本专利申请其他地方所讨论)。应理解,位于编码区序列的内含子内或者编码区序列3'的核苷酸序列也可有助于目的编码区的表达的调节。合适的内含子的例子包括但不限于玉米IVS6内含子,或者玉米肌动蛋白内含子。调节元件还可包括那些位于转录起始位点的下游(3')的元件,或者位于被转录的区域内的元件,或者同时以上两种情况。在本发明的情形中,转录后调节元件可包括在转录起始之后活跃的元件,例如翻译和转录增强子、翻译和转录阻遏子和mRNA稳定性决定子。
实施例的调节元件或者其片段可以与异源调节元件或者启动子有效结合,以调控异源调节元件的活性。这种调控包括增强或者抑制异源调节元件的转录活性、调控转录后事件、或者增强或者抑制异源调节元件的转录活性并调控转录后事件。例如,实施例的一个或者多个调节元件或者其片段可以与组成型启动子、诱导型启动子或者组织偏好的启动子或者其片段有效结合,以调控这类启动子在植物细胞中的所需组织内的活性。
实施例的启动子序列中的任何一者,当装配在DNA构建体内而使该启动子与目的核苷酸序列有效连接时,使得该核苷酸序列能够在稳定转化了这个DNA构建体的植物的细胞中表达。术语“有效连接”意在指该异源核苷酸序列的转录或者翻译处于该启动子序列的影响下。“有效连接”还意在指接合两个核苷酸序列,使得每个DNA片段的编码序列保持在正确的阅读框中。如此,实施例的启动子的核苷酸序列与目的核苷酸序列(通常是异源核苷酸序列)一起在DNA构建体中提供,以在目的植物中表达。术语“异源核苷酸序列”意在指天然地不与启动子序列有效连接的序列。虽然这个核苷酸序列对于启动子序列而言是异源的,但它对于植物宿主而言可以是同源的或者天然的;或者是异源的或者外来的。
应认识到,实施例的启动子可以与它们的天然编码序列一起使用以提高或者降低表达,从而导致转化的植物的表型变化。
实施例的分离启动子序列的修饰可以提供该异源核苷酸序列的一系列表达。因此,可以将它们修饰成弱启动子或者强启动子。一般来讲,“弱启动子”意在指驱动编码序列以低水平表达的启动子。“低水平”表达意在指以约1/10,000个转录物至约1/100,000个转录物至约1/500,000个转录物的水平表达。相反,强启动子以高水平或者说以约1/10个转录物至约1/100个转录物至约1/1,000个转录物的水平驱动编码序列的表达。
还涵盖所公开的启动子序列的片段和变体。“片段”意在指启动子序列的一部分。启动子序列的片段可保持生物活性,从而涵盖能够驱动有效连接的核苷酸序列的组成型表达的片段。因此,例如,可利用小于本文所公开的整个启动子序列来驱动有效连接的目的核苷酸序列(如编码异源蛋白的核苷酸序列)的表达。确定这种片段是否降低表达水平或者改变表达的性质(即组成型表达还是诱导型表达),这在本领域的技术范围内。或者,启动子核苷酸序列的可用作杂交探针的片段(如以下所描述的)通常不保持这个调节活性。因此,核苷酸序列的片段可为本文所公开的核苷酸序列的至少约20个核苷酸、约50个核苷酸、约100个核苷酸直至全长。
因此,BRRV启动子核苷酸序列的片段可以是BRRV启动子的生物活性部分,或者它可以是一种片段,所述片段可以用作采用下文公开的方法的杂交探针或者PCR引物。BRRV启动子的生物活性部分可以通过以下方式制备:分离其中一种BRRV启动子核苷酸序列的一部分,并评估BRRV启动子的这个部分的活性。作为启动子核苷酸序列的片段的核酸分子包含至少15、20、25、30、35、40、45、50、75、100、325、350、375、400、425、450、500、550、600、650、700、800、900、1000、1100或者最高至本文所公开的全长启动子核苷酸序列中存在的核苷酸数目,例如对于SEQ ID NO:1为1059个核苷酸。例如,BRRV启动子的保持启动子活性的具体片段在本申请中以SEQ ID NO:2公开。该启动子的截短物的长度为360bp(SEQ ID NO:2)。
这类片段的核苷酸将通常包含该具体启动子序列的TATA识别序列。这类序列可通过使用限制性内切核酸酶切割本文所公开的天然启动子核苷酸序列来获得;通过从该启动子DNA序列的天然序列合成核苷酸序列来获得;或者可通过使用PCR技术来获得。具体参见Mullis et al.(1987)Methods Enzymol.155:335-350(Mullis等人,1987年,《酶学方法》,第155卷,第335-350页),以及Erlich,ed.(1989)PCR Technology(StocktonPress,New York)(Erlich编辑,1989年,《PCR技术》,斯托克顿出版社,纽约)。这些启动子片段的变体,如那些由定点诱变和诸如DNA“改组”的程序产生的变体,也被组合物涵盖。
实施例的调节元件的“类似物”包括对调节元件的序列的任何置换、缺失或者添加,前提是所述类似物保持至少一种与实施例的调节元件的活性相关的调节性质。这类性质包括引导器官或者组织偏好性,或者它们的组合,或者时间活性,或者发育活性,或者它们的组合。
术语“变体”意在指与本文所公开的启动子序列具有实质相似性的序列。对于核苷酸序列,诸如这些的天然存在的变体可用公知的分子生物学技术进行鉴定,例如用下文所述的聚合酶链反应(PCR)和杂交技术来鉴定。变体核苷酸序列还包括合成法得到的核苷酸序列,如那些例如采用定点诱变产生的核苷酸序列。一般而言,特定核苷酸序列的变体将与该特定核苷酸序列具有至少40%、50%、60%、65%、70%,通常至少75%、80%、85%、90%、91%、92%、93%、94%,乃至95%、96%、97%、98%、99%或者更高的序列同一性,这通过本文别处描述的序列比对程序使用默认参数测定。还涵盖生物活性变体。生物活性变体包括例如具有一个或者多个核苷酸置换、缺失或者插入的天然启动子序列。变体还可包括由实施例的全长启动子的重复单元组成的启动子,或者由该全长启动子的选定部分连接在一起成为单个合成启动子。可采用诸如RNA印迹分析、从转录融合体获得的报道分子活性测量值等技术,来测量启动子活性。参见(例如)Sambrook et al.(1989)Molecular Cloning:A Laboratory Manual(2d ed.,ColdSpring Harbor Laboratory Press,Cold Spring Harbor,New York)(Sambrook等人,1989年,《分子克隆:实验室指南》,第2版,冷泉港实验室出版社,纽约冷泉港),下文简称“Sambrook”,以引用方式并入本文。或者,可测量在启动子片段或者变体的控制下产生的报道基因(如绿色荧光蛋白(GFP)等)的水平。参见(例如)美国专利No.6,072,050,该专利以引用的方式并入本文。
诱变和核苷酸序列变更的方法是本领域所熟知的。参见例如Kunkel(1985)Proc.Natl.Acad.Sci.USA82:488-492(Kunkel,1985年,《美国国家科学院院刊》,第82卷,第488-492页);Kunkel et al.(1987)Methods inEnzymol.154:367-382(Kunkel等人,1987年,《酶学方法》,第154卷,第367-382页);美国专利No.4,873,192;Walker and Gaastra,eds.(1983)Techniques in Molecular Biology(MacMillan Publishing Company,New York)(Walker和Gaastra编辑,1983年,《分子生物学技术》,麦克米兰出版公司,纽约),以及其中引用的参考文献。
变体启动子核苷酸序列还涵盖从诱变和诱重组程序(如DNA改组)得到的序列。用这种程序,可操纵一个或者多个不同的启动子序列以产生具有所需性质的新的启动子。这样,从一组相关的序列多核苷酸产生重组多核苷酸的文库,该相关的序列多核苷酸包含具有实质的序列同一性且可以在体外或体内发生同源重组的序列区。这种DNA改组的策略是本领域已知的。参见例如,Stemmer(1994)Proc.Natl.Acad.Sci.USA91:10747-10751(Stemmer,1994年,《美国国家科学院院刊》,第91卷,第10747-10751页);Stemmer(1994)Nature370:389-391(Stemmer,1994年,《自然》,第370卷,第389-391页);Crameri et al.(1997)Nature Biotech15:436-438(Crameri等人,1997年,《自然生物技术》,第15卷,第436-438页);Moore et al.(1997)J.Mol.Biol.272:336-347(Moore等人,1997年,《分子生物学杂志》,第272卷,第336-347页);Zhang et al.(1997)Proc.Natl.Acad.Sci.USA94:4504-4509(Zhang等人,1997年,《美国国家科学院院刊》,第94卷,第4504-4509页);Crameri et al.(1998)Nature391:288-291(Crameri等人,1998年,《自然》,第391卷,第288-291页);以及美国专利No.5,605,793和No.5,837,458。
实施例的核苷酸序列可以用来从其他生物体、尤其其他植物(例如其他单子叶植物)中分离相应的序列。如此,可使用诸如PCR、杂交等之类的方法,对这类序列基于其与本文给出的序列的序列同源性来进行鉴定。本发明涵盖基于与本文中所述的完整BRRV启动子序列或者其片段的序列同一性而分离的序列。实施例的启动子区域可以从任何植物分离,所述植物包括但不限于玉米(Zea mays)、芸苔(Brassica napus,Brassica rapa ssp.)、苜蓿(Medicago sativa)、水稻(Oryza sativa)、黑麦(Secale cereale)、高粱(Sorghum bicolor,Sorghum vulgare)、向日葵(Helianthus annuus)、小麦(Triticum aestivum)、大豆(Glycine max)、烟草(Nicotiana tabacum)、马铃薯(Solanum tuberosum)、花生(Arachis hypogaea)、棉花((Gossypiumhirsutum)、甘薯(Ipomoea batatus)、木薯(Manihot esculenta)、咖啡(Cofeaspp.)、椰子(Cocos nucifera)、菠萝(Ananas comosus)、柑橘树(Citrus spp.)、可可(Theobroma cacao)、茶(Camellia sinensis)、香蕉(Musa spp.)、鳄梨(Persea americana)、无花果(Ficus casica)、番石榴(Psidium guajava)、芒果(Mangifera indica)、橄榄(Olea europaea)、燕麦、大麦、蔬菜、观赏植物和针叶树。植物包括玉米、大豆、向日葵、红花、芸苔或者卡诺拉油菜、小麦、大麦、黑麦、苜蓿和高粱。
在PCR方法中,可以设计寡核苷酸引物用于PCR反应以便从提取自任何目的植物的cDNA或基因组DNA扩增相应的DNA序列。设计PCR引物和进行PCR克隆的方法是本领域公知的并且在上述的Sambrook文献中公开。另参见Innis et al.,eds.(1990)PCR Protocols:A Guide to Methods andApplications(Academic Press,New York)(Innis等人编辑,1990年,《PCR方案:方法和应用指导》,学术出版社,纽约);Innis and Gelfand,eds.(1995)PCR Strategies(Academic Press,New York)(Innis和Gelfand编辑,1995年,《PCR策略》,学术出版社,纽约);以及Innis and Gelfand,eds.(1999)PCR Methods Manual(Academic Press,New York)(Innis和Gelfand编辑,1999年,《PCR方法手册》,学术出版社,纽约)。已知的PCR方法包括但不限于利用成对引物、巢式引物、单一特异引物、简并引物、基因特异性引物、载体特异性引物、部分错配引物等的方法。
在杂交技术中,将已知的核苷酸序列的全部或者一部分用作探针,所述探针与来自所选生物体的克隆的基因组DNA片段或者cDNA片段群体(即基因组或者cDNA文库)中存在的其他对应核苷酸序列选择性杂交。杂交探针可以是基因组DNA片段、cDNA片段、RNA片段或其他寡核苷酸,并且可以用诸如32P之类的可检测基团或任何其他可检测标记物标记。因此,例如,杂交用探针可以通过标记基于实施例的BRRV启动子序列的合成寡核苷酸来制备。制备杂交用探针以及构建cDNA文库和基因组文库的方法通常是本领域已知的并且在上述的Sambrook文献中公开。
这类序列的杂交可以在严格条件下进行。所谓“严格条件”或者“严格杂交条件”意指探针将与其靶标序列杂交的程度将可检测地大于与其他序列杂交的程度(例如比背景大至少2倍)的条件。严格条件是序列依赖性的,在不同的环境中将会不同。通过控制杂交和/或洗涤条件的严格性,可鉴定与探针100%互补的靶标序列(同源探测)。或者,可调节严格性条件以允许序列中有一些错配,以使得检测到较低程度的相似性(异源探测)。一般而言,探针长度小于约1000个核苷酸,经常长度小于500个核苷酸。
通常,严格条件将为其中盐浓度低于约1.5M钠离子,通常为约0.01至1.0M钠离子浓度(或者其他盐),pH为7.0至8.3,对短探针(例如,10至50个核苷酸)而言温度为至少30℃,对长探针(例如超过50个核苷酸)而言温度为至少约60℃的那些条件。严格条件还可通过添加去稳定剂如甲酰胺来实现。示例性的低严格性条件包括在用30%至35%甲酰胺、1MNaCl、1%SDS(十二烷基硫酸钠)的缓冲溶液37℃下杂交,并在1X至2X SSC(20X SSC=3.0M NaCl/0.3M柠檬酸三钠)中在50℃至55℃下洗涤。示例性的中等严格性条件包括在40%至45%甲酰胺、1.0M NaCl、1%SDS中在37℃下杂交和在0.5X至1X SSC中在55℃至60℃下洗涤。示例性的高严格性条件包括在50%甲酰胺、1M NaCl、1%SDS中在37℃下杂交和在0.1X SSC中在60-65℃下洗涤至少30分钟。杂交的持续时间通常少于约24小时,往往约4至约12小时。
特异性通常决定于杂交后的洗涤,关键因素为最终洗涤溶液的离子强度和温度。对于DNA-DNA杂交体,热解链温度(Tm)可由文献Meinkoth andWahl(1984)Anal.Biochem.138:267-284(Meinkoth和Wahl,1984年,《分析生物化学》,第138卷,第267-284页)中的以下方程进行估计:Tm=81.5℃+16.6(log M)+0.41(%GC)-0.61(%form)-500/L;其中M为单价阳离子的摩尔浓度,%GC为DNA中鸟嘌呤核苷酸和胞嘧啶核苷酸的百分比,%form为杂交溶液中甲酰胺的百分比,L为杂交体的长度(单位为碱基对)。Tm为50%的互补靶标序列与完美匹配的探针杂交时的温度(在确定的离子强度和pH下)。Tm因每1%错配下降约1℃;因此,可以调节Tm、杂交、和/或洗涤条件以与具有所需同一性的序列杂交。例如,如果寻求具有≥90%同一性的序列,则Tm可降低10℃。通常,将严格条件选择为比特定序列及其互补序列在确定的离子强度和pH下的Tm低约5℃。然而,极严格条件可以利用比Tm低1、2、3或4℃的杂交和/或洗涤;中等严格条件可以利用比Tm低6、7、8、9或10℃的杂交和/或洗涤;低严格条件可以利用比Tm低11、12、13、14、15或20℃的杂交和/或洗涤。利用该公式,杂交和洗涤组成以及所需的Tm,普通技术人员将认识到,杂交和/或洗涤溶液的严格性的变化固有地得到了描述。如果所需的错配程度导致Tm低于45℃(水溶液)或32℃(甲酰胺溶液),则优选增加SSC浓度以使得可以使用更高的温度。有关核酸杂交的详尽指导见Tijssen(1993)LaboratoryTechniques in Biochemistry and Molecular Biology—Hybridization with NucleicAcid Probes,Part I,Chapter2(Elsevier,New York)(Tijssen,1993,《生物化学和分子生物学实验技术—核酸探针杂交》,第I部分,第2章,爱思唯尔出版社,纽约);以及Ausubel et al.,eds.(1995)Current Protocols inMolecular Biology,Chapter2(Greene Publishing and Wiley-Interscience,NewYork)(Ausubel等人,1995年,《分子生物学实验手册》,第2章,格林出版与威立国际科学,纽约),下文简称“Ausubel”。另参见上述的Sambrook文献。
因此,本发明涵盖具有启动子活性并且在严格条件下与本文所公开的BRRV启动子序列或者其片段杂交的分离序列。
一般而言,具有启动子活性并且与本文所公开的启动子序列杂交的序列将与所公开的序列具有至少40%-50%同源性,约60%-70%同源性,甚至约80%、85%、90%、95%-98%同源性或者更高的同源性。也即,各序列的序列相似性可为至少约40%-50%,约60%-70%,甚至约80%、85%、90%、95%-98%序列相似性。
如下术语用于描述两条或更多条核酸或多肽之间的序列关系:(a)“参考序列”、(b)“比较窗口”、(c)“序列同一性”、(d)“序列同一性百分比”和(e)“实质上相同”。
(a)本文所用的“参考序列”是用作序列比较的基准的确定的序列。参考序列可以是指定序列的子集或全部;例如,为全长cDNA或者基因序列的区段或者完整的cDNA或者基因序列。
(b)本文所用的“比较窗口”是指多核苷酸序列的连续和指定的区段,其中该比较窗口中的该多核苷酸序列相比于参考序列(不包含添加或者缺失)可包含添加或者缺失(即空位),以便两条序列的最佳比对。通常,比较窗口长度为至少20个连续的核苷酸,任选可为30、40、50、100个或者更长。本领域技术人员认识到,为避免由于在多核苷酸序列中加入空位所致的与参考序列的高度相似性,通常引入空位罚分并从匹配数扣除空位罚分。
将序列进行比对以作比较的方法是本领域公知的。因此,对任何两个序列之间的序列同一性百分数的确定,可使用数学算法来完成。此类数学算法的非限制性例子是Myers and Miller(1988)CABIOS4:11-17(Myers和Miller,1988年,《计算机在生物科学中的应用》,第4卷,第11-17页)的算法;Smith et al.(1981)Adv.Appl.Math.2:482(Smith等人,1981年,《应用数学进展》,第2卷,第482页)的局部同源性算法;Needlemanand Wunsch(1970)J.Mol.Biol.48:443-453(Needleman和Wunsch,1970年,《分子生物学杂志》,第48卷,第443-453页)的同源性比对算法;Pearson and Lipman(1988)Proc.Natl.Acad.Sci.85:2444-2448(Pearson和Lipman,1988年,《美国国家科学院院刊》,第85卷,第2444-2448页)的搜索相似性方法;Karlin and Altschul(1990)Proc..Natl.Acad.Sci.USA87:2264-2268(Karlin和Altschul,1990年,《美国国家科学院院刊》,第87卷,第2264-2268页)的算法,在Karlin and Altschul(1993)Proc.Natl.Acad.Sci.USA90:5873-5877(Karlin和Altschul,1993年,《美国国家科学院院刊》,第90卷,第5873-5877页)中作了修正。
可利用这些数学算法的计算机执行进行序列的比较,从而确定序列同一性。此类程序包括、但不限于:PC/Gene程序(可获自Intelligenetics公司,加利福尼亚州山景城(Mountain View,California))中的CLUSTAL;ALIGN程序(2.0版本);ALIGN PLUS程序(3.0版本,1997年版权);以及遗传学计算机小组的威斯康星遗传学软件包版本10(WisconsinGenetics Software Package of Genetics Computer Group,Version10,获自Accelrys公司,地址:9685Scranton Road,San Diego,CA,92121,USA)中的GAP、BESTFIT、BLAST、FASTA和TFASTA。威斯康星遗传学软件包版本10中所用的打分矩阵为BLOSUM62(参见Henikoff and Henikoff(1989)Proc.Natl.Acad.Sci.USA89:10915(Henikoff和Henikoff,1989年,《美国国家科学院院刊》,第89卷,第10915页))。
使用这些程序的序列比对可用默认参数来进行。以下文献对CLUSTAL程序进行了详细描述:Higgins et al.(1988)Gene73:237-244(1988)(Higgins等人,1988年,《基因》,第73卷,第237-244页,1988年);Higgins et al.(1989),CABIOS,5:151-153(Higgins等人,1989年,《计算机在生物科学中的应用》,第5卷,第151-153页);Corpet et al.(1988)Nucleic Acids Res.16:10881-90(Corpet等人,1988年,《核酸研究》,第16卷,第10881-10890页);Huang et al.(1992)CABIOS8:155-65(Huang等人,1992年,《计算机在生物科学中的应用》,第8卷,第155-165页);以及Pearson et al.(1994)Meth.Mol.Biol.24:307-331(Pearson等人,1994年,《分子生物学方法》,第24卷,第307-331页)。ALIGN和ALIGN PLUS程序基于上文的Myers和Miller(1988)算法。当比较氨基酸序列时,ALIGN程序可使用PAM120加权残基表(weightresidue table)、空位长度罚分12和空位罚分4。Altschul et al.(1990)J.Mol.Biol.215:403(Altschul等人,1990年,《分子生物学》,第215卷,第403页)的BLAST程序基于上文的Karlin和Altschul(1990)算法。BLAST核苷酸搜索可用BLASTN程序、score(得分)=100、wordlength(字长)=12来进行,以获得与编码实施例的蛋白质的核苷酸序列同源的核苷酸序列。BLAST蛋白质搜索可用BLASTN程序、得分=50、字长=3来进行,以获得与实施例的蛋白质或者多肽同源的氨基酸序列。为出于比较目的获得带空位的比对,可如Altschul et al.(1997)Nucleic Acids Res.25:3389(Altschul等人,1997年,《核酸研究》,第25卷,第3389页)中所述利用GappedBLAST(在BLAST2.0中)。或者,可使用PSI-BLAST(在BLAST2.0中)来进行迭代搜索,该搜索可检测分子之间的远源关系。参见Altschul等人,(1997),出处同上。当采用BLAST、Gapped BLAST、PSI-BLAST时,可使用各个程序的默认参数(例如BLASTN用于核苷酸序列,BLASTX用于蛋白质)。参见美国国家生物技术信息中心(National Centerfor Biotechnology Information)的互联网网站。还可以以手动方式通过检查来进行比对。
除非另有规定,否则本文提供的序列同一性/相似性值是指使用GAP程序(以默认参数)或者任何等同的程序获得的数值。所谓“等同程序”意指任何这样的序列比较程序,其对于任何两个所考虑的序列,相比于由GAP所产生的相应比对,能产生出具有相同的核苷酸或者氨基酸残基匹配和相同的序列同一性百分数的比对。
GAP利用Needleman和Wunsch(1970)(同上)的算法来寻找两个完整序列的比对,该比对使匹配数最大而使空位数最小。GAP会考虑所有可能的比对和空位位置,并产生具有最大数目的匹配碱基和最少的空位的比对。其允许提供以匹配碱基数为单位的空位产生罚分和空位延伸罚分。GAP对于其插入的每个空位,都必须利用匹配的空位产生罚分数。如果选择大于零的空位延伸罚分,GAP对于每个插入的空位必须另外利用空位长度乘以空位延伸罚分。对于蛋白质序列,威斯康星遗传学软件包的版本10中的默认空位产生罚分值和空位延伸罚分值分别为8和2。对于核苷酸序列,默认空位产生罚分为50,而默认空位延伸罚分为3。空位产生罚分和空位延伸罚分可以以选自0-200的整数来表示。因此,例如,空位产生罚分和空位延伸罚分可为0、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65或更大。
(c)在两个核酸或者多肽序列的情形中,本文所用的“序列同一性”或者“同一性”是指当在指定的比较窗口上进行比对以获得最大对应时两个序列中相同的残基。当序列同一性百分数针对蛋白质使用时,应认识到,不相同的残基位置往往差别在于保守氨基酸置换,其中氨基酸残基被其他具有相似的化学性质(例如电荷或疏水性)的氨基酸残基置换,因此不会改变分子的功能性质。当序列差别在于保守置换,则可上调百分比序列同一性以校正置换的保守性质。将由于此类保守性置换而不同的序列称作具有“序列相似性”或者“相似性”。用于进行这种调整的手段是本领域技术人员熟知的。通常,这涉及将保守置换打分为部分错配而不是完全错配,从而提高序列同一性百分数。因而,例如,如果相同的氨基酸给予1分,非保守置换给予0分,则保守置换给予0至1之间的分数。保守置换的打分是例如如在程序PC/GENE(Intelligenetics,Mountain View,California)中所执行那样进行计算。
(d)本文所用的“序列同一性百分数”意指通过在比较窗口上比较两个最佳比对的序列所确定的数值,其中多核苷酸序列在比较窗口中的部分与参考序列(不包含添加或者缺失)相比包含添加或者缺失(即空位),以便两个序列的最佳比对。该百分数是这样计算的:确定在两个序列中出现相同核酸碱基或氨基酸残基的位置的数目以得到匹配的位置的数目,将匹配的位置的数目除以比较窗口中的位置的总数目,然后将结果乘以100以得到序列同一性百分数。
(e)(i)多核苷酸序列的“实质同一性”这个术语意指多核苷酸包含与参考序列相比较而言具有至少70%序列同一性,至少80%、90%或者95%序列同一性的序列,所述比较是使用所描述的比对程序中的一种并采用标准参数进行的。本领域技术人员将会认识到,可通过考虑密码子简并性、氨基酸相似性、阅读框定位等等适当调整这些值以确定两条核苷酸序列所编码的蛋白质的相应同一性。出于这些目的,氨基酸序列的实质同一性通常是指至少60%、70%、80%、90%或者95%的序列同一性。
核苷酸序列基本上相同的另一指示是两个分子在严格条件下是否彼此杂交。通常,将严格条件选择为比特定序列在确定的离子强度和pH下的Tm低约5℃。但是,严格条件涵盖在比Tm低约1℃至约20℃的范围内的温度,取决于本文另外限定的所需严格性程度。在严格条件下不互相杂交的核酸,如果它们编码的多肽是实质上相同的,则它们仍是实质上相同的。例如,当利用遗传密码所允许的最大密码子简并性产生一个核酸拷贝时,这可能会发生。两条核酸序列实质上相同的一个指示是,第一核酸编码的多肽与第二核酸编码的多肽发生免疫交叉反应。
本文所公开的BRRV启动子序列及其变体和片段可用于植物的基因工程,例如用于生产转化植物或者转基因植物,以表达目的表型。本文所用的术语“转化植物”和“转基因植物”指在其基因组内包含异源多核苷酸的植物。通常,该异源多核苷酸稳定整合在转基因植物或者转化植物的基因组内,使得该多核苷酸被传递到后续各代。异源多核苷酸可单独地或者作为重组DNA构建体的一部分整合到基因组中。应理解,本文所用的术语“转基因”包括任何其基因型已因异源核酸的存在而被变更的细胞、细胞系、愈伤组织、组织、植物部分或者植物,包括那些最初如此变更的转基因以及那些通过从最初的转基因进行有性杂交或者无性繁殖而产生的转基因在内。本文所用的术语“转基因(的)”不涵盖通过常规植物育种方法或通过诸如随机异花受精、非重组病毒感染、非重组细菌转化、非重组转座或自发突变之类的自然发生事件导致的基因组(染色体基因组或染色体外基因组)改变。
通过以下方式产生转基因“事件”:用异源DNA构建体(包括包含目的转基因的核酸DNA构建体在内)转化植物细胞,由于该转基因插入到该植物的基因组中而再生出一批植株,以及选择以插入到特定基因组位置中为特征的特定植株。事件通过该转基因的表达在表型上(phenotypically)得以表征。在基因层次上看,事件是植物的基因构成(genetic makeup)的一部分。术语“事件”还指通过转化体和包含异源DNA的另一个品种之间有性远交所产生的子代。
如本文所用,术语“植物”包括指称完整植物、植物器官(例如,叶、茎、根等)、种子、植物细胞及其子代。在实施例的范围内,转基因植物的部分应理解为包括起源于先前用本发明的DNA分子转化的转基因植物或者其子代并因此至少部分地由转基因细胞组成的(例如)植物细胞、原生质体、组织、愈伤组织、胚以及花、茎、果实、胚珠、叶或者根。
本文所用的术语“植物细胞”包括但不限于种子悬浮培养物、胚、分生组织区、愈伤组织、叶、根、苗、配子体、孢子体、花粉和小孢子。可在实施例的方法中使用的植物的类别通常与适用于转化技术的高等植物的类别一样宽泛,包括单子叶植物和双子叶植物在内。
本文所公开的启动子序列和方法可用于调节任何异源核苷酸序列在宿主植物中的表达。因此,与本文所公开的启动子有效连接的异源核苷酸序列可以是编码目的蛋白的结构基因。目的基因反映了作物开发的参与者的商业市场和利益。目的作物和市场在变化,并且随着发展中国家面向世界市场,也将出现新的作物和技术。另外,随着我们对农学性状和特性如产量和杂种优势的理解的增加,对用于转化的基因的选择将会相应变化。实施例的目的基因的大体类别包括例如那些涉及信息的基因(如锌指)、那些涉及通讯的基因(如激酶)和那些涉及持家的基因(如热休克蛋白)。转基因的更具体类别例如包括编码赋予对非生物胁迫或者对生物胁迫的抗性的蛋白质的基因,所述非生物胁迫例如干旱、温度、盐度和毒素如杀虫剂和除草剂,所述生物胁迫例如真菌、病毒、细菌、昆虫和线虫的攻击以及与这些生物相关的病害的发展。表型的各种变化是令人关注的,包括修饰基因在特定植物组织中的表达,改变植物对病原体或者昆虫的防御机制,提高植物对除草剂的耐受性,改变组织发育以响应环境胁迫等等。这些结果可通过在植物中表达异源产物或者增加内源产物的表达来实现。或者,这些结果可通过使植物中的一种或者多种内源产物特别是酶、转运蛋白或者辅因子的表达降低或者通过影响植物中的营养物吸收来实现。这些改变导致转化植物的表型变化。
认识到,任何目的基因都可与本文所公开的启动子序列有效连接并在植物组织中表达。
可将包含这些目的基因之一的DNA构建体与转化技术(如下文描述的那些)一起使用,以在易感植物表型中产生病害抗性或者昆虫抗性,或者在抗性植物表型中提高病害抗性或者昆虫抗性。因此,本公开内容涵盖旨在保护植物免受真菌病原体、细菌、病毒、线虫、昆虫等侵扰的方法。所谓“病害抗性”或者“昆虫抗性”意指植物防止作为植物-病原体相互作用的后果的有害症状发生。
病害抗性基因和昆虫抗性基因,如用于抗细菌保护的溶菌酶、天蚕杀菌肽、爪蟾抗菌肽(maganins)或者硫堇,或者用于抗真菌保护的发病相关(PR)蛋白如葡聚糖酶和几丁质酶,或者用于控制线虫或者昆虫的苏云金杆菌(Bacillus thuringiensis)内毒素、蛋白酶抑制剂、胶原酶、凝集素和糖苷酶,都是有用的基因产物的例子。
实施例的病原体包括但不限于病毒或者类病毒、细菌、昆虫、线虫、真菌等。病毒包括烟草和黄瓜花叶病毒、环斑病毒、坏死病毒、玉米矮花叶病毒等。线虫包括寄生性线虫如根结线虫、孢囊线虫和根腐线虫等。
编码病害抗性性状的基因包括解毒基因,如抗伏马毒素(美国专利No.5,792,931)无毒性(avr)和病害抗性(R)基因(Jones et al.(1994)Science266:789(Jones等人,1994年,《科学》,第266卷,第789页);Martinet al.(1993)Science262:1432(Martin等人,1993年,《科学》,第262卷,第1432页);Mindrinos et al.(1994)Cell78:1089(Mindrinos等人,1994年,《细胞》,第78卷,第1089页));等。
昆虫抗性基因可编码对严重影响产量的害虫的抗性,所述害虫例如根虫、切根虫、欧洲玉蜀黍螟等。这种基因包括例如苏云金杆菌(Bacillusthuringiensis)毒性蛋白基因(美国专利No.5,366,892;5,747,450;5,737,514;5,723,756;5,593,881;以及Geiser et al.(1986)Gene48:109(Geiser等人,1986年,《基因》,第48卷,第109页));凝集素(Van Damme et al.(1994)Plant Mol.Biol.24:825(Van Damme等人,1994年,《植物分子生物学》,第24卷,第825页));等。
除草剂抗性性状可以通过如下基因引入植物中:编码对有效抑制乙酰乳酸合酶(ALS)作用的除草剂(特别是磺酰脲型除草剂)的抗性的基因(例如含有导致这种抗性的突变,特别是S4突变和/或Hra突变的乙酰乳酸合酶(ALS)基因)、编码对有效抑制谷氨酰胺合酶作用的除草剂(例如膦丝菌素或者(草丁膦))的抗性的基因(例如bar基因)或者本领域已知的其他这类基因。bar基因编码针对除草剂的抗性,nptII基因编码针对抗生素卡那霉素和遗传霉素的抗性,ALS基因突变编码针对除草剂氯磺隆的抗性。
草甘磷抗性由突变的5-烯醇式丙酮酰-3-磷酸莽草酸合酶(EPSP)基因和aroA基因赋予。参见例如美国专利No.4,940,835,其公开了可以赋予草甘膦抗性的一种形式的EPSPS的核苷酸序列。美国专利No.5,627,061还描述了编码EPSPS酶的基因。另参见以下美国专利:No.6,248,876;6,040,497;5,804,425;5,633,435;5,145,783;4,971,908;5,312,910;5,188,642;4,940,835;5,866,775;6,225,114;6,130,366;5,310,667;4,535,060;4,769,061;5,633,448;5,510,471;RE36,449;RE37,287;和5,491,288;以及国际公开WO97/04103;WO97/04114;WO00/66746;WO01/66704;WO00/66747和WO00/66748,为这个目的将这些专利以引用方式并入本文。草甘磷抗性也被赋予到表达编码草甘磷氧化还原酶的基因的植物,如美国专利No.5,776,760和No.5,463,175中更完全地描述,为这个目的将这两个专利以引用方式并入本文。另外,可通过过量表达编码草甘磷N-乙酰转移酶的基因来赋予植物草甘磷抗性。参见例如美国专利申请序列号10/004,357和10/427,692。
不育基因也可编码在DNA构建体中,为物理去雄提供另选方案。以这种方式使用的基因的实例包括雄性组织偏好的基因和具有雄性不育表型的基因(如QM),在美国专利No.5,583,210中有描述。其他基因包括激酶和编码对雄性或雌性配子体发育有毒的化合物的那些。
还可在(一种或多种)基因上编码商业性状,所述基因可增加例如用于乙醇生产的淀粉,或提供蛋白质的表达。经转化的植物的另一个重要商业应用是生产聚合物和生物塑料,如美国专利No.5,602,321中描述。诸如β-酮基硫解酶、PHB酶(聚羟基丁酸合酶)和乙酰乙酰基-CoA还原酶(参见Schubert et al.(1988)J.Bacteriol.170:5837-5847(Schubert等人,1988年,《细菌学杂志》,第170卷,第5837-5847页))有利于聚羟基链烷酸酯(PHA)的表达。
可以使用实施例的方法遗传地改变影响谷粒质量的农艺上重要的性状,如饱和与不饱和油类的水平和种类、必需氨基酸的质量和数量、纤维素含量、淀粉和蛋白质含量。修饰包括增加油酸、饱和或者不饱和油的含量,增加赖氨酸或者硫的水平,提供必需氨基酸,以及对淀粉改性。玉米中的hordothionin蛋白修饰在美国专利No.5,990,389;No.5,885,801、5,885,802和5,703,049中有描述;将这些专利以引用方式并入本文。另一个例子是美国专利No.5,850,016中所描述的由大豆2S白蛋白编码的富赖氨酸和/或富硫种子蛋白,和来自大麦的胰凝乳蛋白酶抑制剂,Williamson et al.(1987)Eur.J.Biochem.165:99-106(Williamson等人,1987年,《欧洲生物化学杂志》,第165卷,第99-106页),将所述专利和文献的公开内容以引用方式并入本文。
外源产物包括植物酶和产物以及来自包括原核生物和其他真核生物在内的其他来源的那些酶和产物。这类产物包括酶、辅因子、激素等等。
其他可应用的基因及其相关表型的例子包括编码病毒外被蛋白和/或RNA的基因或者其他赋予病毒抗性的病毒基因或者植物基因;赋予真菌抗性的基因;赋予昆虫抗性的基因;促进产量提高的基因;以及提供对胁迫的抗性的基因,所述胁迫例如由热和盐度引起的脱水,毒性金属或者痕量元素等。
“RNAi”指用于降低基因的表达的一系列相关技术(参见例如美国专利No.6,506,559)。其他名称所指的较老的技术现在据认为是基于相同的机制,不过在文献中被赋予不同的名称。这些包括“反义抑制”,即产生能够抑制目标蛋白质的表达的反义RNA转录物,以及“共抑制”或者“正义抑制”,指产生能够抑制相同的或者实质上相似的外来基因或者内源基因的表达的正义RNA转录物(美国专利No.5,231,020,以引用方式并入本文)。这种技术依赖于使用能导致积累这样的双链RNA的构建体,该双链RNA中的一条链与要沉默的靶标基因互补。实施例的BRRV启动子序列以及本文所公开的其相关生物活性片段或者变体可以用来驱动会导致RNA干扰(包括microRNA和siRNA在内)的构建体的表达。
与本文所公开的BRRV启动子和相关启动子序列有效连接的异源核苷酸序列可以是针对靶向基因的反义序列。术语“反义DNA核苷酸序列”意在指与该核苷酸序列的5'-3'正常取向成相反取向的序列。当被递送到植物细胞中时,反义DNA序列的表达能防止目标基因的DNA核苷酸序列的正常表达。该反义核苷酸序列所编码的RNA转录物与目标基因的DNA核苷酸序列的转录所产生的内源信使RNA互补并能够与该内源信使RNA杂交。在这个情况下,由目标基因编码的天然蛋白质的产生被抑制,以实现所需的表型响应。可对反义序列作出修饰,只要序列能杂交相应的mRNA并干扰其表达。如此,可使用与相应的反义序列具有至少70%、80%或者85%或者更高的序列同一性的反义构建体。此外,反义核苷酸的部分可用来破坏靶基因的表达。一般而言,可使用至少50个核苷酸、100个核苷酸、200个核苷酸或者更多个核苷酸的序列。因此,可将本文所公开的启动子序列与反义DNA序列有效连接,以降低或者抑制选定的植物组织中天然蛋白质的表达。
在一个实施例中,DNA构建体将包含转录起始区,该转录起始区包含与异源核苷酸序列有效连接的本文所公开的启动子核苷酸序列或者其变体或者片段之一,该异源核苷酸序列的表达要由实施例的启动子控制。向这种DNA构建体提供多个限制位点,以使该核苷酸序列的插入处于调节区的转录调节之下。该DNA构建体可另外含有选择性标记基因。
该DNA构建体将以转录的5'-3'方向包括转录起始区(即实施例的启动子)、翻译起始区、异源目的核苷酸序列、翻译终止区并任选包括在宿主生物中发挥作用的转录终止区。各实施例的调节区(即启动子、转录调节区和翻译终止区)和/或多核苷酸对于宿主细胞而言或者彼此之间可以是天然的/同功的。或者,各实施例的调节区和/或多核苷酸对于宿主细胞或者彼此之间可以是异源的。本文所用的针对序列所谓的“异源”为起源于外来物种的序列,或者,如果起源于相同物种的话,则通过有意的人为干预对其天然形式在组成和/或基因座方面进行实质性修饰的序列。例如,有效连接至异源多核苷酸的启动子来自于与得到该多核苷酸的物种不同的物种,或者如果来自于相同/相似的物种,则一者或者两者基本上从它们的原始形式和/或基因座修饰而获得,或者该启动子不是该被有效连接的多核苷酸的天然启动子。
该任选包括的终止区可以对于转录起始区而言是天然的,可以对于有效连接的目的多核苷酸而言是天然的,可以对于植物宿主而言是天然的,或者可以衍自对于该启动子、该目的多核苷酸、该宿主或者它们的任何组合而言别的来源(即外来的或者异源的)。便利的终止区可获自根瘤农杆菌(A.tumefaciens)的Ti质粒,如章鱼氨酸合酶和胭脂氨酸合酶终止区。另参见Guerineau et al.(1991)Mol.Gen.Genet.262:141-144(Guerineau等人,1991年,《分子遗传学与普通遗传学》,第262卷,第141-144页);Proudfoot(1991)Cell64:671-674(Proudfoot,1991年,《细胞》,第64卷,第671-674页);Sanfacon et al.(1991)Genes Dev.5:141-149(Sanfacon等人,1991年,《基因和发育》,第5卷,第141-149页);Mogen et al.(1990)Plant Cell2:1261-1272(Mogen等人,1990年,《植物细胞》,第2卷,第1261-1272页);Munroe et al.(1990)Gene91:151-158(Munroe等人,1990年,《基因》,第91卷,第151-158页);Ballas et al.(1989)Nucleic Acids Res.17:7891-7903(Ballas等人,1989年,《核酸研究》,第17卷,第7891-7903页);以及Joshi et al.(1987)Nucleic Acids Res.15:9627-9639(Joshi等人,1987年,《核酸研究》,第15卷,第9627-9639页)。在具体的实施例中,使用马铃薯蛋白酶抑制剂II基因(PinII)终止子。参见(例如)Keil et al.(1986)Nucl.Acids Res.14:5641-5650(Keil等人,1986年,《核酸研究》,第14卷,第5641-5650页);以及An et al.(1989)Plant Cell1:115-122(An等人,1989年,《植物细胞》,第1卷,第115-122页),将这些文献以引用的方式全文并入本文。
包含与异源核苷酸序列有效连接的实施例的启动子序列的DNA构建体,还可含有要被共转化到该生物中的基因的至少一个额外核苷酸序列。或者,所述额外序列可在另一DNA构建体上提供。
在适当情况下,可将其表达要处于##实施例的启动子序列控制下的异源核苷酸序列及任何额外核苷酸序列进行优化,以便在转化的植物中的表达提高。也即,可使用植物偏好的密码子来合成这些核苷酸序列以改进表达。本领域有可供合成植物偏好的核苷酸序列的方法。参见例如美国专利No.5,380,831和No.5,436,391,以及Murray et al.(1989)Nucleic Acids Res.17:477-498(Murray等人,1989年,《核酸研究》,第17卷,第477-498页),通过引用并入本文。
已知有另外的序列修饰可增强在细胞宿主中的基因表达。这些包括消除以下序列:编码假多腺苷酸化信号、外显子-内含子剪接位点信号的序列、转座子样重复序列以及其他此类得到充分表征的可能对基因表达有害的序列。可将异源核苷酸序列的G-C含量调整至给定细胞宿主的平均水平,该平均水平通过参考该宿主细胞中表达的已知基因来计算。当可能时,对序列进行修饰以避免出现预测的发夹二级mRNA结构。
DNA构建体可另外含有5′前导序列。此类前导序列可起到增强翻译的作用。翻译前导序列是本领域已知的并且包括:小核糖核酸病毒前导序列,例如,EMCV前导序列(脑心肌炎5′非编码区)(Elroy-Stein et al.(1989)Proc.Nat.Acad.Sci.USA86:6126-6130(Elroy-Stein等人,1989年,《美国国家科学院院刊》,第86卷,第6126-6130页));马铃薯Y病毒前导序列,例如TEV前导序列(烟草蚀纹病毒)(Allison et al.(1986)Virology154:9-20(Allison等人,1986年,《病毒学》,第154卷,第9-20页));MDMV前导序列(玉蜀黍矮花叶病毒);人免疫球蛋白重链结合蛋白(BiP)(Macejak et al.(1991)Nature353:90-94(Macejak等人,1991年,《自然》,第353卷,第90-94页));来自苜蓿花叶病毒的外被蛋白mRNA的非翻译前导序列(AMV RNA4)(Jobling et al.(1987)Nature325:622-625(Jobling等人,1987年,《自然》,第325卷,第622-625页));烟草花叶病毒前导序列(TMV)(Gallie et al.(1989)MolecularBiology of RNA,pages237-256(Gallie等人,1989年,《RNA的分子生物学》,第237-256页));以及玉蜀黍枯黄斑点病毒前导序列(MCMV)(Lommel et al.(1991)Virology81:382-385(Lommel等人,1991年,《病毒学》,第81卷,第382-385页))。另参见Della-Cioppa et al.(1987)Plant Physiology84:965-968(Della-Cioppa等人,1987年,《植物生理学》,第84卷,第965-968页)。也可采用其他已知能提高翻译和/或mRNA稳定性的方法,例如内含子,如玉蜀黍遍在蛋白内含子(Christensen and Quail(1996)Transgenic Res.5:213-218(Christensen和Quail,1996年,《转基因研究》,第5卷,第213-218页);Christensenet al.(1992)Plant Molecular Biology18:675-689(Christensen等人,1992年,《植物分子生物学》,第18卷,第675-689页))或者玉蜀黍AdhI内含子(Kyozuka et al.(1991)Mol.Gen.Genet.228:40-48(Kyozuka等人,1991年,《分子遗传学与普通遗传学》,第228卷,第40-48页);Kyozuka et al.(1990)Maydica35:353-357(Kyozuka等人,1990年,《Maydica》,第35卷,第353-357页))等。
各实施例的DNA构建体也可包含另外的可能需要的增强子,翻译增强子或者转录增强子均可。这些增强子区域是本领域技术人员公知的,可包括ATG起始密码子和邻近的序列。起始密码子必须与编码序列的阅读框同相(in phase)以确保整个序列的翻译。翻译控制信号和起始密码子可来自多种来源,包括天然来源和合成来源。翻译起始区可从转录起始区的来源提供,或者从结构基因提供。该序列也可衍自选定用来表达该基因的调节元件,且可进行特异性修饰以提高mRNA的翻译。应认识到,为提高转录水平,可将增强子与本文所公开的启动子区组合使用。增强子是本领域知道的,包括SV40增强子区、35S增强子元件等。
在制备DNA构建体时,可对各个DNA片段进行操纵,以提供处于正确取向的DNA序列,且适当时提供处于正确的阅读框的DNA序列。为此目的,可应用衔接子或者接头将DNA片段连接在一起,或者可涉及其他的操纵以提供便利的限制位点。可以添加或者移除限制位点,可以移除多余的DNA,或者可以对实施例的序列作出其他类似修饰。出于这个目的,可以涉及到体外诱变、引物修复、限制性酶切、复性、再置换(例如转换和易位)。
可以在DNA构建体中包括报道基因或者选择性标记基因。本领域已知的合适报道基因的例子可以见于例如以下文献:Jefferson et al.(1991)inPlant Molecular Biology Manual,ed.Gelvin et al.(Kluwer AcademicPublishers),pp.1-33(Jefferson等人,1991年,《植物分子生物学手册》,Gelvin等人编辑,克吕维尔学术出版社,第1-33页);DeWet et al.(1987)Mol.Cell.Biol.7:725-737(DeWet等人,1987年,《分子细胞生物学》,第7卷,第725-737页);Goff et al.(1990)EMBO J.9:2517-2522(Goff等人,1990,《欧洲分子生物学组织杂志》,第9卷,第2517-2522页);Kain et al.(1995)BioTechniques19:650-655(Kain等人,1995年,《生物技术》,第19卷,第650-655页);以及Chiu et al.(1996)Current Biology6:325-330(Chiu等人,1996年,《当代生物学》,第6卷,第325-330页)。
用于转化细胞或者组织的选择的选择性标记物可包括赋予抗生素抗性或者除草剂抗性的基因。合适的选择性标记物基因的例子包括但不限于编码针对以下物质的抗性的基因:氯霉素(Herrera Estrella et al.(1983)EMBOJ.2:987-992(Herrera Estrella等人,1983年,《欧洲分子生物学组织杂志》,第2卷,第987-992页));甲氨蝶呤(Herrera Estrella et al.(1983)Nature303:209-213(Herrera Estrella等人,1983年,《自然》,第303卷,第209-213页);Meijer et al.(1991)Plant Mol.Biol.16:807-820(Meijer等人,1991年,《植物分子生物学》,第16卷,第807-820页));潮霉素(Waldron et al.(1985)Plant Mol.Biol.5:103-108(Waldron等人,1985年,《植物分子生物学》,第5卷,第103-108页);Zhijianet al.(1995)Plant Science108:219-227(Zhijian等人,1995年,《植物科学》,第108卷,第219-227页));链霉素(Jones et al.(1987)Mol.Gen.Genet.210:86-91(Jones等人,1987年,《分子遗传学与普通遗传学》,第210卷,第86-91页));壮观霉素(Bretagne-Sagnard et al.(1996)Transgenic Res.5:131-137(Bretagne-Sagnard等人,1996年,《转基因研究》,第5卷,第131-137页));博来霉素(Hille et al.(1990)Plant Mol.Biol.7:171-176(Hille等人,1990年,《植物分子生物学》,第7卷,第171-176页));磺酰胺(Guerineau et al.(1990)Plant Mol.Biol.15:127-136(Guerineau等人,1990年,《植物分子生物学》,第15卷,第127-136页));溴苯腈(Stalker et al.(1988)Science242:419-423(Stalker等人,1988年,《科学》,第242卷,第419-423页));草甘膦(Shaw et al.(1986)Science233:478-481(Shaw等人,1986年,《科学》,第233卷,第478-481页));膦丝菌素(DeBlock et al.(1987)EMBO J.6:2513-2518(DeBlock等人,1987年,《欧洲分子生物学组织杂志》,第6卷,第2513-2518页))。
其他可在转基因事件的回收中发挥作用但在最终产物中可能不需要的基因将包括但不限于诸如以下的例子:GUS(b-葡糖醛酸酶;Jefferson(1987)Plant Mol.Biol.Rep.5:387(Jefferson,1987年,《植物分子生物学报道》,第5卷,第387页))、GFP(绿色荧光蛋白;Chalfie et al.(1994)Science263:802(Chalfie等人,1994年,《科学》,第263卷,第802页))、萤光素酶(Riggs et al.(1987)Nucleic Acids Res.15(19):8115(Riggs等人,1987年,《核酸研究》,第15卷,第19期,第8115页)以及Luehrsen et al.(1992)Methods Enzymol.216:397-414(Luehrsen等人,1992年,《酶学方法》,第216卷,第397-414页)),以及编码花青素生产的玉蜀黍基因(Ludwig et al.(1990)Science247:449(Ludwig等人,1990年,《科学》,第247卷,第449页))。
实施例的核酸分子可用于涉及在植物中表达核苷酸序列的方法中。这可通过用包含与异源核苷酸序列有效连接的本文所指明的启动子的DNA构建体转化目的植物细胞,并从所述植物细胞再生出稳定转化的植株来实现。实施例的方法还涉及在植物组织中选择性表达核苷酸序列。这些方法包括用包含与异源核苷酸序列有效连接的本文所指明的能在植物细胞中起始转录的启动子的DNA构建体转化植物细胞,并从所述植物细胞再生出转化的植株。
可使用包含与目的核苷酸序列有效连接的实施例的具体启动子序列的DNA构建体转化任何植物。如此,可以获得基因修饰的即转基因的或者转化的植物、植物细胞、植物组织、种子、根等。
适用于实施例的植物物种包括但不限于玉米(Zea mays)、芸苔属(例如欧洲油菜(B.napus)、芜青(B.rapa)、芥菜(B.juncea),特别是那些可用作籽油的来源的芸苔属物种)、苜蓿(Medicago sativa)、水稻(Oryza sativa)、黑麦(Secale cereale)、高粱(Sorghum bicolor,Sorghum vulgare)、小米(例如珍珠粟(Pennisetum glaucum)、黄米(Panicum miliaceum)、谷子(Setaria italica)、龙爪稷(Eleusine coracana))、向日葵(Helianthus annuus)、红花(Carthamustinctorius)、小麦(Triticum aestivum)、大豆(Glycine max)、烟草(Nicotianatabacum)、马铃薯(Solanum tuberosum)、花生(Arachis hypogaea)、棉花((Gossypium barbadense,Gossypium hirsutum)、甘薯(Ipomoea batatus)、木薯(Manihot esculenta)、咖啡(Cofea spp.)、椰子(Cocos nucifera)、菠萝(Ananascomosus)、柑橘树(Citrus spp.)、可可(Theobroma cacao)、茶(Camelliasinensis)、香蕉(Musa spp.)、鳄梨(Persea americana)、无花果(Ficus casica)、番石榴(Psidium guajava)、芒果(Mangifera indica)、橄榄(Olea europaea)、木瓜(Carica papaya)、腰果(Anacardium occidentale)、澳大利亚坚果(Macadamiaintegrifolia)、杏树(Prunus amygdalus)、糖用甜菜(Beta vulgaris)、甘蔗(Saccharum spp.)、燕麦、大麦、蔬菜、观赏植物和针叶树。
蔬菜包括番茄(Lycopersicon esculentum)、莴苣(例如Lactucasativa)、青豆(Phaseolus vulgaris)、利马豆(Phaseolus limensis)、豌豆(Lathyrus spp.)和黄瓜属(Cucumis)的成员如黄瓜(C.sativus)、香瓜(C.cantalupensis)和甜瓜(C.melo)。观赏植物包括杜鹃花(Rhododendron spp.)、八仙花(Macrophylla hydrangea)、朱槿(Hibiscus rosasanensis)、玫瑰(Rosaspp.)、郁金香(Tulipa spp.)、水仙花(Narcissus spp.)、矮牵牛花(Petuniahybrida)、康乃馨(Dianthus caryophyllus)、一品红(Euphorbia pulcherrima)和菊花。
可以在实施实施例中应用的针叶树包括例如松树如火炬松(Pinustaeda)、沼泽松(Pinus elliotii)、美国黄松(Pinus ponderosa)、黑松(Pinuscontorta)和蒙特利松(Pinus radiata);花旗松(Pseudotsuga menziesii);西铁杉(Tsuga canadensis);北美云杉(Picea glauca);红杉(Sequoia sempervirens);枞树(true firs)如银枞(Abies amabilis)和胶枞(Abies balsamea);以及雪松如西方红雪松(Thuja plicata)和阿拉斯加黄雪松(Chamaecyparis nootkatensis)。实施例的植物可以是作物植物(例如玉米、苜蓿、向日葵、芸苔、大豆、棉花、红花、花生、高粱、小麦、小米、烟草等)。本发明特别适合于单子叶植物家族的任何成员,包括但不限于玉蜀黍、水稻、大麦、燕麦、小麦、高粱、黑麦、甘蔗、菠萝、山药、洋葱、香蕉、椰子和枣。
本文所用的“载体”指用于将核苷酸构建体(例如DNA构建体)引入到宿主细胞中的DNA分子,如质粒、黏粒或者细菌噬菌体。克隆载体通常含有一个或者少数的限制性内切核酸酶识别位点,外来DNA序列可在该位点以可确定的方式插入而不造成该载体的必要生物功能的损失,克隆载体也含有适用于鉴定和选择转化有该克隆载体的细胞的标志基因。标记物基因通常包括提供四环素抗性、潮霉素抗性或者氨苄青霉素抗性的基因。
实施例的方法涉及将核苷酸构建体引入到植物中。术语“引入”在本文中用来指将核苷酸构建体递送给植物,使得该构建体进入该植物的细胞的内部。实施例的方法不依赖于将核苷酸构建体引入植物中的具体方法,只要该核苷酸构建体进入该植物的至少一个细胞的内部即可。将核苷酸构建体引入植物中的方法是本领域已知的,包括但不限于稳定转化方法、瞬时转化方法和病毒介导的方法。
所谓“稳定转化”意指被引入到植物中的核苷酸构建体整合到了该植物的基因组中,并能够被该植物的后代遗传。所谓“瞬时转化”意指引入植物中的核苷酸构建体没有整合进至植物的基因组中。
可通过使植物与病毒或者病毒核酸接触而将##实施例的核苷酸构建体引入植物中。通常,这类方法涉及将##实施例的核苷酸构建体掺入在病毒DNA或者RNA分子内。涉及病毒DNA或RNA分子的将核苷酸构建体引入植物中并在其中表达所编码的蛋白质的方法,是本领域已知的。参见例如美国专利No.5,889,191、No.5,889,190、No.5,866,785、No.5,589,367和No.5,316,931;将这些专利以引用方式并入本文。
转化规程以及将核苷酸序列引入植物中的规程,可根据要进行转化的植物或者植物细胞的类型(即单子叶植物或者双子叶植物)而异。将核苷酸序列引入到植物细胞中并随后插入到植物基因组中的合适方法包括:微注射(Crossway et al.(1986)Biotechniques4:320-334(Crossway等人,1986年,《生物技术》,第4卷,第320-334页))、电穿孔(Riggs et al.(1986)Proc.Natl.Acad.Sci.USA83:5602-5606(Riggs等人,1986年,《美国国家科学院院刊》,第83卷,第5602-5606页))、农杆菌介导的转化(美国专利No.5,981,840和No.5,563,055)、直接基因转移(Paszkowskiet al.(1984)EMBO J.3:2717-2722(Paszkowski等人,1984年,《欧洲分子生物学组织杂志》,第3卷,第2717-2722页))和射弹粒子加速(参见例如美国专利No.4,945,050;No.5,879,918;No.5,886,244;No.5,932,782;Tomes et al.(1995)in Plant Cell,Tissue,and Organ Culture:Fundamental Methods,ed.Gamborg and Phillips(Springer-Verlag,Berlin)(Tomes等人,1995年,《植物细胞、组织和器官培养:基本方法》,Gamborg和Phillips编辑,斯普林格出版社,柏林);以及McCabe et al.(1988)Biotechnology6:923-926(McCabe等人,1988年,《生物技术》,第6卷,第923-926页))。还可参见Weissinger et al.(1988)Ann.Rev.Genet.22:421-477(Weissinger等人,1988年,《遗传学年度评论》,第22卷,第421-477页);Sanford et al.(1987)Particulate Science andTechnology5:27-37(Sanford等人,1987年,《粒子科学和技术》,第5卷,第27-37页)(洋葱);Christou et al.(1988)Plant Physiol.87:671-674(Christou等人,1988年,《植物生理学》,第87卷,第671-674页)(大豆);McCabe et al.(1988)Bio/Technology6:923-926(McCabe等人,1988年,《生物/技术》,第6卷,第923-926页)(大豆);Finer andMcMullen(1991)In Vitro Cell Dev.Biol.27P:175-182(Finer和McMullen,1991年,《体外细胞发育生物学》,第27P卷,第175-182页)(大豆);Singh et al.(1998)Theor.Appl.Genet.96:319-324(Singh等人,1998年,《理论与应用遗传学》,第96卷,第319-324页)(大豆);Datta etal.(1990)Biotechnology8:736-740(Datta等人,1990年,《生物技术》,第8卷,第736-740页)(水稻);Klein et al.(1988)Proc.Natl.Acad.Sci.USA85:4305-4309(Klein等人,1988年,《美国国家科学院院刊》,第85卷,第4305-4309页)(玉蜀黍);Klein et al.(1988)Biotechnology6:559-563(Klein等人,1988年,《生物技术》,第6卷,第559-563页)(玉蜀黍);美国专利No.5,240,855、No.5,322,783和No.5,324,646;Klein etal.(1988)Plant Physiol.91:440-444(Klein等人,1988年,《植物生理学》,第91卷,第440-444页)(玉蜀黍);Fromm et al.(1990)Biotechnology8:833-839(Fromm等人,1990年,《生物技术》,第8卷,第833-839页)(玉蜀黍);Hooykaas-Van Slogteren et al.(1984)Nature(London)311:763-764(Hooykaas-Van Slogteren等人,1984年,自然(伦敦),第311卷,第763-764页);美国专利No.5,736,369(谷类);Bytebier et al.(1987)Proc.Natl.Acad.Sci.USA84:5345-5349(Bytebier等人,1987年,《美国国家科学院院刊》,第84卷,第5345-5349页)(百合科);De Wet et al.(1985)in The Experimental Manipulation of OvuleTissues,ed.Chapman et al.(Longman,New York),pp.197-209(De Wet等人,1985年,《胚珠组织的实验操纵》,Chapman等人编辑,朗文出版社,纽约,第197-209页)(花粉);Kaeppler et al.(1990)Plant CellReports9:415-418(Kaeppler等人,1990年,《植物细胞报道》,第9卷,第415-418页),以及Kaeppler et al.(1992)Theor.Appl.Genet.84:560-566(Kaeppler等人,《理论与应用遗传学》,第84卷,第560-566页)(晶须介导的转化);D'Halluin et al.(1992)Plant Cell4:1495-1505(D'Halluin等人,《植物细胞》,第4卷,第1495-1505页)(电穿孔);Li et al.(1993)Plant Cell Reports12:250-255(Li等人,1993年,《植物细胞报道》,第12卷,第250-255页),以及Christou and Ford(1995)Annals ofBotany75:407-413(Christou和Ford,1995年,《植物学年鉴》,第75卷,第407-413页)(水稻);Osjoda et al.(1996)Nature Biotechnology14:745-750(Osjoda等人,1996年,《自然生物技术》,第14卷,第745-750页)(通过根瘤农杆菌转化玉米);所有这些文献和专利以引用方式并入本文。
可根据常规方式将已转化的细胞培育成植株。参见例如McCormick etal.(1986)Plant Cell Reports5:81-84(McCormick等人,1986年,《植物细胞报道》,第5卷,第81-84页)。然后可使这些植株生长,用相同的转化株或者不同的株进行授粉,并鉴定出具有所需表型特征的表达的所得杂交体。可培养两代或更多代以确保所需表型特性的表达得到稳定保持和遗传,然后收获种子以确保所需表型特征的表达已得到实现。因此,本文所用的“转化种子”指含有稳定整合到植物基因组中的核苷酸构建体的种子。
有多种方法用来从植物组织再生出植物。具体的再生方法将取决有起始植物组织和要再生的具体植物物种。从单一植物原生质体转化体或者从各种转化的外植体再生、发展和培育植株是本领域公知的(Weissbach和Weissbach,(1988),载于《植物分子生物学方法》(Methods for PlantMolecular Biology),(编辑),美国加州圣地亚哥市学术出版社公司(Academic Press,Inc.,San Diego,CA))。这个再生和生长方法通常包括以下步骤:选择经转化的细胞,将那些个体化的(individualized)细胞培养经过胚发育的通常阶段经过生根小植株阶段。转基因胚和种子类似地进行再生。之后将所得的转基因生根苗种植在适当的植物生长培养基如土壤中。通常使再生的植株自花授粉以提供纯合的转基因植株。另外,将从再生的植株获得的花粉与农艺上重要的株系的种子培育植株进行杂交。反过来,用来自这些重要株系的植株的花粉对再生的植株进行授粉。用本领域技术人员公知的方法来培植实施例的含有所需多肽的转基因植株。
实施例提供用于筛选能调控在胚和植株的选定组织内的表达的化合物的组合物。载体、细胞和植株可以用于筛选BRRV启动子的激动剂和拮抗剂的候选分子。例如,可以将报道基因与BRRV启动子有效连接并作为转基因在植物中表达。加入待测试的化合物,测量报道基因表达情况以确定对启动子活性的作用。
以下实例以说明性方式而不是以限制性方式提供。
实验
以下实施例进一步说明各实例,其中份和百分数是以重量计,度是指摄氏度,除非另有规定。分子生物学的技术通常按Ausubel或者Sambrook(见上文)中所描述那样进行。应认识到,这些实例虽然指明某些实施例,但仅仅是以举例说明的方式给出。由以上讨论和这些实例,本领域技术人员可以确定实施例的特征,并在不背离其精神和范围的情况下,可对实施例作出各种变化和修改以使其适应各种用途和条件。因此,除了本文显示和描述的那些实施例之外,本领域技术人员由前文的描述将显而易见地知道各实施例的各种修改。这类修改也当视为落入所附权利要求的范围内。
本文给出的每个参考文献的公开内容以引用方式整体并入本文。
实例1:蓝莓红环斑病毒(BRRV)启动子序列
SEQ ID NO:1的启动子是通过在GenBank Genomes中检索已测序并归属于花椰菜病毒科病毒家族的病毒基因组获得的。该检索基于公知的花椰菜花叶病毒35S(CaMV35S)启动子而起始。所述启动子驱动异源基因在大多数植物的大多数组织中的组成型表达。来自这个病毒家族的其他启动子如玄参花叶病毒34S启动子也在植物中引导组成型样(constitutive-like)表达。因此,衍自花椰菜病毒科病毒家族的另外的启动子也可在植物中驱动组成型表达。花椰菜病毒科基因组的结构相当保守(见图1)。该基因组的存在于所谓长基因间区域(LIR)中的区域通常含有为使启动子在植物中起作用而必需的调节序列。
BRRV基因组具有LIR,因此以这个区域为目标进行功能启动子分析。选择两个含有LIR的序列以便在植物中测试。最长的序列由1059bp组成,并且在该序列3’端上游60bp处具有推定的TATA框。转录起始位点预计位于在TATA框下游23bp和27bp的腺苷酸残基处。整个1059bp序列称为BRRV全长启动子或BRRV FL。
第二个序列是该全长启动子的截短形式(参见图2)。所谓BRRV TR启动子,是指长度为360bp并且由全长启动子的3’端加上另外20bp组成。这些20bp不是有意从全长启动子去除。然而,通过缺失该全长启动子的5’端的720bp,由该截短启动子在植物中引导的表达模式可能被改变,并且从而提供对该启动子中重要调节元件的深入认识。
重复启动子区域也可以改变表达模式,并且如果存在转录增强子的话,甚至可以增强由启动子引导的表达。已证实重复CaMV35S启动子的上游区域可以增加表达大约十倍(Kay,R.et al.,(1987)236:1299-1302(Kay,R.等人,1987年,第236卷,第1299-1302页))。为了解重复对BRRVTR启动子可能会具有什么影响,将260bp的截短启动子置于360bp序列的上游,产生在推定的TATA框的上游具有重复性260bp区段的启动子(BRRV Dup;参见图2)。所有3个启动子序列均通过合成制备。
实例2:使用报道基因在玉蜀黍中进行的表达分析
在表达载体中,将BRRV FL启动子、BRRV TR启动子和BRRV Dup启动子,连同和不连同Adh1内含子1,与B-葡糖醛酸酶(GUS)基因有效连接,以测试合成的DNA片段是否会引导表达。为增加表达,包含Adh1内含子,因为已证实在谷类植物细胞中,转基因的表达因一些5’近端内含子的存在而增强(参见Callis et al.(1987)Genes and Development1:1183-1200(Callis等人,1987年,《基因与发育》,第1卷,第1183-1200页);Kyozuka et al.(1990)Maydica35:353-357(Kyozuka等人,1990年,《Maydica》,第35卷,第353-357页))。
在BRRV启动子的分析中,使用来自玉蜀黍的Ubi-1启动子(使用其自身内含子)作为阳性对照。也将它与B-葡糖醛酸酶(GUS)基因有效连接,从而它可以用来比较所述3个BRRV启动子的表达模式和表达水平。Ubi-1启动子在玉蜀黍的几乎所有组织中是强组成型启动子。
使用农杆菌方案产生出稳定转化的植株(实例3中详述)。对于每个启动子和启动子x内含子组合,再生出十个植株。使各植株在温室条件下生长,直到它们达到V4至V6的生长阶段。由植株上的围绕叶(collaredleaves)数目确定营养生长阶段。因此,V6阶段的植株具有6片完全围绕的叶子。在这个阶段从每个植株获取叶和根组织的样品。然后让各植株生长至早期R1阶段,这是正好在花粉散出之前的时间,此时收集须和茎秆(节和节间)以及穗组织。最终,当植株开始散出花粉时收集花粉。使用组织化学染色、定量荧光测定和qRT-PCR的组合检查所述3个启动子所引导的表达模式和表达水平。
分析结果在表1和2中示出。总体而言,BRRV FL启动子驱动绿色组织中的表达(表1)。在叶中检测到的GUS表达水平低于Ubi-1玉蜀黍启动子引导的表达,不同的是BRRV Dup启动子,其引导的表达实际上高于Ubi-1。在穗中也检测到BRRV FL表达。该器官中的表达主要发生于小穗的绿色组织例如颖片中,以及穗轴和小穗轴中。根、茎秆(节和节间)、须、花粉和籽粒中基本上不存在表达。
添加Adh1内含子有利于表达。在叶中BRRV FL启动子超过Ubi-1启动子引导的表达水平平均大约2倍(表2)。穗中的表达也增加并且目前在茎秆中检测到。茎秆中的表达水平仍然较低,为Ubi-1的大约20%。对茎秆中表达模式的分析显示在节处和节下方的节间内GUS表达。沿节间向下,表达逐渐减小,并且直到在下一个较低节上方无法检测到表达。根、茎秆、花粉和籽粒中仍然不存在可检测的表达。
BRRV TR启动子具有与BRRV FL启动子非常类似的表达模式(表1)。表达水平也类似。添加Adh1内含子1导致类似于BRRV FL的变化。唯一差异是叶中表达略低。
使用BRRV DUP启动子的表达提供相对于全长和截短启动子略有差异的结果。叶组织和穗组织中的表达较高,而在其他组织中保持大致相同(表1)。就添加ADH内含子而言,其相对于无内含子BRRV DUP形式以及BRRV FL和BRRV TR启动子的表达是多样的,取决于组织,存在相同、略低或者略高的表达(表2)。
表1:BRRV启动子(无Adh1内含子1)的玉蜀黍表达结果
数据以0-6标度表示,其中玉蜀黍Ubi-1启动子代表中间值。
表2:BRRV启动子(带Adh1内含子1)的玉蜀黍表达结果
数据以0-6标度表示,其中玉蜀黍Ubi-1启动子代表中间值。
实例3:大豆中使用报道基因的表达分析
将BRRV FL启动子有效连接到两个不同的杀昆虫基因Prm19和Prm22,以测试合成DNA片段是否会在大豆植物中引导表达。使用生物射弹轰击法,产生稳定转化的植物(实例6中详述)。使用qPCR对潮霉素抗性T0植株筛选框插入情况,并通过昆虫功效测试筛选表达情况。用摄食性昆虫侵染植株提供对蛋白质表达情况的快速评估,因为需要充分的水平以保护植株免于昆虫侵害。不充分的表达将导致对植株的摄食和毁损。将来自七个Prm22和十个Prm19单拷贝的有效事件的T1种子种植以进一步表征由BRRV FL启动子引导的表达。表3中的结果表明,BRRV启动子确实在转基因T0和T1大豆植株的叶子中发挥作用,并且能够以提供保护免遭绒毛豆毛虫(VBC)和大豆尺蠖(SBL)影响的水平引导表达。
表3:BRRV启动子在大豆中的功效和表达结果
功效值以保护叶子免遭摄食达>90%的事件百分数表示
表达以T1事件中的ppm中值表示
CTP=叶绿体转运肽
实例4:农杆菌介导的玉蜀黍转化和转基因植物的再生
为用本发明的启动子序列进行农杆菌介导的玉蜀黍转化,采用了Zhao的方法(美国专利No.5,981,840以及PCT专利公开WO98/32326;将这两个专利的内容以引用方式并入本文)。简单而言,从玉蜀黍分离出未成熟的胚,并使胚在农杆菌能够将本发明的启动子序列转移到至少一个所述未成熟胚的至少一个细胞的条件下接触农杆菌悬液(步骤1:感染步骤)。在这个步骤中,将未成熟胚浸入农杆菌悬液中以启动接种。使胚与农杆菌共培养一段时间(步骤2:共培养步骤)。在该感染步骤之后,将未成熟胚在固体培养基上进行培养。在该共培养期之后,进行任选的“静息”步骤。在这个静息步骤中,将胚在至少一种已知抑制农杆菌生长的抗生素存在下进行温育,不添加植物转化体的选择剂(步骤3:静息步骤)。为了消除农杆菌以及为了感染细胞的静息期,将未成熟胚在含有抗生素但不含选择剂的固体培养基上培养。接着,在含有选择剂的培养基上培养接种的胚,并且回收生长的转化愈伤组织(步骤4:选择步骤)。在含有选择剂的固体培养基上培养未成熟胚,从而导致转化细胞的选择性生长。然后使愈伤组织再生成植株(步骤5:再生步骤),并且固体培养基上进行培养在选择性培养基上培育的愈伤组织以便再生植株。
实例5:通过粒子轰击转化玉蜀黍及转基因植物再生
将来自温室供体植株的未成熟玉蜀黍胚用含有与目的基因有效连接的实施例启动子的DNA分子轰击。在同一转化载体中提供选择性标记,或者作为另一种选择,该选择性标记基因在单独的DNA分子中提供。如下进行转化。培养基配方见下文。
靶标组织的制备
将穗去壳并在30%CLOROXTM漂白剂加0.5%Micro洗涤剂中表面灭菌20分钟,然后用无菌水漂洗两次。将未成熟胚切下,并以胚轴一侧朝下(盾片一侧朝上)放置,每板25个胚,在560Y培养基上放置4小时,然后在2.5cm靶区内排成一行准备进行轰击。
DNA的制备
制备包含实施例的启动子序列的质粒载体。该载体另外含有由CAMV35S启动子驱动的PAT选择性标记基因并包括CAMV35S终止子。任选地,该选择性标记可以存在于单独的载体上。采用如下的CaCl2沉淀程序,将包含实施例的启动子序列以及PAT选择性标记的DNA分子沉淀到1.1μm(平均直径)钨丸上:
100μL制备的钨粒子水溶液
10μL(1μg)DNA/Tris EDTA缓冲液(1μg总DNA)
100μL2.5M CaCl2
10μL0.1M亚精胺
将每种试剂依序加到钨粒子悬液,同时保持在多管涡旋机上。将最终的混合物进行短暂超声处理,并且允许其在恒定漩涡混合下温育10分钟。在沉淀期后,将各管进行短暂离心,除去液体,用500ml100%乙醇洗涤,离心30秒。再次移除液体,将105μl100%乙醇加至最终的钨粒子小丸。对于粒子枪轰击,将钨/DNA粒子进行短暂超声处理,并取10μl点滴到每个巨载体(macrocarrier)的中央上,并且允许其干燥约2分钟后轰击。
粒子枪处理
将样品平板在粒子枪#HE34-1或者#HE34-2中以水平4进行轰击。所有样品接受650PSI的单次射击,每管的制备粒子/DNA共取十个等分试样。
后续处理
在轰击之后,将胚保持在560Y培养基上2天,然后转移到含有3mg/L双丙氨膦的560R选择培养基,并且每隔2个星期进行继代培养。在选择大约10个星期后,将抗选择的愈伤组织克隆转移到288J培养基以启动植物再生。在体细胞胚成熟后(2-4个星期),将发育良好的体细胞胚转移到培养基中进行发芽并转移到有光照的培养室。大约7-10天后,将发育的小植株转移到管中的272V无激素培养基7-10天,直到小植株完全长好。然后将植株转移到含有盆栽土的inserts in flats(相当于2.5英寸盆),在生长室中生长1个星期,随后在温室中再生长1-2个星期,然后转移到常见的600型盆(1.6加仑)并生长至成熟。通过本领域已知的测定法,例如用能结合目的蛋白的抗体进行免疫测定和蛋白质印迹分析,监测植株并对表达进行评分。
轰击法和培养基
轰击培养基(560Y)包含4.0g/L N6基础盐(SIGMA C-1416)、1.0mL/LEriksson维生素混合物(1000X SIGMA-1511)、0.5mg/L盐酸硫胺、120.0g/L蔗糖、1.0mg/L2,4-D和2.88g/L L-脯氨酸(用KOH调至pH5.8后用去离子水定容);2.0g/L GelriteTM(用去离子水定容后加入);及8.5mg/L硝酸银(将培养基灭菌并冷却到室温后加入)。选择培养基(560R)包含4.0g/L N6基础盐(SIGMA C-1416)、1.0mL/L Eriksson维生素混合物(1000X SIGMA-1511)、0.5mg/L盐酸硫胺、30.0g/L蔗糖和2.0mg/L2,4-D(用KOH调至pH5.8后用去离子水定容);3.0g/L GelriteTM(用去离子水定容后加入);及0.85mg/L硝酸银和3.0mg/L双丙氨膦(两者均在将培养基灭菌并冷却到室温后加入)。
植物再生培养基(288J)包含4.3g/L MS盐(GIBCO11117-074)、5.0mL/LMS维生素原液(0.100g烟酸、0.02g/L盐酸硫胺素、0.10g/L盐酸吡哆辛和0.40g/L甘氨酸,用精制去离子水(polished D-I H20)定容)(Murashige andSkoog(1962)Physiol.Plant.15:473(Murashige和Skoog,1962年,《植物生理学》,第15卷,第473页))、100mg/L肌醇、0.5mg/L玉米素、60g/L蔗糖和1.0mL/L的0.1mM脱落酸(在调至pH5.6后用精制去离子水定容);3.0g/L GelriteTM(用去离子水定容后加入);及1.0mg/L吲哚乙酸和3.0mg/L双丙氨膦(将培养基灭菌并冷却到60℃后加入)。无激素培养基(272V)包含4.3g/L MS盐(GIBCO11117-074)、5.0mL/L MS维生素原液(0.100g/L烟酸、0.02g/L盐酸硫胺素、0.10g/L盐酸吡哆辛和0.40g/L甘氨酸,用精制去离子水定容)、0.1g/L肌醇和40.0g/L蔗糖(调节pH至5.6后用精制去离子水定容);及6g/L细菌琼脂(用精制去离子水定容后加入),灭菌并冷却到60℃。
实例6:转基因大豆植株的转化和再生
培养条件
将大豆胚发生悬浮培养物(栽培变种Jack)在150rpm、26℃的回转摇床上保持在35mL液体培养基SB196(参见下文配方)中,该回转摇床具有冷白色荧光灯,光周期为16:8小时白天/黑夜,光强度为60-85μE/m2/s。每隔7天至两周通过将大约35mg组织接种到35mL新鲜液体SB196中,对培养物进行继代培养。
通过粒子枪轰击方法(Klein et al.(1987)Nature,327:70(Klein等人,1987年,《自然》,第327卷,第70页)),用以下实例中描述的质粒和DNA片段转化大豆胚发生悬浮培养物。
大豆胚发生悬浮培养物的启动
每月两次对大豆培养物进行启动,每次启动之间间隔5-7天。
在种植45-55天后从可用的大豆植株挑取带有未成熟种子的豆荚,剥壳并放入无菌绛红色盒子中。将大豆种子在含有1滴象牙皂的5%Clorox溶液(95ml的高压灭菌蒸馏水加5ml Clorox和1滴皂)中振摇15分钟,对它们进行灭菌。用两个1升瓶子的无菌蒸馏水清洗种子,使用小于4mm的种子。切开每颗种子的小的一端,将子叶压出种皮并放在SB199培养基的平板上。两个星期后,将子叶转移到含有SB1培养基的平板(每个平板25-30个子叶)。用纤维带包住平板。2-3个星期后,切取次生胚并放入SB196液体培养基中10天。
用于轰击的DNA的制备
将含有目的基因和选择性标记物基因的完整质粒或DNA质粒片段用于轰击。使用《PromegaTM方案与应用指南第二版》(PromegaTMProtocols andApplications Guide,Second Edition)(第106页)中描述的方法,或者使用Qiagen Maxiprep试剂盒或者Qiaprep Spin miniprep试剂盒,常规制备并纯化用于轰击的质粒DNA。
在每种情况下,将10μg质粒DNA在150μL适用于目的片段的特定酶混合物中消化。将所得的DNA片段在1%超纯琼脂糖(英杰公司(Invitrogen))上由凝胶电泳分离,并从琼脂糖凝胶切取编码目的基因的DNA片段。使用Qiaquick凝胶提取试剂盒,按照生产商的方案从琼脂糖纯化DNA。
将含有3mg金粒子(3mg金)的50μL无菌蒸馏水等分试样添加到5μL的1μg/μL DNA溶液(完整质粒或者如上所述制备的DNA片段)、50μL2.5M CaCl2和20μL的0.1M亚精胺。将混合物在涡旋振荡器的水平3上振摇3分钟,然后在台式微量离心机中离心10秒钟。用400μl100%乙醇洗涤后,通过在40μl100%乙醇中的超声处理使沉淀悬浮。向BiolisticPDS1000/HE仪器盘的每个飞盘分配5μL的DNA悬液。每个5μl等分试样含有大约0.375mg金/次轰击(即每盘)。
组织制备和用DNA轰击
将大约150-200mg的7日龄胚悬浮培养物放在空的无菌60×15mM平皿中,用塑料网盖住平皿。每板的组织轰击1或2次,膜破裂压力设定为1100PSI,腔室抽真空至27-28英寸汞柱。将组织距离阻滞网/停止网大约3.5英寸放置。
转化胚的选择
使用潮霉素选择转化的胚,因为潮霉素磷酸转移酶HPT基因用作选择性标记。
潮霉素(HPT)选择
在轰击后,将组织放入新鲜的SB196培养基中,如上所述进行培养。轰击后六天,将该SB196培养基用含有30mg/L潮霉素选择剂的新鲜SB196更换。每周更新选择培养基。在选择后四至六个星期,观察到绿色的转化组织从未转化的坏死胚发生簇中生长出来。将分离的绿色组织取出并接种到多孔板中,以产生新的克隆繁殖的转化胚发生悬浮培养物。
大豆体细胞胚再生成植株
为了从胚发生悬浮培养物获得完整植株,必须将组织再生。
胚成熟
将胚在SB196中在冷白色荧光(菲利普冷白色EconowattF40/CW/RS/EW(Phillips cool white Econowatt F40/CW/RS/EW))和Agro(菲利普F40Agro(Phillips F40Agro))灯泡(40瓦)下于26℃培养4-6个星期,光周期为16:8小时,光强度为90-120μE/m2s。这个时间后,将胚簇移出到固体琼脂培养基SB166达1-2周。然后将胚簇继代培养到培养基SB103持续3个星期。在此期间,从胚簇取出单独的胚并且对表型进行筛选。
胚干燥和萌发
将各个成熟的胚放入空的小平皿(35×10mM)中,将它们干燥大约4-7天。将平板用纤维带密封(产生小湿室)。将干燥的胚种植到SB71-4培养基中,在那里允许它们在与如上所述相同的培养条件下萌发。从萌发培养基移出萌发的小植株并用水彻底淋洗,并且然后种植在24孔托盘(pack tray)中的Redi-Earth中,用透明塑料罩盖住。2个星期后,将罩移开,并且使植物强壮另外一个星期。如果小植株看起来强壮,将它们移植到10英寸Redi-Earth盘,每盘最多3株小植株。10至16个星期后,将成熟的种子收获,破碎并分析蛋白质。
培养基配方
FN Lite原液
SB1固体培养基(每升)包含:4.33g MS盐(PhytoTech M524),1mLB5维生素1000x原液;31.l5g D-葡萄糖(Sigma G7021),2mL 2,4-D(20mg/L终浓度);ph 5.8,和8g TC琼脂(Phytotech A175)。
SB166固体培养基(每升)包含:4.33g MS盐(PhytoTech M524),1mLB5维生素1000x原液;31.l5g D-(+)-麦芽糖一水合物(Sigma M5895),750mg无水MgCl2(Sigma M0260);5g活性炭(Sigma C6209);ph5.7,和2.5g gelrite(Sigma G1910)。
SB103固体培养基(每升)包含:4.33g MS盐(PhytoTech M524),1mLB5维生素1000x原液;31.5g D-(+)-麦芽糖一水合物(Sigma M5895),750mg无水MgCl2(Sigma M0260);ph5.7,和2.5g gelrite(Sigma G1910)。
SB199固体培养基(每升)包含:4.33g MS盐(PhytoTech M524);1mlB5维生素1000×原液;30g蔗糖(Sigma S5390);4mL2,4-D(40mg/L终浓度),pH7.0,2g gelrite(Sigma G1910)。
SB71-4固体培养基(每升)包含:3.21g Gamborg’s B5盐(PhytoTechG398);20g蔗糖(Sigma S5390);pH5.7;和5g TC琼脂(PhytoTech A175)。
以等分试样在-20℃下保藏的B5维生素原液(每100mL)包含:10g肌醇;100mg烟酸;100mg盐酸吡哆醇;和1g硫胺素。如果溶液没有足够快地溶解,通过热搅拌板施加低水平的热量。氯磺隆原液是在0.01N氢氧化铵中包含1mg/mL。
本说明书中提及的所有公布和专利申请指示了本发明所属领域的技术人员的水平。所有公布和专利申请在相同程度上全文以引用方式并入本文,如同每个单独的公布或专利申请被具体地和独立地指出全文以引用方式并入本文一样。
虽然为了清楚地理解而已经通过举例说明和实例较详细地描述了本发明,但显然可以在权利要求书范围内实施一些改变和修饰。

Claims (18)

1.一种分离的核酸分子,所述分离的核酸分子由在植物细胞中启动转录的SEQ ID NO: 2所述的核苷酸序列组成。
2.一种分离的核酸分子,所述分离的核酸分子由在植物细胞中启动转录的SEQ ID NO: 3所述的核苷酸序列组成。
3.DNA构建体,所述DNA构建体由异源目的核苷酸序列与在植物细胞中启动转录的核苷酸序列组成,所述在植物细胞中启动转录的核苷酸序列选自:
a)由SEQ ID NO: 2所述的序列组成的核苷酸序列;和
b)由SEQ ID NO: 3所述的序列组成的核苷酸序列;
其中所述在植物细胞中启动转录的核苷酸序列有效连接至异源目的核苷酸序列。
4.载体,所述载体包含根据权利要求3所述的DNA构建体。
5. 一种在植物中表达核苷酸序列的方法,所述方法包括向植物中引入权利要求3的DNA构建体。
6.根据权利要求5所述的方法,其中所述植物是玉蜀黍,并且其中所述异源目的核苷酸序列在绿色植物组织中选择性表达。
7.根据权利要求5所述的方法,其中所述植物是双子叶植物。
8.根据权利要求5所述的方法,其中所述植物是单子叶植物。
9.根据权利要求8所述的方法,其中所述单子叶植物是玉蜀黍。
10.根据权利要求5所述的方法,其中所述异源核苷酸序列编码赋予对除草剂、盐、寒冷、干旱、病原体或者昆虫的抗性的基因产物。
11.一种在植物细胞中表达核苷酸序列的方法,所述方法包括向植物细胞中引入权利要求3的DNA构建体。
12.根据权利要求11所述的方法,其中所述植物细胞来自单子叶植物。
13.根据权利要求12所述的方法,其中所述单子叶植物是玉蜀黍。
14.根据权利要求11所述的方法,其中所述植物细胞来自双子叶植物。
15.根据权利要求11所述的方法,其中所述异源核苷酸序列编码赋予对除草剂、盐、寒冷、干旱、病原体或者昆虫的抗性的基因产物。
16.一种在玉蜀黍绿色植物组织中选择性表达异源核苷酸序列的方法,所述方法包括向植物细胞中引入权利要求3的DNA构建体,并从所述植物细胞再生出转化植物。
17.根据权利要求16所述的方法,其中所述异源核苷酸序列的表达改变所述玉蜀黍植物的表型。
18.根据权利要求16所述的方法,其中所述异源核苷酸序列编码赋予对除草剂、盐、寒冷、干旱、病原体或者昆虫的抗性的基因产物。
CN201180061456.3A 2010-12-22 2011-12-21 病毒启动子、其截短物以及使用方法 Expired - Fee Related CN103270160B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201061425912P 2010-12-22 2010-12-22
US61/425912 2010-12-22
PCT/US2011/066389 WO2012088227A1 (en) 2010-12-22 2011-12-21 Viral promoter, truncations thereof, and methods of use

Publications (2)

Publication Number Publication Date
CN103270160A CN103270160A (zh) 2013-08-28
CN103270160B true CN103270160B (zh) 2015-09-09

Family

ID=45524952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180061456.3A Expired - Fee Related CN103270160B (zh) 2010-12-22 2011-12-21 病毒启动子、其截短物以及使用方法

Country Status (7)

Country Link
US (1) US8895716B2 (zh)
EP (1) EP2655635A1 (zh)
CN (1) CN103270160B (zh)
BR (1) BR112013014988A2 (zh)
CA (1) CA2821154A1 (zh)
MX (1) MX2013007086A (zh)
WO (1) WO2012088227A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105722983A (zh) * 2013-09-11 2016-06-29 先锋国际良种公司 植物调控元件及其使用方法
EP3177725B1 (en) 2014-08-08 2019-12-18 Pioneer Hi-Bred International, Inc. Plant regulatory elements and methods of use thereof
EP3451837B1 (en) 2016-05-04 2021-08-25 Pioneer Hi-Bred International, Inc. Insecticidal proteins and methods for their use

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
US5352605A (en) 1983-01-17 1994-10-04 Monsanto Company Chimeric genes for transforming plant cells using viral promoters
US5034322A (en) 1983-01-17 1991-07-23 Monsanto Company Chimeric genes suitable for expression in plant cells
US5380831A (en) 1986-04-04 1995-01-10 Mycogen Plant Science, Inc. Synthetic insecticidal crystal protein gene
US4945050A (en) 1984-11-13 1990-07-31 Cornell Research Foundation, Inc. Method for transporting substances into living cells and tissues and apparatus therefor
DE3587548T2 (de) 1984-12-28 1993-12-23 Bayer Ag Rekombinante DNA, die in pflanzliche Zellen eingebracht werden kann.
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
DE3687682T2 (de) 1985-08-07 1993-08-19 Monsanto Co Glyphosat resistente pflanzen.
US4873192A (en) 1987-02-17 1989-10-10 The United States Of America As Represented By The Department Of Health And Human Services Process for site specific mutagenesis without phenotypic selection
US4971908A (en) 1987-05-26 1990-11-20 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US5312910A (en) 1987-05-26 1994-05-17 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US5145783A (en) 1987-05-26 1992-09-08 Monsanto Company Glyphosate-tolerant 5-endolpyruvyl-3-phosphoshikimate synthase
US5316931A (en) 1988-02-26 1994-05-31 Biosource Genetics Corp. Plant viral vectors having heterologous subgenomic promoters for systemic expression of foreign genes
US5990387A (en) 1988-06-10 1999-11-23 Pioneer Hi-Bred International, Inc. Stable transformation of plant cells
US5231020A (en) 1989-03-30 1993-07-27 Dna Plant Technology Corporation Genetic engineering of novel plant phenotypes
US5879918A (en) 1989-05-12 1999-03-09 Pioneer Hi-Bred International, Inc. Pretreatment of microprojectiles prior to using in a particle gun
US5240855A (en) 1989-05-12 1993-08-31 Pioneer Hi-Bred International, Inc. Particle gun
US5310667A (en) 1989-07-17 1994-05-10 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases
US5322783A (en) 1989-10-17 1994-06-21 Pioneer Hi-Bred International, Inc. Soybean transformation by microparticle bombardment
ATE225853T1 (de) 1990-04-12 2002-10-15 Syngenta Participations Ag Gewebe-spezifische promotoren
EP0528857B1 (en) 1990-04-26 2002-01-30 Aventis CropScience N.V. New bacillus thuringiensis strain and its gene encoding insecticidal toxin
CA2083948C (en) 1990-06-25 2001-05-15 Ganesh M. Kishore Glyphosate tolerant plants
US6395966B1 (en) * 1990-08-09 2002-05-28 Dekalb Genetics Corp. Fertile transgenic maize plants containing a gene encoding the pat protein
US5633435A (en) 1990-08-31 1997-05-27 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
US5866775A (en) 1990-09-28 1999-02-02 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases
US5932782A (en) 1990-11-14 1999-08-03 Pioneer Hi-Bred International, Inc. Plant transformation method using agrobacterium species adhered to microprojectiles
US5277905A (en) 1991-01-16 1994-01-11 Mycogen Corporation Coleopteran-active bacillus thuringiensis isolate
FR2673643B1 (fr) 1991-03-05 1993-05-21 Rhone Poulenc Agrochimie Peptide de transit pour l'insertion d'un gene etranger dans un gene vegetal et plantes transformees en utilisant ce peptide.
USRE36449E (en) 1991-03-05 1999-12-14 Rhone-Poulenc Agro Chimeric gene for the transformation of plants
FR2673642B1 (fr) 1991-03-05 1994-08-12 Rhone Poulenc Agrochimie Gene chimere comprenant un promoteur capable de conferer a une plante une tolerance accrue au glyphosate.
ATE174626T1 (de) 1991-08-02 1999-01-15 Mycogen Corp Neuer mikroorganismus und insektizid
TW261517B (zh) 1991-11-29 1995-11-01 Mitsubishi Shozi Kk
US5324646A (en) 1992-01-06 1994-06-28 Pioneer Hi-Bred International, Inc. Methods of regeneration of Medicago sativa and expressing foreign DNA in same
BR9306802A (pt) 1992-07-27 1998-12-08 Pioneer Hi Bred Int Processo independente de genótipos para produção de planta de soja transgénica e processo de regeneração de plantas de soja a partir de nodos cotiledonais
CA2127807A1 (en) 1992-11-20 1994-06-09 John Maliyakal Transgenic cotton plants producing heterologous bioplastic
IL108241A (en) 1992-12-30 2000-08-13 Biosource Genetics Corp Plant expression system comprising a defective tobamovirus replicon integrated into the plant chromosome and a helper virus
WO1994016078A2 (en) 1993-01-13 1994-07-21 Pioneer Hi-Bred International, Inc. High lysine derivatives of alpha-hordothionin
US5583210A (en) 1993-03-18 1996-12-10 Pioneer Hi-Bred International, Inc. Methods and compositions for controlling plant development
FR2712302B1 (fr) 1993-11-10 1996-01-05 Rhone Poulenc Agrochimie Eléments promoteurs de gènes chimères de tubuline alpha.
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5593881A (en) 1994-05-06 1997-01-14 Mycogen Corporation Bacillus thuringiensis delta-endotoxin
US5736369A (en) 1994-07-29 1998-04-07 Pioneer Hi-Bred International, Inc. Method for producing transgenic cereal plants
US5792931A (en) 1994-08-12 1998-08-11 Pioneer Hi-Bred International, Inc. Fumonisin detoxification compositions and methods
HUP9900878A2 (hu) 1995-06-02 1999-07-28 Pioneer Hi-Bred International, Inc. Alfa-hordotionin nagy metionintartalmú származéka
AR003683A1 (es) 1995-06-02 1998-09-09 Pioneer Hi Bred Int Proteinas derivadas de alfa-hordiotonina con alto contenido de treonina
FR2736926B1 (fr) 1995-07-19 1997-08-22 Rhone Poulenc Agrochimie 5-enol pyruvylshikimate-3-phosphate synthase mutee, gene codant pour cette proteine et plantes transformees contenant ce gene
FR2736929B1 (fr) 1995-07-19 1997-08-22 Rhone Poulenc Agrochimie Sequence adn isolee pouvant servir de zone de regulation dans un gene chimere utilisable pour la transformation des plantes
US5737514A (en) 1995-11-29 1998-04-07 Texas Micro, Inc. Remote checkpoint memory system and protocol for fault-tolerant computer system
US5703049A (en) 1996-02-29 1997-12-30 Pioneer Hi-Bred Int'l, Inc. High methionine derivatives of α-hordothionin for pathogen-control
US5850016A (en) 1996-03-20 1998-12-15 Pioneer Hi-Bred International, Inc. Alteration of amino acid compositions in seeds
US6072050A (en) 1996-06-11 2000-06-06 Pioneer Hi-Bred International, Inc. Synthetic promoters
US6002068A (en) 1996-12-19 1999-12-14 Novartis Finance Corporation Methods for conferring insect resistance to a monocot using a perioxidase coding sequence
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
US6040497A (en) 1997-04-03 2000-03-21 Dekalb Genetics Corporation Glyphosate resistant maize lines
US6506559B1 (en) 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
IL146064A0 (en) 1999-04-29 2002-07-25 Marlow Foods Ltd Herbicide resistant plants
HUP0201018A2 (en) 1999-04-29 2002-07-29 Syngenta Ltd Herbicide resistant plants
CA2365592C (en) 1999-04-29 2011-11-15 Zeneca Limited Herbicide resistant plants comprising epsps
AU4200501A (en) 2000-03-09 2001-09-17 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
CA2459915A1 (en) 2001-09-07 2003-03-20 Board Of Trustees Operating Michigan State University Blueberry red ringspot virus, sequences, promoters, and uses thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cloning, sequencing, and promoter identification of Blueberry red ringspot virus, a member of the family Caulimoviridae with similarities to the "Soybean chlorotic mottle-like" genus;B. M. Glasheen, et al.;《Arch Virol》;20020819;第147卷;2169–2186 *
Glasheen,B.M., et al..Genbank accession number: AF404509.1.《Genbank》.2001,1-4. *
Livia Stavolone, et al..Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops.《Plant Molecular Biology》.2003,第53卷703–713. *

Also Published As

Publication number Publication date
US20120167250A1 (en) 2012-06-28
CA2821154A1 (en) 2012-06-28
MX2013007086A (es) 2013-07-29
EP2655635A1 (en) 2013-10-30
BR112013014988A2 (pt) 2017-06-27
US8895716B2 (en) 2014-11-25
WO2012088227A1 (en) 2012-06-28
CN103270160A (zh) 2013-08-28

Similar Documents

Publication Publication Date Title
CN103476934B (zh) 根优选的启动子以及使用方法
CA2854800A1 (en) Increasing soybean defense against pests
CN103261425B (zh) 病毒启动子、其截短物以及使用方法
CA2602338C (en) A root-preferred, nematode-inducible soybean promoter and its use
CN103270160B (zh) 病毒启动子、其截短物以及使用方法
US8338662B2 (en) Viral promoter, truncations thereof, and methods of use
US9157087B2 (en) Inducible plant promoters and the use thereof
US8395022B2 (en) Viral promoter, truncations thereof, and methods of use
US9150624B2 (en) Green tissue-preferred promoter from maize
US8350121B2 (en) Viral promoter, truncations thereof, and methods of use
US8022275B2 (en) Maize promoter active in silk and pericarp tissues
MX2007008712A (es) Un promotor inducible de desoxihipusina sintetasa de maiz.
US8344206B2 (en) Viral promoter, truncations thereof, and methods of use
US7393947B1 (en) Inducible promoter which regulates the expression of a peroxidase gene from maize
US20100186113A1 (en) Root-Tip Preferred Promoter from Maize
CN101146910A (zh) 根部优先的可被创伤和昆虫诱导的2-酮戊二酸依赖型玉米加氧酶启动子及其应用
US20090205078A1 (en) Maize Leaf- and Stalk-Preferred Promoter
US20100186115A1 (en) Maize Tissue-Preferred Promoter
CN105722983A (zh) 植物调控元件及其使用方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150909

Termination date: 20161221